7dc357d343
Dereference auth after NULL check in tpm_buf_check_hmac_response(). Otherwise, unless tpm2_sessions_init() was called, a call can cause NULL dereference, when TCG_TPM2_HMAC is enabled. [jarkko: adjusted the commit message.] Cc: stable@vger.kernel.org # v6.10+ Fixes: 7ca110f2679b ("tpm: Address !chip->auth in tpm_buf_append_hmac_session*()") Signed-off-by: Hao Ge <gehao@kylinos.cn> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
1366 lines
40 KiB
C
1366 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright (C) 2018 James.Bottomley@HansenPartnership.com
|
|
*
|
|
* Cryptographic helper routines for handling TPM2 sessions for
|
|
* authorization HMAC and request response encryption.
|
|
*
|
|
* The idea is to ensure that every TPM command is HMAC protected by a
|
|
* session, meaning in-flight tampering would be detected and in
|
|
* addition all sensitive inputs and responses should be encrypted.
|
|
*
|
|
* The basic way this works is to use a TPM feature called salted
|
|
* sessions where a random secret used in session construction is
|
|
* encrypted to the public part of a known TPM key. The problem is we
|
|
* have no known keys, so initially a primary Elliptic Curve key is
|
|
* derived from the NULL seed (we use EC because most TPMs generate
|
|
* these keys much faster than RSA ones). The curve used is NIST_P256
|
|
* because that's now mandated to be present in 'TCG TPM v2.0
|
|
* Provisioning Guidance'
|
|
*
|
|
* Threat problems: the initial TPM2_CreatePrimary is not (and cannot
|
|
* be) session protected, so a clever Man in the Middle could return a
|
|
* public key they control to this command and from there intercept
|
|
* and decode all subsequent session based transactions. The kernel
|
|
* cannot mitigate this threat but, after boot, userspace can get
|
|
* proof this has not happened by asking the TPM to certify the NULL
|
|
* key. This certification would chain back to the TPM Endorsement
|
|
* Certificate and prove the NULL seed primary had not been tampered
|
|
* with and thus all sessions must have been cryptographically secure.
|
|
* To assist with this, the initial NULL seed public key name is made
|
|
* available in a sysfs file.
|
|
*
|
|
* Use of these functions:
|
|
*
|
|
* The design is all the crypto, hash and hmac gunk is confined in this
|
|
* file and never needs to be seen even by the kernel internal user. To
|
|
* the user there's an init function tpm2_sessions_init() that needs to
|
|
* be called once per TPM which generates the NULL seed primary key.
|
|
*
|
|
* These are the usage functions:
|
|
*
|
|
* tpm2_start_auth_session() which allocates the opaque auth structure
|
|
* and gets a session from the TPM. This must be called before
|
|
* any of the following functions. The session is protected by a
|
|
* session_key which is derived from a random salt value
|
|
* encrypted to the NULL seed.
|
|
* tpm2_end_auth_session() kills the session and frees the resources.
|
|
* Under normal operation this function is done by
|
|
* tpm_buf_check_hmac_response(), so this is only to be used on
|
|
* error legs where the latter is not executed.
|
|
* tpm_buf_append_name() to add a handle to the buffer. This must be
|
|
* used in place of the usual tpm_buf_append_u32() for adding
|
|
* handles because handles have to be processed specially when
|
|
* calculating the HMAC. In particular, for NV, volatile and
|
|
* permanent objects you now need to provide the name.
|
|
* tpm_buf_append_hmac_session() which appends the hmac session to the
|
|
* buf in the same way tpm_buf_append_auth does().
|
|
* tpm_buf_fill_hmac_session() This calculates the correct hash and
|
|
* places it in the buffer. It must be called after the complete
|
|
* command buffer is finalized so it can fill in the correct HMAC
|
|
* based on the parameters.
|
|
* tpm_buf_check_hmac_response() which checks the session response in
|
|
* the buffer and calculates what it should be. If there's a
|
|
* mismatch it will log a warning and return an error. If
|
|
* tpm_buf_append_hmac_session() did not specify
|
|
* TPM_SA_CONTINUE_SESSION then the session will be closed (if it
|
|
* hasn't been consumed) and the auth structure freed.
|
|
*/
|
|
|
|
#include "tpm.h"
|
|
#include <linux/random.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <asm/unaligned.h>
|
|
#include <crypto/kpp.h>
|
|
#include <crypto/ecdh.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/hmac.h>
|
|
|
|
/* maximum number of names the TPM must remember for authorization */
|
|
#define AUTH_MAX_NAMES 3
|
|
|
|
#define AES_KEY_BYTES AES_KEYSIZE_128
|
|
#define AES_KEY_BITS (AES_KEY_BYTES*8)
|
|
|
|
/*
|
|
* This is the structure that carries all the auth information (like
|
|
* session handle, nonces, session key and auth) from use to use it is
|
|
* designed to be opaque to anything outside.
|
|
*/
|
|
struct tpm2_auth {
|
|
u32 handle;
|
|
/*
|
|
* This has two meanings: before tpm_buf_fill_hmac_session()
|
|
* it marks the offset in the buffer of the start of the
|
|
* sessions (i.e. after all the handles). Once the buffer has
|
|
* been filled it markes the session number of our auth
|
|
* session so we can find it again in the response buffer.
|
|
*
|
|
* The two cases are distinguished because the first offset
|
|
* must always be greater than TPM_HEADER_SIZE and the second
|
|
* must be less than or equal to 5.
|
|
*/
|
|
u32 session;
|
|
/*
|
|
* the size here is variable and set by the size of our_nonce
|
|
* which must be between 16 and the name hash length. we set
|
|
* the maximum sha256 size for the greatest protection
|
|
*/
|
|
u8 our_nonce[SHA256_DIGEST_SIZE];
|
|
u8 tpm_nonce[SHA256_DIGEST_SIZE];
|
|
/*
|
|
* the salt is only used across the session command/response
|
|
* after that it can be used as a scratch area
|
|
*/
|
|
union {
|
|
u8 salt[EC_PT_SZ];
|
|
/* scratch for key + IV */
|
|
u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
|
|
};
|
|
/*
|
|
* the session key and passphrase are the same size as the
|
|
* name digest (sha256 again). The session key is constant
|
|
* for the use of the session and the passphrase can change
|
|
* with every invocation.
|
|
*
|
|
* Note: these fields must be adjacent and in this order
|
|
* because several HMAC/KDF schemes use the combination of the
|
|
* session_key and passphrase.
|
|
*/
|
|
u8 session_key[SHA256_DIGEST_SIZE];
|
|
u8 passphrase[SHA256_DIGEST_SIZE];
|
|
int passphrase_len;
|
|
struct crypto_aes_ctx aes_ctx;
|
|
/* saved session attributes: */
|
|
u8 attrs;
|
|
__be32 ordinal;
|
|
|
|
/*
|
|
* memory for three authorization handles. We know them by
|
|
* handle, but they are part of the session by name, which
|
|
* we must compute and remember
|
|
*/
|
|
u32 name_h[AUTH_MAX_NAMES];
|
|
u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
|
|
};
|
|
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
/*
|
|
* Name Size based on TPM algorithm (assumes no hash bigger than 255)
|
|
*/
|
|
static u8 name_size(const u8 *name)
|
|
{
|
|
static u8 size_map[] = {
|
|
[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
|
|
[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
|
|
[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
|
|
[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
|
|
};
|
|
u16 alg = get_unaligned_be16(name);
|
|
return size_map[alg] + 2;
|
|
}
|
|
|
|
static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
|
|
{
|
|
struct tpm_header *head = (struct tpm_header *)buf->data;
|
|
off_t offset = TPM_HEADER_SIZE;
|
|
u32 tot_len = be32_to_cpu(head->length);
|
|
u32 val;
|
|
|
|
/* we're starting after the header so adjust the length */
|
|
tot_len -= TPM_HEADER_SIZE;
|
|
|
|
/* skip public */
|
|
val = tpm_buf_read_u16(buf, &offset);
|
|
if (val > tot_len)
|
|
return -EINVAL;
|
|
offset += val;
|
|
/* name */
|
|
val = tpm_buf_read_u16(buf, &offset);
|
|
if (val != name_size(&buf->data[offset]))
|
|
return -EINVAL;
|
|
memcpy(name, &buf->data[offset], val);
|
|
/* forget the rest */
|
|
return 0;
|
|
}
|
|
|
|
static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
|
|
{
|
|
struct tpm_buf buf;
|
|
int rc;
|
|
|
|
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
|
|
if (rc)
|
|
return rc;
|
|
|
|
tpm_buf_append_u32(&buf, handle);
|
|
rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
|
|
if (rc == TPM2_RC_SUCCESS)
|
|
rc = tpm2_parse_read_public(name, &buf);
|
|
|
|
tpm_buf_destroy(&buf);
|
|
|
|
return rc;
|
|
}
|
|
#endif /* CONFIG_TCG_TPM2_HMAC */
|
|
|
|
/**
|
|
* tpm_buf_append_name() - add a handle area to the buffer
|
|
* @chip: the TPM chip structure
|
|
* @buf: The buffer to be appended
|
|
* @handle: The handle to be appended
|
|
* @name: The name of the handle (may be NULL)
|
|
*
|
|
* In order to compute session HMACs, we need to know the names of the
|
|
* objects pointed to by the handles. For most objects, this is simply
|
|
* the actual 4 byte handle or an empty buf (in these cases @name
|
|
* should be NULL) but for volatile objects, permanent objects and NV
|
|
* areas, the name is defined as the hash (according to the name
|
|
* algorithm which should be set to sha256) of the public area to
|
|
* which the two byte algorithm id has been appended. For these
|
|
* objects, the @name pointer should point to this. If a name is
|
|
* required but @name is NULL, then TPM2_ReadPublic() will be called
|
|
* on the handle to obtain the name.
|
|
*
|
|
* As with most tpm_buf operations, success is assumed because failure
|
|
* will be caused by an incorrect programming model and indicated by a
|
|
* kernel message.
|
|
*/
|
|
void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
|
|
u32 handle, u8 *name)
|
|
{
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
enum tpm2_mso_type mso = tpm2_handle_mso(handle);
|
|
struct tpm2_auth *auth;
|
|
int slot;
|
|
#endif
|
|
|
|
if (!tpm2_chip_auth(chip)) {
|
|
tpm_buf_append_u32(buf, handle);
|
|
/* count the number of handles in the upper bits of flags */
|
|
buf->handles++;
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE) / 4;
|
|
if (slot >= AUTH_MAX_NAMES) {
|
|
dev_err(&chip->dev, "TPM: too many handles\n");
|
|
return;
|
|
}
|
|
auth = chip->auth;
|
|
WARN(auth->session != tpm_buf_length(buf),
|
|
"name added in wrong place\n");
|
|
tpm_buf_append_u32(buf, handle);
|
|
auth->session += 4;
|
|
|
|
if (mso == TPM2_MSO_PERSISTENT ||
|
|
mso == TPM2_MSO_VOLATILE ||
|
|
mso == TPM2_MSO_NVRAM) {
|
|
if (!name)
|
|
tpm2_read_public(chip, handle, auth->name[slot]);
|
|
} else {
|
|
if (name)
|
|
dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
|
|
}
|
|
|
|
auth->name_h[slot] = handle;
|
|
if (name)
|
|
memcpy(auth->name[slot], name, name_size(name));
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL_GPL(tpm_buf_append_name);
|
|
|
|
/**
|
|
* tpm_buf_append_hmac_session() - Append a TPM session element
|
|
* @chip: the TPM chip structure
|
|
* @buf: The buffer to be appended
|
|
* @attributes: The session attributes
|
|
* @passphrase: The session authority (NULL if none)
|
|
* @passphrase_len: The length of the session authority (0 if none)
|
|
*
|
|
* This fills in a session structure in the TPM command buffer, except
|
|
* for the HMAC which cannot be computed until the command buffer is
|
|
* complete. The type of session is controlled by the @attributes,
|
|
* the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
|
|
* session won't terminate after tpm_buf_check_hmac_response(),
|
|
* TPM2_SA_DECRYPT which means this buffers first parameter should be
|
|
* encrypted with a session key and TPM2_SA_ENCRYPT, which means the
|
|
* response buffer's first parameter needs to be decrypted (confusing,
|
|
* but the defines are written from the point of view of the TPM).
|
|
*
|
|
* Any session appended by this command must be finalized by calling
|
|
* tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
|
|
* and the TPM will reject the command.
|
|
*
|
|
* As with most tpm_buf operations, success is assumed because failure
|
|
* will be caused by an incorrect programming model and indicated by a
|
|
* kernel message.
|
|
*/
|
|
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
|
|
u8 attributes, u8 *passphrase,
|
|
int passphrase_len)
|
|
{
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
u8 nonce[SHA256_DIGEST_SIZE];
|
|
struct tpm2_auth *auth;
|
|
u32 len;
|
|
#endif
|
|
|
|
if (!tpm2_chip_auth(chip)) {
|
|
/* offset tells us where the sessions area begins */
|
|
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
|
|
u32 len = 9 + passphrase_len;
|
|
|
|
if (tpm_buf_length(buf) != offset) {
|
|
/* not the first session so update the existing length */
|
|
len += get_unaligned_be32(&buf->data[offset]);
|
|
put_unaligned_be32(len, &buf->data[offset]);
|
|
} else {
|
|
tpm_buf_append_u32(buf, len);
|
|
}
|
|
/* auth handle */
|
|
tpm_buf_append_u32(buf, TPM2_RS_PW);
|
|
/* nonce */
|
|
tpm_buf_append_u16(buf, 0);
|
|
/* attributes */
|
|
tpm_buf_append_u8(buf, 0);
|
|
/* passphrase */
|
|
tpm_buf_append_u16(buf, passphrase_len);
|
|
tpm_buf_append(buf, passphrase, passphrase_len);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
/*
|
|
* The Architecture Guide requires us to strip trailing zeros
|
|
* before computing the HMAC
|
|
*/
|
|
while (passphrase && passphrase_len > 0 && passphrase[passphrase_len - 1] == '\0')
|
|
passphrase_len--;
|
|
|
|
auth = chip->auth;
|
|
auth->attrs = attributes;
|
|
auth->passphrase_len = passphrase_len;
|
|
if (passphrase_len)
|
|
memcpy(auth->passphrase, passphrase, passphrase_len);
|
|
|
|
if (auth->session != tpm_buf_length(buf)) {
|
|
/* we're not the first session */
|
|
len = get_unaligned_be32(&buf->data[auth->session]);
|
|
if (4 + len + auth->session != tpm_buf_length(buf)) {
|
|
WARN(1, "session length mismatch, cannot append");
|
|
return;
|
|
}
|
|
|
|
/* add our new session */
|
|
len += 9 + 2 * SHA256_DIGEST_SIZE;
|
|
put_unaligned_be32(len, &buf->data[auth->session]);
|
|
} else {
|
|
tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
|
|
}
|
|
|
|
/* random number for our nonce */
|
|
get_random_bytes(nonce, sizeof(nonce));
|
|
memcpy(auth->our_nonce, nonce, sizeof(nonce));
|
|
tpm_buf_append_u32(buf, auth->handle);
|
|
/* our new nonce */
|
|
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
|
|
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
|
|
tpm_buf_append_u8(buf, auth->attrs);
|
|
/* and put a placeholder for the hmac */
|
|
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
|
|
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL_GPL(tpm_buf_append_hmac_session);
|
|
|
|
#ifdef CONFIG_TCG_TPM2_HMAC
|
|
|
|
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
|
|
u32 *handle, u8 *name);
|
|
|
|
/*
|
|
* It turns out the crypto hmac(sha256) is hard for us to consume
|
|
* because it assumes a fixed key and the TPM seems to change the key
|
|
* on every operation, so we weld the hmac init and final functions in
|
|
* here to give it the same usage characteristics as a regular hash
|
|
*/
|
|
static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
|
|
{
|
|
u8 pad[SHA256_BLOCK_SIZE];
|
|
int i;
|
|
|
|
sha256_init(sctx);
|
|
for (i = 0; i < sizeof(pad); i++) {
|
|
if (i < key_len)
|
|
pad[i] = key[i];
|
|
else
|
|
pad[i] = 0;
|
|
pad[i] ^= HMAC_IPAD_VALUE;
|
|
}
|
|
sha256_update(sctx, pad, sizeof(pad));
|
|
}
|
|
|
|
static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
|
|
u8 *out)
|
|
{
|
|
u8 pad[SHA256_BLOCK_SIZE];
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(pad); i++) {
|
|
if (i < key_len)
|
|
pad[i] = key[i];
|
|
else
|
|
pad[i] = 0;
|
|
pad[i] ^= HMAC_OPAD_VALUE;
|
|
}
|
|
|
|
/* collect the final hash; use out as temporary storage */
|
|
sha256_final(sctx, out);
|
|
|
|
sha256_init(sctx);
|
|
sha256_update(sctx, pad, sizeof(pad));
|
|
sha256_update(sctx, out, SHA256_DIGEST_SIZE);
|
|
sha256_final(sctx, out);
|
|
}
|
|
|
|
/*
|
|
* assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
|
|
* otherwise standard tpm2_KDFa. Note output is in bytes not bits.
|
|
*/
|
|
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
|
|
u8 *v, u32 bytes, u8 *out)
|
|
{
|
|
u32 counter = 1;
|
|
const __be32 bits = cpu_to_be32(bytes * 8);
|
|
|
|
while (bytes > 0) {
|
|
struct sha256_state sctx;
|
|
__be32 c = cpu_to_be32(counter);
|
|
|
|
tpm2_hmac_init(&sctx, key, key_len);
|
|
sha256_update(&sctx, (u8 *)&c, sizeof(c));
|
|
sha256_update(&sctx, label, strlen(label)+1);
|
|
sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
|
|
sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
|
|
sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
|
|
tpm2_hmac_final(&sctx, key, key_len, out);
|
|
|
|
bytes -= SHA256_DIGEST_SIZE;
|
|
counter++;
|
|
out += SHA256_DIGEST_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Somewhat of a bastardization of the real KDFe. We're assuming
|
|
* we're working with known point sizes for the input parameters and
|
|
* the hash algorithm is fixed at sha256. Because we know that the
|
|
* point size is 32 bytes like the hash size, there's no need to loop
|
|
* in this KDF.
|
|
*/
|
|
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
|
|
u8 *out)
|
|
{
|
|
struct sha256_state sctx;
|
|
/*
|
|
* this should be an iterative counter, but because we know
|
|
* we're only taking 32 bytes for the point using a sha256
|
|
* hash which is also 32 bytes, there's only one loop
|
|
*/
|
|
__be32 c = cpu_to_be32(1);
|
|
|
|
sha256_init(&sctx);
|
|
/* counter (BE) */
|
|
sha256_update(&sctx, (u8 *)&c, sizeof(c));
|
|
/* secret value */
|
|
sha256_update(&sctx, z, EC_PT_SZ);
|
|
/* string including trailing zero */
|
|
sha256_update(&sctx, str, strlen(str)+1);
|
|
sha256_update(&sctx, pt_u, EC_PT_SZ);
|
|
sha256_update(&sctx, pt_v, EC_PT_SZ);
|
|
sha256_final(&sctx, out);
|
|
}
|
|
|
|
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
|
|
{
|
|
struct crypto_kpp *kpp;
|
|
struct kpp_request *req;
|
|
struct scatterlist s[2], d[1];
|
|
struct ecdh p = {0};
|
|
u8 encoded_key[EC_PT_SZ], *x, *y;
|
|
unsigned int buf_len;
|
|
|
|
/* secret is two sized points */
|
|
tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
|
|
/*
|
|
* we cheat here and append uninitialized data to form
|
|
* the points. All we care about is getting the two
|
|
* co-ordinate pointers, which will be used to overwrite
|
|
* the uninitialized data
|
|
*/
|
|
tpm_buf_append_u16(buf, EC_PT_SZ);
|
|
x = &buf->data[tpm_buf_length(buf)];
|
|
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
|
|
tpm_buf_append_u16(buf, EC_PT_SZ);
|
|
y = &buf->data[tpm_buf_length(buf)];
|
|
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
|
|
sg_init_table(s, 2);
|
|
sg_set_buf(&s[0], x, EC_PT_SZ);
|
|
sg_set_buf(&s[1], y, EC_PT_SZ);
|
|
|
|
kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
|
|
if (IS_ERR(kpp)) {
|
|
dev_err(&chip->dev, "crypto ecdh allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
buf_len = crypto_ecdh_key_len(&p);
|
|
if (sizeof(encoded_key) < buf_len) {
|
|
dev_err(&chip->dev, "salt buffer too small needs %d\n",
|
|
buf_len);
|
|
goto out;
|
|
}
|
|
crypto_ecdh_encode_key(encoded_key, buf_len, &p);
|
|
/* this generates a random private key */
|
|
crypto_kpp_set_secret(kpp, encoded_key, buf_len);
|
|
|
|
/* salt is now the public point of this private key */
|
|
req = kpp_request_alloc(kpp, GFP_KERNEL);
|
|
if (!req)
|
|
goto out;
|
|
kpp_request_set_input(req, NULL, 0);
|
|
kpp_request_set_output(req, s, EC_PT_SZ*2);
|
|
crypto_kpp_generate_public_key(req);
|
|
/*
|
|
* we're not done: now we have to compute the shared secret
|
|
* which is our private key multiplied by the tpm_key public
|
|
* point, we actually only take the x point and discard the y
|
|
* point and feed it through KDFe to get the final secret salt
|
|
*/
|
|
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
|
|
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
|
|
kpp_request_set_input(req, s, EC_PT_SZ*2);
|
|
sg_init_one(d, chip->auth->salt, EC_PT_SZ);
|
|
kpp_request_set_output(req, d, EC_PT_SZ);
|
|
crypto_kpp_compute_shared_secret(req);
|
|
kpp_request_free(req);
|
|
|
|
/*
|
|
* pass the shared secret through KDFe for salt. Note salt
|
|
* area is used both for input shared secret and output salt.
|
|
* This works because KDFe fully consumes the secret before it
|
|
* writes the salt
|
|
*/
|
|
tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
|
|
chip->auth->salt);
|
|
|
|
out:
|
|
crypto_free_kpp(kpp);
|
|
}
|
|
|
|
/**
|
|
* tpm_buf_fill_hmac_session() - finalize the session HMAC
|
|
* @chip: the TPM chip structure
|
|
* @buf: The buffer to be appended
|
|
*
|
|
* This command must not be called until all of the parameters have
|
|
* been appended to @buf otherwise the computed HMAC will be
|
|
* incorrect.
|
|
*
|
|
* This function computes and fills in the session HMAC using the
|
|
* session key and, if TPM2_SA_DECRYPT was specified, computes the
|
|
* encryption key and encrypts the first parameter of the command
|
|
* buffer with it.
|
|
*
|
|
* As with most tpm_buf operations, success is assumed because failure
|
|
* will be caused by an incorrect programming model and indicated by a
|
|
* kernel message.
|
|
*/
|
|
void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
|
|
{
|
|
u32 cc, handles, val;
|
|
struct tpm2_auth *auth = chip->auth;
|
|
int i;
|
|
struct tpm_header *head = (struct tpm_header *)buf->data;
|
|
off_t offset_s = TPM_HEADER_SIZE, offset_p;
|
|
u8 *hmac = NULL;
|
|
u32 attrs;
|
|
u8 cphash[SHA256_DIGEST_SIZE];
|
|
struct sha256_state sctx;
|
|
|
|
if (!auth)
|
|
return;
|
|
|
|
/* save the command code in BE format */
|
|
auth->ordinal = head->ordinal;
|
|
|
|
cc = be32_to_cpu(head->ordinal);
|
|
|
|
i = tpm2_find_cc(chip, cc);
|
|
if (i < 0) {
|
|
dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
|
|
return;
|
|
}
|
|
attrs = chip->cc_attrs_tbl[i];
|
|
|
|
handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
|
|
|
|
/*
|
|
* just check the names, it's easy to make mistakes. This
|
|
* would happen if someone added a handle via
|
|
* tpm_buf_append_u32() instead of tpm_buf_append_name()
|
|
*/
|
|
for (i = 0; i < handles; i++) {
|
|
u32 handle = tpm_buf_read_u32(buf, &offset_s);
|
|
|
|
if (auth->name_h[i] != handle) {
|
|
dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
|
|
i);
|
|
return;
|
|
}
|
|
}
|
|
/* point offset_s to the start of the sessions */
|
|
val = tpm_buf_read_u32(buf, &offset_s);
|
|
/* point offset_p to the start of the parameters */
|
|
offset_p = offset_s + val;
|
|
for (i = 1; offset_s < offset_p; i++) {
|
|
u32 handle = tpm_buf_read_u32(buf, &offset_s);
|
|
u16 len;
|
|
u8 a;
|
|
|
|
/* nonce (already in auth) */
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
offset_s += len;
|
|
|
|
a = tpm_buf_read_u8(buf, &offset_s);
|
|
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
if (handle == auth->handle && auth->attrs == a) {
|
|
hmac = &buf->data[offset_s];
|
|
/*
|
|
* save our session number so we know which
|
|
* session in the response belongs to us
|
|
*/
|
|
auth->session = i;
|
|
}
|
|
|
|
offset_s += len;
|
|
}
|
|
if (offset_s != offset_p) {
|
|
dev_err(&chip->dev, "TPM session length is incorrect\n");
|
|
return;
|
|
}
|
|
if (!hmac) {
|
|
dev_err(&chip->dev, "TPM could not find HMAC session\n");
|
|
return;
|
|
}
|
|
|
|
/* encrypt before HMAC */
|
|
if (auth->attrs & TPM2_SA_DECRYPT) {
|
|
u16 len;
|
|
|
|
/* need key and IV */
|
|
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
|
|
+ auth->passphrase_len, "CFB", auth->our_nonce,
|
|
auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
|
|
auth->scratch);
|
|
|
|
len = tpm_buf_read_u16(buf, &offset_p);
|
|
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
|
|
aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
|
|
&buf->data[offset_p], len,
|
|
auth->scratch + AES_KEY_BYTES);
|
|
/* reset p to beginning of parameters for HMAC */
|
|
offset_p -= 2;
|
|
}
|
|
|
|
sha256_init(&sctx);
|
|
/* ordinal is already BE */
|
|
sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
|
|
/* add the handle names */
|
|
for (i = 0; i < handles; i++) {
|
|
enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
|
|
|
|
if (mso == TPM2_MSO_PERSISTENT ||
|
|
mso == TPM2_MSO_VOLATILE ||
|
|
mso == TPM2_MSO_NVRAM) {
|
|
sha256_update(&sctx, auth->name[i],
|
|
name_size(auth->name[i]));
|
|
} else {
|
|
__be32 h = cpu_to_be32(auth->name_h[i]);
|
|
|
|
sha256_update(&sctx, (u8 *)&h, 4);
|
|
}
|
|
}
|
|
if (offset_s != tpm_buf_length(buf))
|
|
sha256_update(&sctx, &buf->data[offset_s],
|
|
tpm_buf_length(buf) - offset_s);
|
|
sha256_final(&sctx, cphash);
|
|
|
|
/* now calculate the hmac */
|
|
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
|
|
+ auth->passphrase_len);
|
|
sha256_update(&sctx, cphash, sizeof(cphash));
|
|
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
|
|
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
|
|
sha256_update(&sctx, &auth->attrs, 1);
|
|
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
|
|
+ auth->passphrase_len, hmac);
|
|
}
|
|
EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
|
|
|
|
/**
|
|
* tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
|
|
* @chip: the TPM chip structure
|
|
* @buf: the original command buffer (which now contains the response)
|
|
* @rc: the return code from tpm_transmit_cmd
|
|
*
|
|
* If @rc is non zero, @buf may not contain an actual return, so @rc
|
|
* is passed through as the return and the session cleaned up and
|
|
* de-allocated if required (this is required if
|
|
* TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
|
|
*
|
|
* If @rc is zero, the response HMAC is computed against the returned
|
|
* @buf and matched to the TPM one in the session area. If there is a
|
|
* mismatch, an error is logged and -EINVAL returned.
|
|
*
|
|
* The reason for this is that the command issue and HMAC check
|
|
* sequence should look like:
|
|
*
|
|
* rc = tpm_transmit_cmd(...);
|
|
* rc = tpm_buf_check_hmac_response(&buf, auth, rc);
|
|
* if (rc)
|
|
* ...
|
|
*
|
|
* Which is easily layered into the current contrl flow.
|
|
*
|
|
* Returns: 0 on success or an error.
|
|
*/
|
|
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
|
|
int rc)
|
|
{
|
|
struct tpm_header *head = (struct tpm_header *)buf->data;
|
|
struct tpm2_auth *auth = chip->auth;
|
|
off_t offset_s, offset_p;
|
|
u8 rphash[SHA256_DIGEST_SIZE];
|
|
u32 attrs, cc;
|
|
struct sha256_state sctx;
|
|
u16 tag = be16_to_cpu(head->tag);
|
|
int parm_len, len, i, handles;
|
|
|
|
if (!auth)
|
|
return rc;
|
|
|
|
cc = be32_to_cpu(auth->ordinal);
|
|
|
|
if (auth->session >= TPM_HEADER_SIZE) {
|
|
WARN(1, "tpm session not filled correctly\n");
|
|
goto out;
|
|
}
|
|
|
|
if (rc != 0)
|
|
/* pass non success rc through and close the session */
|
|
goto out;
|
|
|
|
rc = -EINVAL;
|
|
if (tag != TPM2_ST_SESSIONS) {
|
|
dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
|
|
goto out;
|
|
}
|
|
|
|
i = tpm2_find_cc(chip, cc);
|
|
if (i < 0)
|
|
goto out;
|
|
attrs = chip->cc_attrs_tbl[i];
|
|
handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
|
|
|
|
/* point to area beyond handles */
|
|
offset_s = TPM_HEADER_SIZE + handles * 4;
|
|
parm_len = tpm_buf_read_u32(buf, &offset_s);
|
|
offset_p = offset_s;
|
|
offset_s += parm_len;
|
|
/* skip over any sessions before ours */
|
|
for (i = 0; i < auth->session - 1; i++) {
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
offset_s += len + 1;
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
offset_s += len;
|
|
}
|
|
/* TPM nonce */
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
if (offset_s + len > tpm_buf_length(buf))
|
|
goto out;
|
|
if (len != SHA256_DIGEST_SIZE)
|
|
goto out;
|
|
memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
|
|
offset_s += len;
|
|
attrs = tpm_buf_read_u8(buf, &offset_s);
|
|
len = tpm_buf_read_u16(buf, &offset_s);
|
|
if (offset_s + len != tpm_buf_length(buf))
|
|
goto out;
|
|
if (len != SHA256_DIGEST_SIZE)
|
|
goto out;
|
|
/*
|
|
* offset_s points to the HMAC. now calculate comparison, beginning
|
|
* with rphash
|
|
*/
|
|
sha256_init(&sctx);
|
|
/* yes, I know this is now zero, but it's what the standard says */
|
|
sha256_update(&sctx, (u8 *)&head->return_code,
|
|
sizeof(head->return_code));
|
|
/* ordinal is already BE */
|
|
sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
|
|
sha256_update(&sctx, &buf->data[offset_p], parm_len);
|
|
sha256_final(&sctx, rphash);
|
|
|
|
/* now calculate the hmac */
|
|
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
|
|
+ auth->passphrase_len);
|
|
sha256_update(&sctx, rphash, sizeof(rphash));
|
|
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
|
|
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
|
|
sha256_update(&sctx, &auth->attrs, 1);
|
|
/* we're done with the rphash, so put our idea of the hmac there */
|
|
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
|
|
+ auth->passphrase_len, rphash);
|
|
if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
|
|
rc = 0;
|
|
} else {
|
|
dev_err(&chip->dev, "TPM: HMAC check failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/* now do response decryption */
|
|
if (auth->attrs & TPM2_SA_ENCRYPT) {
|
|
/* need key and IV */
|
|
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
|
|
+ auth->passphrase_len, "CFB", auth->tpm_nonce,
|
|
auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
|
|
auth->scratch);
|
|
|
|
len = tpm_buf_read_u16(buf, &offset_p);
|
|
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
|
|
aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
|
|
&buf->data[offset_p], len,
|
|
auth->scratch + AES_KEY_BYTES);
|
|
}
|
|
|
|
out:
|
|
if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
|
|
if (rc)
|
|
/* manually close the session if it wasn't consumed */
|
|
tpm2_flush_context(chip, auth->handle);
|
|
memzero_explicit(auth, sizeof(*auth));
|
|
} else {
|
|
/* reset for next use */
|
|
auth->session = TPM_HEADER_SIZE;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(tpm_buf_check_hmac_response);
|
|
|
|
/**
|
|
* tpm2_end_auth_session() - kill the allocated auth session
|
|
* @chip: the TPM chip structure
|
|
*
|
|
* ends the session started by tpm2_start_auth_session and frees all
|
|
* the resources. Under normal conditions,
|
|
* tpm_buf_check_hmac_response() will correctly end the session if
|
|
* required, so this function is only for use in error legs that will
|
|
* bypass the normal invocation of tpm_buf_check_hmac_response().
|
|
*/
|
|
void tpm2_end_auth_session(struct tpm_chip *chip)
|
|
{
|
|
struct tpm2_auth *auth = chip->auth;
|
|
|
|
if (!auth)
|
|
return;
|
|
|
|
tpm2_flush_context(chip, auth->handle);
|
|
memzero_explicit(auth, sizeof(*auth));
|
|
}
|
|
EXPORT_SYMBOL(tpm2_end_auth_session);
|
|
|
|
static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
|
|
struct tpm_buf *buf)
|
|
{
|
|
struct tpm_header *head = (struct tpm_header *)buf->data;
|
|
u32 tot_len = be32_to_cpu(head->length);
|
|
off_t offset = TPM_HEADER_SIZE;
|
|
u32 val;
|
|
|
|
/* we're starting after the header so adjust the length */
|
|
tot_len -= TPM_HEADER_SIZE;
|
|
|
|
/* should have handle plus nonce */
|
|
if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
|
|
return -EINVAL;
|
|
|
|
auth->handle = tpm_buf_read_u32(buf, &offset);
|
|
val = tpm_buf_read_u16(buf, &offset);
|
|
if (val != sizeof(auth->tpm_nonce))
|
|
return -EINVAL;
|
|
memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
|
|
/* now compute the session key from the nonces */
|
|
tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
|
|
auth->our_nonce, sizeof(auth->session_key),
|
|
auth->session_key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
|
|
{
|
|
int rc;
|
|
unsigned int offset = 0; /* dummy offset for null seed context */
|
|
u8 name[SHA256_DIGEST_SIZE + 2];
|
|
|
|
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
|
|
null_key);
|
|
if (rc != -EINVAL)
|
|
return rc;
|
|
|
|
/* an integrity failure may mean the TPM has been reset */
|
|
dev_err(&chip->dev, "NULL key integrity failure!\n");
|
|
/* check the null name against what we know */
|
|
tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
|
|
if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
|
|
/* name unchanged, assume transient integrity failure */
|
|
return rc;
|
|
/*
|
|
* Fatal TPM failure: the NULL seed has actually changed, so
|
|
* the TPM must have been illegally reset. All in-kernel TPM
|
|
* operations will fail because the NULL primary can't be
|
|
* loaded to salt the sessions, but disable the TPM anyway so
|
|
* userspace programmes can't be compromised by it.
|
|
*/
|
|
dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
|
|
chip->flags |= TPM_CHIP_FLAG_DISABLE;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tpm2_start_auth_session() - create a HMAC authentication session with the TPM
|
|
* @chip: the TPM chip structure to create the session with
|
|
*
|
|
* This function loads the NULL seed from its saved context and starts
|
|
* an authentication session on the null seed, fills in the
|
|
* @chip->auth structure to contain all the session details necessary
|
|
* for performing the HMAC, encrypt and decrypt operations and
|
|
* returns. The NULL seed is flushed before this function returns.
|
|
*
|
|
* Return: zero on success or actual error encountered.
|
|
*/
|
|
int tpm2_start_auth_session(struct tpm_chip *chip)
|
|
{
|
|
struct tpm_buf buf;
|
|
struct tpm2_auth *auth = chip->auth;
|
|
int rc;
|
|
u32 null_key;
|
|
|
|
if (!auth) {
|
|
dev_warn_once(&chip->dev, "auth session is not active\n");
|
|
return 0;
|
|
}
|
|
|
|
rc = tpm2_load_null(chip, &null_key);
|
|
if (rc)
|
|
goto out;
|
|
|
|
auth->session = TPM_HEADER_SIZE;
|
|
|
|
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* salt key handle */
|
|
tpm_buf_append_u32(&buf, null_key);
|
|
/* bind key handle */
|
|
tpm_buf_append_u32(&buf, TPM2_RH_NULL);
|
|
/* nonce caller */
|
|
get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
|
|
tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
|
|
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
|
|
|
|
/* append encrypted salt and squirrel away unencrypted in auth */
|
|
tpm_buf_append_salt(&buf, chip);
|
|
/* session type (HMAC, audit or policy) */
|
|
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
|
|
|
|
/* symmetric encryption parameters */
|
|
/* symmetric algorithm */
|
|
tpm_buf_append_u16(&buf, TPM_ALG_AES);
|
|
/* bits for symmetric algorithm */
|
|
tpm_buf_append_u16(&buf, AES_KEY_BITS);
|
|
/* symmetric algorithm mode (must be CFB) */
|
|
tpm_buf_append_u16(&buf, TPM_ALG_CFB);
|
|
/* hash algorithm for session */
|
|
tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
|
|
|
|
rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
|
|
tpm2_flush_context(chip, null_key);
|
|
|
|
if (rc == TPM2_RC_SUCCESS)
|
|
rc = tpm2_parse_start_auth_session(auth, &buf);
|
|
|
|
tpm_buf_destroy(&buf);
|
|
|
|
if (rc)
|
|
goto out;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(tpm2_start_auth_session);
|
|
|
|
/*
|
|
* A mask containing the object attributes for the kernel held null primary key
|
|
* used in HMAC encryption. For more information on specific attributes look up
|
|
* to "8.3 TPMA_OBJECT (Object Attributes)".
|
|
*/
|
|
#define TPM2_OA_NULL_KEY ( \
|
|
TPM2_OA_NO_DA | \
|
|
TPM2_OA_FIXED_TPM | \
|
|
TPM2_OA_FIXED_PARENT | \
|
|
TPM2_OA_SENSITIVE_DATA_ORIGIN | \
|
|
TPM2_OA_USER_WITH_AUTH | \
|
|
TPM2_OA_DECRYPT | \
|
|
TPM2_OA_RESTRICTED)
|
|
|
|
/**
|
|
* tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
|
|
*
|
|
* @chip: The TPM the primary was created under
|
|
* @buf: The response buffer from the chip
|
|
* @handle: pointer to be filled in with the return handle of the primary
|
|
* @hierarchy: The hierarchy the primary was created for
|
|
* @name: pointer to be filled in with the primary key name
|
|
*
|
|
* Return:
|
|
* * 0 - OK
|
|
* * -errno - A system error
|
|
* * TPM_RC - A TPM error
|
|
*/
|
|
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
|
|
u32 *handle, u32 hierarchy, u8 *name)
|
|
{
|
|
struct tpm_header *head = (struct tpm_header *)buf->data;
|
|
off_t offset_r = TPM_HEADER_SIZE, offset_t;
|
|
u16 len = TPM_HEADER_SIZE;
|
|
u32 total_len = be32_to_cpu(head->length);
|
|
u32 val, param_len, keyhandle;
|
|
|
|
keyhandle = tpm_buf_read_u32(buf, &offset_r);
|
|
if (handle)
|
|
*handle = keyhandle;
|
|
else
|
|
tpm2_flush_context(chip, keyhandle);
|
|
|
|
param_len = tpm_buf_read_u32(buf, &offset_r);
|
|
/*
|
|
* param_len doesn't include the header, but all the other
|
|
* lengths and offsets do, so add it to parm len to make
|
|
* the comparisons easier
|
|
*/
|
|
param_len += TPM_HEADER_SIZE;
|
|
|
|
if (param_len + 8 > total_len)
|
|
return -EINVAL;
|
|
len = tpm_buf_read_u16(buf, &offset_r);
|
|
offset_t = offset_r;
|
|
if (name) {
|
|
/*
|
|
* now we have the public area, compute the name of
|
|
* the object
|
|
*/
|
|
put_unaligned_be16(TPM_ALG_SHA256, name);
|
|
sha256(&buf->data[offset_r], len, name + 2);
|
|
}
|
|
|
|
/* validate the public key */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
|
|
/* key type (must be what we asked for) */
|
|
if (val != TPM_ALG_ECC)
|
|
return -EINVAL;
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
|
|
/* name algorithm */
|
|
if (val != TPM_ALG_SHA256)
|
|
return -EINVAL;
|
|
val = tpm_buf_read_u32(buf, &offset_t);
|
|
|
|
/* object properties */
|
|
if (val != TPM2_OA_NULL_KEY)
|
|
return -EINVAL;
|
|
|
|
/* auth policy (empty) */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != 0)
|
|
return -EINVAL;
|
|
|
|
/* symmetric key parameters */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != TPM_ALG_AES)
|
|
return -EINVAL;
|
|
|
|
/* symmetric key length */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != AES_KEY_BITS)
|
|
return -EINVAL;
|
|
|
|
/* symmetric encryption scheme */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != TPM_ALG_CFB)
|
|
return -EINVAL;
|
|
|
|
/* signing scheme */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != TPM_ALG_NULL)
|
|
return -EINVAL;
|
|
|
|
/* ECC Curve */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != TPM2_ECC_NIST_P256)
|
|
return -EINVAL;
|
|
|
|
/* KDF Scheme */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != TPM_ALG_NULL)
|
|
return -EINVAL;
|
|
|
|
/* extract public key (x and y points) */
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != EC_PT_SZ)
|
|
return -EINVAL;
|
|
memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
|
|
offset_t += val;
|
|
val = tpm_buf_read_u16(buf, &offset_t);
|
|
if (val != EC_PT_SZ)
|
|
return -EINVAL;
|
|
memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
|
|
offset_t += val;
|
|
|
|
/* original length of the whole TPM2B */
|
|
offset_r += len;
|
|
|
|
/* should have exactly consumed the TPM2B public structure */
|
|
if (offset_t != offset_r)
|
|
return -EINVAL;
|
|
if (offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/* creation data (skip) */
|
|
len = tpm_buf_read_u16(buf, &offset_r);
|
|
offset_r += len;
|
|
if (offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/* creation digest (must be sha256) */
|
|
len = tpm_buf_read_u16(buf, &offset_r);
|
|
offset_r += len;
|
|
if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/* TPMT_TK_CREATION follows */
|
|
/* tag, must be TPM_ST_CREATION (0x8021) */
|
|
val = tpm_buf_read_u16(buf, &offset_r);
|
|
if (val != TPM2_ST_CREATION || offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/* hierarchy */
|
|
val = tpm_buf_read_u32(buf, &offset_r);
|
|
if (val != hierarchy || offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/* the ticket digest HMAC (might not be sha256) */
|
|
len = tpm_buf_read_u16(buf, &offset_r);
|
|
offset_r += len;
|
|
if (offset_r > param_len)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* finally we have the name, which is a sha256 digest plus a 2
|
|
* byte algorithm type
|
|
*/
|
|
len = tpm_buf_read_u16(buf, &offset_r);
|
|
if (offset_r + len != param_len + 8)
|
|
return -EINVAL;
|
|
if (len != SHA256_DIGEST_SIZE + 2)
|
|
return -EINVAL;
|
|
|
|
if (memcmp(chip->null_key_name, &buf->data[offset_r],
|
|
SHA256_DIGEST_SIZE + 2) != 0) {
|
|
dev_err(&chip->dev, "NULL Seed name comparison failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* tpm2_create_primary() - create a primary key using a fixed P-256 template
|
|
*
|
|
* @chip: the TPM chip to create under
|
|
* @hierarchy: The hierarchy handle to create under
|
|
* @handle: The returned volatile handle on success
|
|
* @name: The name of the returned key
|
|
*
|
|
* For platforms that might not have a persistent primary, this can be
|
|
* used to create one quickly on the fly (it uses Elliptic Curve not
|
|
* RSA, so even slow TPMs can create one fast). The template uses the
|
|
* TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
|
|
* elliptic curve (the only current one all TPM2s are required to
|
|
* have) a sha256 name hash and no policy.
|
|
*
|
|
* Return:
|
|
* * 0 - OK
|
|
* * -errno - A system error
|
|
* * TPM_RC - A TPM error
|
|
*/
|
|
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
|
|
u32 *handle, u8 *name)
|
|
{
|
|
int rc;
|
|
struct tpm_buf buf;
|
|
struct tpm_buf template;
|
|
|
|
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = tpm_buf_init_sized(&template);
|
|
if (rc) {
|
|
tpm_buf_destroy(&buf);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* create the template. Note: in order for userspace to
|
|
* verify the security of the system, it will have to create
|
|
* and certify this NULL primary, meaning all the template
|
|
* parameters will have to be identical, so conform exactly to
|
|
* the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
|
|
* key H template (H has zero size unique points)
|
|
*/
|
|
|
|
/* key type */
|
|
tpm_buf_append_u16(&template, TPM_ALG_ECC);
|
|
|
|
/* name algorithm */
|
|
tpm_buf_append_u16(&template, TPM_ALG_SHA256);
|
|
|
|
/* object properties */
|
|
tpm_buf_append_u32(&template, TPM2_OA_NULL_KEY);
|
|
|
|
/* sauth policy (empty) */
|
|
tpm_buf_append_u16(&template, 0);
|
|
|
|
/* BEGIN parameters: key specific; for ECC*/
|
|
|
|
/* symmetric algorithm */
|
|
tpm_buf_append_u16(&template, TPM_ALG_AES);
|
|
|
|
/* bits for symmetric algorithm */
|
|
tpm_buf_append_u16(&template, AES_KEY_BITS);
|
|
|
|
/* algorithm mode (must be CFB) */
|
|
tpm_buf_append_u16(&template, TPM_ALG_CFB);
|
|
|
|
/* scheme (NULL means any scheme) */
|
|
tpm_buf_append_u16(&template, TPM_ALG_NULL);
|
|
|
|
/* ECC Curve ID */
|
|
tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
|
|
|
|
/* KDF Scheme */
|
|
tpm_buf_append_u16(&template, TPM_ALG_NULL);
|
|
|
|
/* unique: key specific; for ECC it is two zero size points */
|
|
tpm_buf_append_u16(&template, 0);
|
|
tpm_buf_append_u16(&template, 0);
|
|
|
|
/* END parameters */
|
|
|
|
/* primary handle */
|
|
tpm_buf_append_u32(&buf, hierarchy);
|
|
tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
|
|
|
|
/* sensitive create size is 4 for two empty buffers */
|
|
tpm_buf_append_u16(&buf, 4);
|
|
|
|
/* sensitive create auth data (empty) */
|
|
tpm_buf_append_u16(&buf, 0);
|
|
|
|
/* sensitive create sensitive data (empty) */
|
|
tpm_buf_append_u16(&buf, 0);
|
|
|
|
/* the public template */
|
|
tpm_buf_append(&buf, template.data, template.length);
|
|
tpm_buf_destroy(&template);
|
|
|
|
/* outside info (empty) */
|
|
tpm_buf_append_u16(&buf, 0);
|
|
|
|
/* creation PCR (none) */
|
|
tpm_buf_append_u32(&buf, 0);
|
|
|
|
rc = tpm_transmit_cmd(chip, &buf, 0,
|
|
"attempting to create NULL primary");
|
|
|
|
if (rc == TPM2_RC_SUCCESS)
|
|
rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
|
|
name);
|
|
|
|
tpm_buf_destroy(&buf);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int tpm2_create_null_primary(struct tpm_chip *chip)
|
|
{
|
|
u32 null_key;
|
|
int rc;
|
|
|
|
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
|
|
chip->null_key_name);
|
|
|
|
if (rc == TPM2_RC_SUCCESS) {
|
|
unsigned int offset = 0; /* dummy offset for null key context */
|
|
|
|
rc = tpm2_save_context(chip, null_key, chip->null_key_context,
|
|
sizeof(chip->null_key_context), &offset);
|
|
tpm2_flush_context(chip, null_key);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* tpm2_sessions_init() - start of day initialization for the sessions code
|
|
* @chip: TPM chip
|
|
*
|
|
* Derive and context save the null primary and allocate memory in the
|
|
* struct tpm_chip for the authorizations.
|
|
*/
|
|
int tpm2_sessions_init(struct tpm_chip *chip)
|
|
{
|
|
int rc;
|
|
|
|
rc = tpm2_create_null_primary(chip);
|
|
if (rc)
|
|
dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
|
|
|
|
chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
|
|
if (!chip->auth)
|
|
return -ENOMEM;
|
|
|
|
return rc;
|
|
}
|
|
#endif /* CONFIG_TCG_TPM2_HMAC */
|