19a31d7921
Daniel Borkmann says: ==================== bpf-next 2021-08-31 We've added 116 non-merge commits during the last 17 day(s) which contain a total of 126 files changed, 6813 insertions(+), 4027 deletions(-). The main changes are: 1) Add opaque bpf_cookie to perf link which the program can read out again, to be used in libbpf-based USDT library, from Andrii Nakryiko. 2) Add bpf_task_pt_regs() helper to access userspace pt_regs, from Daniel Xu. 3) Add support for UNIX stream type sockets for BPF sockmap, from Jiang Wang. 4) Allow BPF TCP congestion control progs to call bpf_setsockopt() e.g. to switch to another congestion control algorithm during init, from Martin KaFai Lau. 5) Extend BPF iterator support for UNIX domain sockets, from Kuniyuki Iwashima. 6) Allow bpf_{set,get}sockopt() calls from setsockopt progs, from Prankur Gupta. 7) Add bpf_get_netns_cookie() helper for BPF_PROG_TYPE_{SOCK_OPS,CGROUP_SOCKOPT} progs, from Xu Liu and Stanislav Fomichev. 8) Support for __weak typed ksyms in libbpf, from Hao Luo. 9) Shrink struct cgroup_bpf by 504 bytes through refactoring, from Dave Marchevsky. 10) Fix a smatch complaint in verifier's narrow load handling, from Andrey Ignatov. 11) Fix BPF interpreter's tail call count limit, from Daniel Borkmann. 12) Big batch of improvements to BPF selftests, from Magnus Karlsson, Li Zhijian, Yucong Sun, Yonghong Song, Ilya Leoshkevich, Jussi Maki, Ilya Leoshkevich, others. 13) Another big batch to revamp XDP samples in order to give them consistent look and feel, from Kumar Kartikeya Dwivedi. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (116 commits) MAINTAINERS: Remove self from powerpc BPF JIT selftests/bpf: Fix potential unreleased lock samples: bpf: Fix uninitialized variable in xdp_redirect_cpu selftests/bpf: Reduce more flakyness in sockmap_listen bpf: Fix bpf-next builds without CONFIG_BPF_EVENTS bpf: selftests: Add dctcp fallback test bpf: selftests: Add connect_to_fd_opts to network_helpers bpf: selftests: Add sk_state to bpf_tcp_helpers.h bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt selftests: xsk: Preface options with opt selftests: xsk: Make enums lower case selftests: xsk: Generate packets from specification selftests: xsk: Generate packet directly in umem selftests: xsk: Simplify cleanup of ifobjects selftests: xsk: Decrease sending speed selftests: xsk: Validate tx stats on tx thread selftests: xsk: Simplify packet validation in xsk tests selftests: xsk: Rename worker_* functions that are not thread entry points selftests: xsk: Disassociate umem size with packets sent selftests: xsk: Remove end-of-test packet ... ==================== Link: https://lore.kernel.org/r/20210830225618.11634-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
1444 lines
35 KiB
C
1444 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
*/
|
|
#include <linux/bpf.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/random.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uidgid.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/security.h>
|
|
|
|
#include "../../lib/kstrtox.h"
|
|
|
|
/* If kernel subsystem is allowing eBPF programs to call this function,
|
|
* inside its own verifier_ops->get_func_proto() callback it should return
|
|
* bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
|
|
*
|
|
* Different map implementations will rely on rcu in map methods
|
|
* lookup/update/delete, therefore eBPF programs must run under rcu lock
|
|
* if program is allowed to access maps, so check rcu_read_lock_held in
|
|
* all three functions.
|
|
*/
|
|
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
|
|
return (unsigned long) map->ops->map_lookup_elem(map, key);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
|
|
.func = bpf_map_lookup_elem,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
|
|
void *, value, u64, flags)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
|
|
return map->ops->map_update_elem(map, key, value, flags);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_update_elem_proto = {
|
|
.func = bpf_map_update_elem,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
.arg3_type = ARG_PTR_TO_MAP_VALUE,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
|
|
return map->ops->map_delete_elem(map, key);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_delete_elem_proto = {
|
|
.func = bpf_map_delete_elem,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MAP_KEY,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
|
|
{
|
|
return map->ops->map_push_elem(map, value, flags);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_push_elem_proto = {
|
|
.func = bpf_map_push_elem,
|
|
.gpl_only = false,
|
|
.pkt_access = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_MAP_VALUE,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
|
|
{
|
|
return map->ops->map_pop_elem(map, value);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_pop_elem_proto = {
|
|
.func = bpf_map_pop_elem,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
|
|
{
|
|
return map->ops->map_peek_elem(map, value);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_map_peek_elem_proto = {
|
|
.func = bpf_map_peek_elem,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
|
|
};
|
|
|
|
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
|
|
.func = bpf_user_rnd_u32,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_get_smp_processor_id)
|
|
{
|
|
return smp_processor_id();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
|
|
.func = bpf_get_smp_processor_id,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_get_numa_node_id)
|
|
{
|
|
return numa_node_id();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
|
|
.func = bpf_get_numa_node_id,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_ktime_get_ns)
|
|
{
|
|
/* NMI safe access to clock monotonic */
|
|
return ktime_get_mono_fast_ns();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
|
|
.func = bpf_ktime_get_ns,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_ktime_get_boot_ns)
|
|
{
|
|
/* NMI safe access to clock boottime */
|
|
return ktime_get_boot_fast_ns();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
|
|
.func = bpf_ktime_get_boot_ns,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_ktime_get_coarse_ns)
|
|
{
|
|
return ktime_get_coarse_ns();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
|
|
.func = bpf_ktime_get_coarse_ns,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_get_current_pid_tgid)
|
|
{
|
|
struct task_struct *task = current;
|
|
|
|
if (unlikely(!task))
|
|
return -EINVAL;
|
|
|
|
return (u64) task->tgid << 32 | task->pid;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
|
|
.func = bpf_get_current_pid_tgid,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_get_current_uid_gid)
|
|
{
|
|
struct task_struct *task = current;
|
|
kuid_t uid;
|
|
kgid_t gid;
|
|
|
|
if (unlikely(!task))
|
|
return -EINVAL;
|
|
|
|
current_uid_gid(&uid, &gid);
|
|
return (u64) from_kgid(&init_user_ns, gid) << 32 |
|
|
from_kuid(&init_user_ns, uid);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
|
|
.func = bpf_get_current_uid_gid,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
|
|
{
|
|
struct task_struct *task = current;
|
|
|
|
if (unlikely(!task))
|
|
goto err_clear;
|
|
|
|
strncpy(buf, task->comm, size);
|
|
|
|
/* Verifier guarantees that size > 0. For task->comm exceeding
|
|
* size, guarantee that buf is %NUL-terminated. Unconditionally
|
|
* done here to save the size test.
|
|
*/
|
|
buf[size - 1] = 0;
|
|
return 0;
|
|
err_clear:
|
|
memset(buf, 0, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_comm_proto = {
|
|
.func = bpf_get_current_comm,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
|
|
|
|
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
|
|
{
|
|
arch_spinlock_t *l = (void *)lock;
|
|
union {
|
|
__u32 val;
|
|
arch_spinlock_t lock;
|
|
} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
|
|
|
|
compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
|
|
BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
|
|
BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
|
|
arch_spin_lock(l);
|
|
}
|
|
|
|
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
|
|
{
|
|
arch_spinlock_t *l = (void *)lock;
|
|
|
|
arch_spin_unlock(l);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
|
|
{
|
|
atomic_t *l = (void *)lock;
|
|
|
|
BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
|
|
do {
|
|
atomic_cond_read_relaxed(l, !VAL);
|
|
} while (atomic_xchg(l, 1));
|
|
}
|
|
|
|
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
|
|
{
|
|
atomic_t *l = (void *)lock;
|
|
|
|
atomic_set_release(l, 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, irqsave_flags);
|
|
|
|
static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__bpf_spin_lock(lock);
|
|
__this_cpu_write(irqsave_flags, flags);
|
|
}
|
|
|
|
notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
|
|
{
|
|
__bpf_spin_lock_irqsave(lock);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_spin_lock_proto = {
|
|
.func = bpf_spin_lock,
|
|
.gpl_only = false,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
|
|
};
|
|
|
|
static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
|
|
{
|
|
unsigned long flags;
|
|
|
|
flags = __this_cpu_read(irqsave_flags);
|
|
__bpf_spin_unlock(lock);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
|
|
{
|
|
__bpf_spin_unlock_irqrestore(lock);
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_spin_unlock_proto = {
|
|
.func = bpf_spin_unlock,
|
|
.gpl_only = false,
|
|
.ret_type = RET_VOID,
|
|
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
|
|
};
|
|
|
|
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
|
|
bool lock_src)
|
|
{
|
|
struct bpf_spin_lock *lock;
|
|
|
|
if (lock_src)
|
|
lock = src + map->spin_lock_off;
|
|
else
|
|
lock = dst + map->spin_lock_off;
|
|
preempt_disable();
|
|
__bpf_spin_lock_irqsave(lock);
|
|
copy_map_value(map, dst, src);
|
|
__bpf_spin_unlock_irqrestore(lock);
|
|
preempt_enable();
|
|
}
|
|
|
|
BPF_CALL_0(bpf_jiffies64)
|
|
{
|
|
return get_jiffies_64();
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_jiffies64_proto = {
|
|
.func = bpf_jiffies64,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
#ifdef CONFIG_CGROUPS
|
|
BPF_CALL_0(bpf_get_current_cgroup_id)
|
|
{
|
|
struct cgroup *cgrp;
|
|
u64 cgrp_id;
|
|
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(current);
|
|
cgrp_id = cgroup_id(cgrp);
|
|
rcu_read_unlock();
|
|
|
|
return cgrp_id;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
|
|
.func = bpf_get_current_cgroup_id,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
|
|
{
|
|
struct cgroup *cgrp;
|
|
struct cgroup *ancestor;
|
|
u64 cgrp_id;
|
|
|
|
rcu_read_lock();
|
|
cgrp = task_dfl_cgroup(current);
|
|
ancestor = cgroup_ancestor(cgrp, ancestor_level);
|
|
cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
|
|
rcu_read_unlock();
|
|
|
|
return cgrp_id;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
|
|
.func = bpf_get_current_ancestor_cgroup_id,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
};
|
|
|
|
#ifdef CONFIG_CGROUP_BPF
|
|
|
|
BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
|
|
{
|
|
/* flags argument is not used now,
|
|
* but provides an ability to extend the API.
|
|
* verifier checks that its value is correct.
|
|
*/
|
|
enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
|
|
struct bpf_cgroup_storage *storage;
|
|
struct bpf_cg_run_ctx *ctx;
|
|
void *ptr;
|
|
|
|
/* get current cgroup storage from BPF run context */
|
|
ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
|
|
storage = ctx->prog_item->cgroup_storage[stype];
|
|
|
|
if (stype == BPF_CGROUP_STORAGE_SHARED)
|
|
ptr = &READ_ONCE(storage->buf)->data[0];
|
|
else
|
|
ptr = this_cpu_ptr(storage->percpu_buf);
|
|
|
|
return (unsigned long)ptr;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_local_storage_proto = {
|
|
.func = bpf_get_local_storage,
|
|
.gpl_only = false,
|
|
.ret_type = RET_PTR_TO_MAP_VALUE,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
#endif
|
|
|
|
#define BPF_STRTOX_BASE_MASK 0x1F
|
|
|
|
static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
|
|
unsigned long long *res, bool *is_negative)
|
|
{
|
|
unsigned int base = flags & BPF_STRTOX_BASE_MASK;
|
|
const char *cur_buf = buf;
|
|
size_t cur_len = buf_len;
|
|
unsigned int consumed;
|
|
size_t val_len;
|
|
char str[64];
|
|
|
|
if (!buf || !buf_len || !res || !is_negative)
|
|
return -EINVAL;
|
|
|
|
if (base != 0 && base != 8 && base != 10 && base != 16)
|
|
return -EINVAL;
|
|
|
|
if (flags & ~BPF_STRTOX_BASE_MASK)
|
|
return -EINVAL;
|
|
|
|
while (cur_buf < buf + buf_len && isspace(*cur_buf))
|
|
++cur_buf;
|
|
|
|
*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
|
|
if (*is_negative)
|
|
++cur_buf;
|
|
|
|
consumed = cur_buf - buf;
|
|
cur_len -= consumed;
|
|
if (!cur_len)
|
|
return -EINVAL;
|
|
|
|
cur_len = min(cur_len, sizeof(str) - 1);
|
|
memcpy(str, cur_buf, cur_len);
|
|
str[cur_len] = '\0';
|
|
cur_buf = str;
|
|
|
|
cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
|
|
val_len = _parse_integer(cur_buf, base, res);
|
|
|
|
if (val_len & KSTRTOX_OVERFLOW)
|
|
return -ERANGE;
|
|
|
|
if (val_len == 0)
|
|
return -EINVAL;
|
|
|
|
cur_buf += val_len;
|
|
consumed += cur_buf - str;
|
|
|
|
return consumed;
|
|
}
|
|
|
|
static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
|
|
long long *res)
|
|
{
|
|
unsigned long long _res;
|
|
bool is_negative;
|
|
int err;
|
|
|
|
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
|
|
if (err < 0)
|
|
return err;
|
|
if (is_negative) {
|
|
if ((long long)-_res > 0)
|
|
return -ERANGE;
|
|
*res = -_res;
|
|
} else {
|
|
if ((long long)_res < 0)
|
|
return -ERANGE;
|
|
*res = _res;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
|
|
long *, res)
|
|
{
|
|
long long _res;
|
|
int err;
|
|
|
|
err = __bpf_strtoll(buf, buf_len, flags, &_res);
|
|
if (err < 0)
|
|
return err;
|
|
if (_res != (long)_res)
|
|
return -ERANGE;
|
|
*res = _res;
|
|
return err;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_strtol_proto = {
|
|
.func = bpf_strtol,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_LONG,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
|
|
unsigned long *, res)
|
|
{
|
|
unsigned long long _res;
|
|
bool is_negative;
|
|
int err;
|
|
|
|
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
|
|
if (err < 0)
|
|
return err;
|
|
if (is_negative)
|
|
return -EINVAL;
|
|
if (_res != (unsigned long)_res)
|
|
return -ERANGE;
|
|
*res = _res;
|
|
return err;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_strtoul_proto = {
|
|
.func = bpf_strtoul,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_LONG,
|
|
};
|
|
#endif
|
|
|
|
BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
|
|
struct bpf_pidns_info *, nsdata, u32, size)
|
|
{
|
|
struct task_struct *task = current;
|
|
struct pid_namespace *pidns;
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_pidns_info)))
|
|
goto clear;
|
|
|
|
if (unlikely((u64)(dev_t)dev != dev))
|
|
goto clear;
|
|
|
|
if (unlikely(!task))
|
|
goto clear;
|
|
|
|
pidns = task_active_pid_ns(task);
|
|
if (unlikely(!pidns)) {
|
|
err = -ENOENT;
|
|
goto clear;
|
|
}
|
|
|
|
if (!ns_match(&pidns->ns, (dev_t)dev, ino))
|
|
goto clear;
|
|
|
|
nsdata->pid = task_pid_nr_ns(task, pidns);
|
|
nsdata->tgid = task_tgid_nr_ns(task, pidns);
|
|
return 0;
|
|
clear:
|
|
memset((void *)nsdata, 0, (size_t) size);
|
|
return err;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
|
|
.func = bpf_get_ns_current_pid_tgid,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg4_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
|
|
.func = bpf_get_raw_cpu_id,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
|
|
return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_event_output_data_proto = {
|
|
.func = bpf_event_output_data,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
|
|
const void __user *, user_ptr)
|
|
{
|
|
int ret = copy_from_user(dst, user_ptr, size);
|
|
|
|
if (unlikely(ret)) {
|
|
memset(dst, 0, size);
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_copy_from_user_proto = {
|
|
.func = bpf_copy_from_user,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
|
|
{
|
|
if (cpu >= nr_cpu_ids)
|
|
return (unsigned long)NULL;
|
|
|
|
return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
|
|
.func = bpf_per_cpu_ptr,
|
|
.gpl_only = false,
|
|
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
|
|
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
|
|
{
|
|
return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
|
|
.func = bpf_this_cpu_ptr,
|
|
.gpl_only = false,
|
|
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
|
|
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
|
|
};
|
|
|
|
static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
|
|
size_t bufsz)
|
|
{
|
|
void __user *user_ptr = (__force void __user *)unsafe_ptr;
|
|
|
|
buf[0] = 0;
|
|
|
|
switch (fmt_ptype) {
|
|
case 's':
|
|
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
|
|
if ((unsigned long)unsafe_ptr < TASK_SIZE)
|
|
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
|
|
fallthrough;
|
|
#endif
|
|
case 'k':
|
|
return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
|
|
case 'u':
|
|
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
|
|
* arguments representation.
|
|
*/
|
|
#define MAX_BPRINTF_BUF_LEN 512
|
|
|
|
/* Support executing three nested bprintf helper calls on a given CPU */
|
|
#define MAX_BPRINTF_NEST_LEVEL 3
|
|
struct bpf_bprintf_buffers {
|
|
char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
|
|
};
|
|
static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
|
|
static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
|
|
|
|
static int try_get_fmt_tmp_buf(char **tmp_buf)
|
|
{
|
|
struct bpf_bprintf_buffers *bufs;
|
|
int nest_level;
|
|
|
|
preempt_disable();
|
|
nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
|
|
if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
|
|
this_cpu_dec(bpf_bprintf_nest_level);
|
|
preempt_enable();
|
|
return -EBUSY;
|
|
}
|
|
bufs = this_cpu_ptr(&bpf_bprintf_bufs);
|
|
*tmp_buf = bufs->tmp_bufs[nest_level - 1];
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bpf_bprintf_cleanup(void)
|
|
{
|
|
if (this_cpu_read(bpf_bprintf_nest_level)) {
|
|
this_cpu_dec(bpf_bprintf_nest_level);
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
|
|
*
|
|
* Returns a negative value if fmt is an invalid format string or 0 otherwise.
|
|
*
|
|
* This can be used in two ways:
|
|
* - Format string verification only: when bin_args is NULL
|
|
* - Arguments preparation: in addition to the above verification, it writes in
|
|
* bin_args a binary representation of arguments usable by bstr_printf where
|
|
* pointers from BPF have been sanitized.
|
|
*
|
|
* In argument preparation mode, if 0 is returned, safe temporary buffers are
|
|
* allocated and bpf_bprintf_cleanup should be called to free them after use.
|
|
*/
|
|
int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
|
|
u32 **bin_args, u32 num_args)
|
|
{
|
|
char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
|
|
size_t sizeof_cur_arg, sizeof_cur_ip;
|
|
int err, i, num_spec = 0;
|
|
u64 cur_arg;
|
|
char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
|
|
|
|
fmt_end = strnchr(fmt, fmt_size, 0);
|
|
if (!fmt_end)
|
|
return -EINVAL;
|
|
fmt_size = fmt_end - fmt;
|
|
|
|
if (bin_args) {
|
|
if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
|
|
return -EBUSY;
|
|
|
|
tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
|
|
*bin_args = (u32 *)tmp_buf;
|
|
}
|
|
|
|
for (i = 0; i < fmt_size; i++) {
|
|
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (fmt[i] != '%')
|
|
continue;
|
|
|
|
if (fmt[i + 1] == '%') {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (num_spec >= num_args) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* The string is zero-terminated so if fmt[i] != 0, we can
|
|
* always access fmt[i + 1], in the worst case it will be a 0
|
|
*/
|
|
i++;
|
|
|
|
/* skip optional "[0 +-][num]" width formatting field */
|
|
while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
|
|
fmt[i] == ' ')
|
|
i++;
|
|
if (fmt[i] >= '1' && fmt[i] <= '9') {
|
|
i++;
|
|
while (fmt[i] >= '0' && fmt[i] <= '9')
|
|
i++;
|
|
}
|
|
|
|
if (fmt[i] == 'p') {
|
|
sizeof_cur_arg = sizeof(long);
|
|
|
|
if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
|
|
fmt[i + 2] == 's') {
|
|
fmt_ptype = fmt[i + 1];
|
|
i += 2;
|
|
goto fmt_str;
|
|
}
|
|
|
|
if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
|
|
ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
|
|
fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
|
|
fmt[i + 1] == 'S') {
|
|
/* just kernel pointers */
|
|
if (tmp_buf)
|
|
cur_arg = raw_args[num_spec];
|
|
i++;
|
|
goto nocopy_fmt;
|
|
}
|
|
|
|
if (fmt[i + 1] == 'B') {
|
|
if (tmp_buf) {
|
|
err = snprintf(tmp_buf,
|
|
(tmp_buf_end - tmp_buf),
|
|
"%pB",
|
|
(void *)(long)raw_args[num_spec]);
|
|
tmp_buf += (err + 1);
|
|
}
|
|
|
|
i++;
|
|
num_spec++;
|
|
continue;
|
|
}
|
|
|
|
/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
|
|
if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
|
|
(fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
i += 2;
|
|
if (!tmp_buf)
|
|
goto nocopy_fmt;
|
|
|
|
sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
|
|
if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
|
|
err = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
unsafe_ptr = (char *)(long)raw_args[num_spec];
|
|
err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
|
|
sizeof_cur_ip);
|
|
if (err < 0)
|
|
memset(cur_ip, 0, sizeof_cur_ip);
|
|
|
|
/* hack: bstr_printf expects IP addresses to be
|
|
* pre-formatted as strings, ironically, the easiest way
|
|
* to do that is to call snprintf.
|
|
*/
|
|
ip_spec[2] = fmt[i - 1];
|
|
ip_spec[3] = fmt[i];
|
|
err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
|
|
ip_spec, &cur_ip);
|
|
|
|
tmp_buf += err + 1;
|
|
num_spec++;
|
|
|
|
continue;
|
|
} else if (fmt[i] == 's') {
|
|
fmt_ptype = fmt[i];
|
|
fmt_str:
|
|
if (fmt[i + 1] != 0 &&
|
|
!isspace(fmt[i + 1]) &&
|
|
!ispunct(fmt[i + 1])) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!tmp_buf)
|
|
goto nocopy_fmt;
|
|
|
|
if (tmp_buf_end == tmp_buf) {
|
|
err = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
unsafe_ptr = (char *)(long)raw_args[num_spec];
|
|
err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
|
|
fmt_ptype,
|
|
tmp_buf_end - tmp_buf);
|
|
if (err < 0) {
|
|
tmp_buf[0] = '\0';
|
|
err = 1;
|
|
}
|
|
|
|
tmp_buf += err;
|
|
num_spec++;
|
|
|
|
continue;
|
|
} else if (fmt[i] == 'c') {
|
|
if (!tmp_buf)
|
|
goto nocopy_fmt;
|
|
|
|
if (tmp_buf_end == tmp_buf) {
|
|
err = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
*tmp_buf = raw_args[num_spec];
|
|
tmp_buf++;
|
|
num_spec++;
|
|
|
|
continue;
|
|
}
|
|
|
|
sizeof_cur_arg = sizeof(int);
|
|
|
|
if (fmt[i] == 'l') {
|
|
sizeof_cur_arg = sizeof(long);
|
|
i++;
|
|
}
|
|
if (fmt[i] == 'l') {
|
|
sizeof_cur_arg = sizeof(long long);
|
|
i++;
|
|
}
|
|
|
|
if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
|
|
fmt[i] != 'x' && fmt[i] != 'X') {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (tmp_buf)
|
|
cur_arg = raw_args[num_spec];
|
|
nocopy_fmt:
|
|
if (tmp_buf) {
|
|
tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
|
|
if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
|
|
err = -ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
if (sizeof_cur_arg == 8) {
|
|
*(u32 *)tmp_buf = *(u32 *)&cur_arg;
|
|
*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
|
|
} else {
|
|
*(u32 *)tmp_buf = (u32)(long)cur_arg;
|
|
}
|
|
tmp_buf += sizeof_cur_arg;
|
|
}
|
|
num_spec++;
|
|
}
|
|
|
|
err = 0;
|
|
out:
|
|
if (err)
|
|
bpf_bprintf_cleanup();
|
|
return err;
|
|
}
|
|
|
|
#define MAX_SNPRINTF_VARARGS 12
|
|
|
|
BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
|
|
const void *, data, u32, data_len)
|
|
{
|
|
int err, num_args;
|
|
u32 *bin_args;
|
|
|
|
if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
|
|
(data_len && !data))
|
|
return -EINVAL;
|
|
num_args = data_len / 8;
|
|
|
|
/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
|
|
* can safely give an unbounded size.
|
|
*/
|
|
err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = bstr_printf(str, str_size, fmt, bin_args);
|
|
|
|
bpf_bprintf_cleanup();
|
|
|
|
return err + 1;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_snprintf_proto = {
|
|
.func = bpf_snprintf,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM_OR_NULL,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_PTR_TO_CONST_STR,
|
|
.arg4_type = ARG_PTR_TO_MEM_OR_NULL,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
/* BPF map elements can contain 'struct bpf_timer'.
|
|
* Such map owns all of its BPF timers.
|
|
* 'struct bpf_timer' is allocated as part of map element allocation
|
|
* and it's zero initialized.
|
|
* That space is used to keep 'struct bpf_timer_kern'.
|
|
* bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
|
|
* remembers 'struct bpf_map *' pointer it's part of.
|
|
* bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
|
|
* bpf_timer_start() arms the timer.
|
|
* If user space reference to a map goes to zero at this point
|
|
* ops->map_release_uref callback is responsible for cancelling the timers,
|
|
* freeing their memory, and decrementing prog's refcnts.
|
|
* bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
|
|
* Inner maps can contain bpf timers as well. ops->map_release_uref is
|
|
* freeing the timers when inner map is replaced or deleted by user space.
|
|
*/
|
|
struct bpf_hrtimer {
|
|
struct hrtimer timer;
|
|
struct bpf_map *map;
|
|
struct bpf_prog *prog;
|
|
void __rcu *callback_fn;
|
|
void *value;
|
|
};
|
|
|
|
/* the actual struct hidden inside uapi struct bpf_timer */
|
|
struct bpf_timer_kern {
|
|
struct bpf_hrtimer *timer;
|
|
/* bpf_spin_lock is used here instead of spinlock_t to make
|
|
* sure that it always fits into space resereved by struct bpf_timer
|
|
* regardless of LOCKDEP and spinlock debug flags.
|
|
*/
|
|
struct bpf_spin_lock lock;
|
|
} __attribute__((aligned(8)));
|
|
|
|
static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
|
|
|
|
static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
|
|
{
|
|
struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
|
|
struct bpf_map *map = t->map;
|
|
void *value = t->value;
|
|
void *callback_fn;
|
|
void *key;
|
|
u32 idx;
|
|
|
|
callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
|
|
if (!callback_fn)
|
|
goto out;
|
|
|
|
/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
|
|
* cannot be preempted by another bpf_timer_cb() on the same cpu.
|
|
* Remember the timer this callback is servicing to prevent
|
|
* deadlock if callback_fn() calls bpf_timer_cancel() or
|
|
* bpf_map_delete_elem() on the same timer.
|
|
*/
|
|
this_cpu_write(hrtimer_running, t);
|
|
if (map->map_type == BPF_MAP_TYPE_ARRAY) {
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
|
|
/* compute the key */
|
|
idx = ((char *)value - array->value) / array->elem_size;
|
|
key = &idx;
|
|
} else { /* hash or lru */
|
|
key = value - round_up(map->key_size, 8);
|
|
}
|
|
|
|
BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key,
|
|
(u64)(long)value, 0, 0);
|
|
/* The verifier checked that return value is zero. */
|
|
|
|
this_cpu_write(hrtimer_running, NULL);
|
|
out:
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
|
|
u64, flags)
|
|
{
|
|
clockid_t clockid = flags & (MAX_CLOCKS - 1);
|
|
struct bpf_hrtimer *t;
|
|
int ret = 0;
|
|
|
|
BUILD_BUG_ON(MAX_CLOCKS != 16);
|
|
BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
|
|
BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
|
|
|
|
if (in_nmi())
|
|
return -EOPNOTSUPP;
|
|
|
|
if (flags >= MAX_CLOCKS ||
|
|
/* similar to timerfd except _ALARM variants are not supported */
|
|
(clockid != CLOCK_MONOTONIC &&
|
|
clockid != CLOCK_REALTIME &&
|
|
clockid != CLOCK_BOOTTIME))
|
|
return -EINVAL;
|
|
__bpf_spin_lock_irqsave(&timer->lock);
|
|
t = timer->timer;
|
|
if (t) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
if (!atomic64_read(&map->usercnt)) {
|
|
/* maps with timers must be either held by user space
|
|
* or pinned in bpffs.
|
|
*/
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
/* allocate hrtimer via map_kmalloc to use memcg accounting */
|
|
t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
|
|
if (!t) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
t->value = (void *)timer - map->timer_off;
|
|
t->map = map;
|
|
t->prog = NULL;
|
|
rcu_assign_pointer(t->callback_fn, NULL);
|
|
hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
|
|
t->timer.function = bpf_timer_cb;
|
|
timer->timer = t;
|
|
out:
|
|
__bpf_spin_unlock_irqrestore(&timer->lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_timer_init_proto = {
|
|
.func = bpf_timer_init,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_TIMER,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
|
|
struct bpf_prog_aux *, aux)
|
|
{
|
|
struct bpf_prog *prev, *prog = aux->prog;
|
|
struct bpf_hrtimer *t;
|
|
int ret = 0;
|
|
|
|
if (in_nmi())
|
|
return -EOPNOTSUPP;
|
|
__bpf_spin_lock_irqsave(&timer->lock);
|
|
t = timer->timer;
|
|
if (!t) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (!atomic64_read(&t->map->usercnt)) {
|
|
/* maps with timers must be either held by user space
|
|
* or pinned in bpffs. Otherwise timer might still be
|
|
* running even when bpf prog is detached and user space
|
|
* is gone, since map_release_uref won't ever be called.
|
|
*/
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
prev = t->prog;
|
|
if (prev != prog) {
|
|
/* Bump prog refcnt once. Every bpf_timer_set_callback()
|
|
* can pick different callback_fn-s within the same prog.
|
|
*/
|
|
prog = bpf_prog_inc_not_zero(prog);
|
|
if (IS_ERR(prog)) {
|
|
ret = PTR_ERR(prog);
|
|
goto out;
|
|
}
|
|
if (prev)
|
|
/* Drop prev prog refcnt when swapping with new prog */
|
|
bpf_prog_put(prev);
|
|
t->prog = prog;
|
|
}
|
|
rcu_assign_pointer(t->callback_fn, callback_fn);
|
|
out:
|
|
__bpf_spin_unlock_irqrestore(&timer->lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
|
|
.func = bpf_timer_set_callback,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_TIMER,
|
|
.arg2_type = ARG_PTR_TO_FUNC,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
|
|
{
|
|
struct bpf_hrtimer *t;
|
|
int ret = 0;
|
|
|
|
if (in_nmi())
|
|
return -EOPNOTSUPP;
|
|
if (flags)
|
|
return -EINVAL;
|
|
__bpf_spin_lock_irqsave(&timer->lock);
|
|
t = timer->timer;
|
|
if (!t || !t->prog) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
|
|
out:
|
|
__bpf_spin_unlock_irqrestore(&timer->lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_timer_start_proto = {
|
|
.func = bpf_timer_start,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_TIMER,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static void drop_prog_refcnt(struct bpf_hrtimer *t)
|
|
{
|
|
struct bpf_prog *prog = t->prog;
|
|
|
|
if (prog) {
|
|
bpf_prog_put(prog);
|
|
t->prog = NULL;
|
|
rcu_assign_pointer(t->callback_fn, NULL);
|
|
}
|
|
}
|
|
|
|
BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
|
|
{
|
|
struct bpf_hrtimer *t;
|
|
int ret = 0;
|
|
|
|
if (in_nmi())
|
|
return -EOPNOTSUPP;
|
|
__bpf_spin_lock_irqsave(&timer->lock);
|
|
t = timer->timer;
|
|
if (!t) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (this_cpu_read(hrtimer_running) == t) {
|
|
/* If bpf callback_fn is trying to bpf_timer_cancel()
|
|
* its own timer the hrtimer_cancel() will deadlock
|
|
* since it waits for callback_fn to finish
|
|
*/
|
|
ret = -EDEADLK;
|
|
goto out;
|
|
}
|
|
drop_prog_refcnt(t);
|
|
out:
|
|
__bpf_spin_unlock_irqrestore(&timer->lock);
|
|
/* Cancel the timer and wait for associated callback to finish
|
|
* if it was running.
|
|
*/
|
|
ret = ret ?: hrtimer_cancel(&t->timer);
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_timer_cancel_proto = {
|
|
.func = bpf_timer_cancel,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_TIMER,
|
|
};
|
|
|
|
/* This function is called by map_delete/update_elem for individual element and
|
|
* by ops->map_release_uref when the user space reference to a map reaches zero.
|
|
*/
|
|
void bpf_timer_cancel_and_free(void *val)
|
|
{
|
|
struct bpf_timer_kern *timer = val;
|
|
struct bpf_hrtimer *t;
|
|
|
|
/* Performance optimization: read timer->timer without lock first. */
|
|
if (!READ_ONCE(timer->timer))
|
|
return;
|
|
|
|
__bpf_spin_lock_irqsave(&timer->lock);
|
|
/* re-read it under lock */
|
|
t = timer->timer;
|
|
if (!t)
|
|
goto out;
|
|
drop_prog_refcnt(t);
|
|
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
|
|
* this timer, since it won't be initialized.
|
|
*/
|
|
timer->timer = NULL;
|
|
out:
|
|
__bpf_spin_unlock_irqrestore(&timer->lock);
|
|
if (!t)
|
|
return;
|
|
/* Cancel the timer and wait for callback to complete if it was running.
|
|
* If hrtimer_cancel() can be safely called it's safe to call kfree(t)
|
|
* right after for both preallocated and non-preallocated maps.
|
|
* The timer->timer = NULL was already done and no code path can
|
|
* see address 't' anymore.
|
|
*
|
|
* Check that bpf_map_delete/update_elem() wasn't called from timer
|
|
* callback_fn. In such case don't call hrtimer_cancel() (since it will
|
|
* deadlock) and don't call hrtimer_try_to_cancel() (since it will just
|
|
* return -1). Though callback_fn is still running on this cpu it's
|
|
* safe to do kfree(t) because bpf_timer_cb() read everything it needed
|
|
* from 't'. The bpf subprog callback_fn won't be able to access 't',
|
|
* since timer->timer = NULL was already done. The timer will be
|
|
* effectively cancelled because bpf_timer_cb() will return
|
|
* HRTIMER_NORESTART.
|
|
*/
|
|
if (this_cpu_read(hrtimer_running) != t)
|
|
hrtimer_cancel(&t->timer);
|
|
kfree(t);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_task_proto __weak;
|
|
const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
|
|
const struct bpf_func_proto bpf_probe_read_user_proto __weak;
|
|
const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
|
|
const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
|
|
const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
|
|
const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
|
|
|
|
const struct bpf_func_proto *
|
|
bpf_base_func_proto(enum bpf_func_id func_id)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_map_lookup_elem:
|
|
return &bpf_map_lookup_elem_proto;
|
|
case BPF_FUNC_map_update_elem:
|
|
return &bpf_map_update_elem_proto;
|
|
case BPF_FUNC_map_delete_elem:
|
|
return &bpf_map_delete_elem_proto;
|
|
case BPF_FUNC_map_push_elem:
|
|
return &bpf_map_push_elem_proto;
|
|
case BPF_FUNC_map_pop_elem:
|
|
return &bpf_map_pop_elem_proto;
|
|
case BPF_FUNC_map_peek_elem:
|
|
return &bpf_map_peek_elem_proto;
|
|
case BPF_FUNC_get_prandom_u32:
|
|
return &bpf_get_prandom_u32_proto;
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
return &bpf_get_raw_smp_processor_id_proto;
|
|
case BPF_FUNC_get_numa_node_id:
|
|
return &bpf_get_numa_node_id_proto;
|
|
case BPF_FUNC_tail_call:
|
|
return &bpf_tail_call_proto;
|
|
case BPF_FUNC_ktime_get_ns:
|
|
return &bpf_ktime_get_ns_proto;
|
|
case BPF_FUNC_ktime_get_boot_ns:
|
|
return &bpf_ktime_get_boot_ns_proto;
|
|
case BPF_FUNC_ktime_get_coarse_ns:
|
|
return &bpf_ktime_get_coarse_ns_proto;
|
|
case BPF_FUNC_ringbuf_output:
|
|
return &bpf_ringbuf_output_proto;
|
|
case BPF_FUNC_ringbuf_reserve:
|
|
return &bpf_ringbuf_reserve_proto;
|
|
case BPF_FUNC_ringbuf_submit:
|
|
return &bpf_ringbuf_submit_proto;
|
|
case BPF_FUNC_ringbuf_discard:
|
|
return &bpf_ringbuf_discard_proto;
|
|
case BPF_FUNC_ringbuf_query:
|
|
return &bpf_ringbuf_query_proto;
|
|
case BPF_FUNC_for_each_map_elem:
|
|
return &bpf_for_each_map_elem_proto;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!bpf_capable())
|
|
return NULL;
|
|
|
|
switch (func_id) {
|
|
case BPF_FUNC_spin_lock:
|
|
return &bpf_spin_lock_proto;
|
|
case BPF_FUNC_spin_unlock:
|
|
return &bpf_spin_unlock_proto;
|
|
case BPF_FUNC_jiffies64:
|
|
return &bpf_jiffies64_proto;
|
|
case BPF_FUNC_per_cpu_ptr:
|
|
return &bpf_per_cpu_ptr_proto;
|
|
case BPF_FUNC_this_cpu_ptr:
|
|
return &bpf_this_cpu_ptr_proto;
|
|
case BPF_FUNC_timer_init:
|
|
return &bpf_timer_init_proto;
|
|
case BPF_FUNC_timer_set_callback:
|
|
return &bpf_timer_set_callback_proto;
|
|
case BPF_FUNC_timer_start:
|
|
return &bpf_timer_start_proto;
|
|
case BPF_FUNC_timer_cancel:
|
|
return &bpf_timer_cancel_proto;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!perfmon_capable())
|
|
return NULL;
|
|
|
|
switch (func_id) {
|
|
case BPF_FUNC_trace_printk:
|
|
return bpf_get_trace_printk_proto();
|
|
case BPF_FUNC_get_current_task:
|
|
return &bpf_get_current_task_proto;
|
|
case BPF_FUNC_get_current_task_btf:
|
|
return &bpf_get_current_task_btf_proto;
|
|
case BPF_FUNC_probe_read_user:
|
|
return &bpf_probe_read_user_proto;
|
|
case BPF_FUNC_probe_read_kernel:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_kernel_proto;
|
|
case BPF_FUNC_probe_read_user_str:
|
|
return &bpf_probe_read_user_str_proto;
|
|
case BPF_FUNC_probe_read_kernel_str:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_kernel_str_proto;
|
|
case BPF_FUNC_snprintf_btf:
|
|
return &bpf_snprintf_btf_proto;
|
|
case BPF_FUNC_snprintf:
|
|
return &bpf_snprintf_proto;
|
|
case BPF_FUNC_task_pt_regs:
|
|
return &bpf_task_pt_regs_proto;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|