47799326bc
prep work for erasure coding Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1031 lines
27 KiB
C
1031 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Code for manipulating bucket marks for garbage collection.
|
|
*
|
|
* Copyright 2014 Datera, Inc.
|
|
*
|
|
* Bucket states:
|
|
* - free bucket: mark == 0
|
|
* The bucket contains no data and will not be read
|
|
*
|
|
* - allocator bucket: owned_by_allocator == 1
|
|
* The bucket is on a free list, or it is an open bucket
|
|
*
|
|
* - cached bucket: owned_by_allocator == 0 &&
|
|
* dirty_sectors == 0 &&
|
|
* cached_sectors > 0
|
|
* The bucket contains data but may be safely discarded as there are
|
|
* enough replicas of the data on other cache devices, or it has been
|
|
* written back to the backing device
|
|
*
|
|
* - dirty bucket: owned_by_allocator == 0 &&
|
|
* dirty_sectors > 0
|
|
* The bucket contains data that we must not discard (either only copy,
|
|
* or one of the 'main copies' for data requiring multiple replicas)
|
|
*
|
|
* - metadata bucket: owned_by_allocator == 0 && is_metadata == 1
|
|
* This is a btree node, journal or gen/prio bucket
|
|
*
|
|
* Lifecycle:
|
|
*
|
|
* bucket invalidated => bucket on freelist => open bucket =>
|
|
* [dirty bucket =>] cached bucket => bucket invalidated => ...
|
|
*
|
|
* Note that cache promotion can skip the dirty bucket step, as data
|
|
* is copied from a deeper tier to a shallower tier, onto a cached
|
|
* bucket.
|
|
* Note also that a cached bucket can spontaneously become dirty --
|
|
* see below.
|
|
*
|
|
* Only a traversal of the key space can determine whether a bucket is
|
|
* truly dirty or cached.
|
|
*
|
|
* Transitions:
|
|
*
|
|
* - free => allocator: bucket was invalidated
|
|
* - cached => allocator: bucket was invalidated
|
|
*
|
|
* - allocator => dirty: open bucket was filled up
|
|
* - allocator => cached: open bucket was filled up
|
|
* - allocator => metadata: metadata was allocated
|
|
*
|
|
* - dirty => cached: dirty sectors were copied to a deeper tier
|
|
* - dirty => free: dirty sectors were overwritten or moved (copy gc)
|
|
* - cached => free: cached sectors were overwritten
|
|
*
|
|
* - metadata => free: metadata was freed
|
|
*
|
|
* Oddities:
|
|
* - cached => dirty: a device was removed so formerly replicated data
|
|
* is no longer sufficiently replicated
|
|
* - free => cached: cannot happen
|
|
* - free => dirty: cannot happen
|
|
* - free => metadata: cannot happen
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "btree_gc.h"
|
|
#include "buckets.h"
|
|
#include "error.h"
|
|
#include "movinggc.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/preempt.h>
|
|
|
|
static inline u64 __bch2_fs_sectors_used(struct bch_fs *, struct bch_fs_usage);
|
|
|
|
#ifdef DEBUG_BUCKETS
|
|
|
|
#define lg_local_lock lg_global_lock
|
|
#define lg_local_unlock lg_global_unlock
|
|
|
|
static void bch2_fs_stats_verify(struct bch_fs *c)
|
|
{
|
|
struct bch_fs_usage stats =
|
|
__bch2_fs_usage_read(c);
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) {
|
|
for (j = 0; j < ARRAY_SIZE(stats.replicas[i].data); j++)
|
|
if ((s64) stats.replicas[i].data[j] < 0)
|
|
panic("replicas %u %s sectors underflow: %lli\n",
|
|
i + 1, bch_data_types[j],
|
|
stats.replicas[i].data[j]);
|
|
|
|
if ((s64) stats.replicas[i].persistent_reserved < 0)
|
|
panic("replicas %u reserved underflow: %lli\n",
|
|
i + 1, stats.replicas[i].persistent_reserved);
|
|
}
|
|
|
|
for (j = 0; j < ARRAY_SIZE(stats.buckets); j++)
|
|
if ((s64) stats.replicas[i].data_buckets[j] < 0)
|
|
panic("%s buckets underflow: %lli\n",
|
|
bch_data_types[j],
|
|
stats.buckets[j]);
|
|
|
|
if ((s64) stats.online_reserved < 0)
|
|
panic("sectors_online_reserved underflow: %lli\n",
|
|
stats.online_reserved);
|
|
}
|
|
|
|
static void bch2_dev_stats_verify(struct bch_dev *ca)
|
|
{
|
|
struct bch_dev_usage stats =
|
|
__bch2_dev_usage_read(ca);
|
|
u64 n = ca->mi.nbuckets - ca->mi.first_bucket;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(stats.buckets); i++)
|
|
BUG_ON(stats.buckets[i] > n);
|
|
BUG_ON(stats.buckets_alloc > n);
|
|
BUG_ON(stats.buckets_unavailable > n);
|
|
}
|
|
|
|
static void bch2_disk_reservations_verify(struct bch_fs *c, int flags)
|
|
{
|
|
if (!(flags & BCH_DISK_RESERVATION_NOFAIL)) {
|
|
u64 used = __bch2_fs_sectors_used(c);
|
|
u64 cached = 0;
|
|
u64 avail = atomic64_read(&c->sectors_available);
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
cached += per_cpu_ptr(c->usage_percpu, cpu)->available_cache;
|
|
|
|
if (used + avail + cached > c->capacity)
|
|
panic("used %llu avail %llu cached %llu capacity %llu\n",
|
|
used, avail, cached, c->capacity);
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void bch2_fs_stats_verify(struct bch_fs *c) {}
|
|
static void bch2_dev_stats_verify(struct bch_dev *ca) {}
|
|
static void bch2_disk_reservations_verify(struct bch_fs *c, int flags) {}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Clear journal_seq_valid for buckets for which it's not needed, to prevent
|
|
* wraparound:
|
|
*/
|
|
void bch2_bucket_seq_cleanup(struct bch_fs *c)
|
|
{
|
|
u64 journal_seq = atomic64_read(&c->journal.seq);
|
|
u16 last_seq_ondisk = c->journal.last_seq_ondisk;
|
|
struct bch_dev *ca;
|
|
struct bucket_array *buckets;
|
|
struct bucket *g;
|
|
struct bucket_mark m;
|
|
unsigned i;
|
|
|
|
if (journal_seq - c->last_bucket_seq_cleanup <
|
|
(1U << (BUCKET_JOURNAL_SEQ_BITS - 2)))
|
|
return;
|
|
|
|
c->last_bucket_seq_cleanup = journal_seq;
|
|
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
buckets = bucket_array(ca);
|
|
|
|
for_each_bucket(g, buckets) {
|
|
bucket_cmpxchg(g, m, ({
|
|
if (!m.journal_seq_valid ||
|
|
bucket_needs_journal_commit(m, last_seq_ondisk))
|
|
break;
|
|
|
|
m.journal_seq_valid = 0;
|
|
}));
|
|
}
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
}
|
|
|
|
#define bch2_usage_add(_acc, _stats) \
|
|
do { \
|
|
typeof(_acc) _a = (_acc), _s = (_stats); \
|
|
unsigned i; \
|
|
\
|
|
for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \
|
|
((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \
|
|
} while (0)
|
|
|
|
#define bch2_usage_read_raw(_stats) \
|
|
({ \
|
|
typeof(*this_cpu_ptr(_stats)) _acc; \
|
|
int cpu; \
|
|
\
|
|
memset(&_acc, 0, sizeof(_acc)); \
|
|
\
|
|
for_each_possible_cpu(cpu) \
|
|
bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \
|
|
\
|
|
_acc; \
|
|
})
|
|
|
|
#define bch2_usage_read_cached(_c, _cached, _uncached) \
|
|
({ \
|
|
typeof(_cached) _ret; \
|
|
unsigned _seq; \
|
|
\
|
|
do { \
|
|
_seq = read_seqcount_begin(&(_c)->gc_pos_lock); \
|
|
_ret = (_c)->gc_pos.phase == GC_PHASE_DONE \
|
|
? bch2_usage_read_raw(_uncached) \
|
|
: (_cached); \
|
|
} while (read_seqcount_retry(&(_c)->gc_pos_lock, _seq)); \
|
|
\
|
|
_ret; \
|
|
})
|
|
|
|
struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca)
|
|
{
|
|
return bch2_usage_read_raw(ca->usage_percpu);
|
|
}
|
|
|
|
struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
return bch2_usage_read_cached(c, ca->usage_cached, ca->usage_percpu);
|
|
}
|
|
|
|
struct bch_fs_usage
|
|
__bch2_fs_usage_read(struct bch_fs *c)
|
|
{
|
|
return bch2_usage_read_raw(c->usage_percpu);
|
|
}
|
|
|
|
struct bch_fs_usage
|
|
bch2_fs_usage_read(struct bch_fs *c)
|
|
{
|
|
return bch2_usage_read_cached(c,
|
|
c->usage_cached,
|
|
c->usage_percpu);
|
|
}
|
|
|
|
struct fs_usage_sum {
|
|
u64 hidden;
|
|
u64 data;
|
|
u64 cached;
|
|
u64 reserved;
|
|
};
|
|
|
|
static inline struct fs_usage_sum __fs_usage_sum(struct bch_fs_usage stats)
|
|
{
|
|
struct fs_usage_sum sum = { 0 };
|
|
unsigned i;
|
|
|
|
/*
|
|
* For superblock and journal we count bucket usage, not sector usage,
|
|
* because any internal fragmentation should _not_ be counted as
|
|
* free space:
|
|
*/
|
|
sum.hidden += stats.buckets[BCH_DATA_SB];
|
|
sum.hidden += stats.buckets[BCH_DATA_JOURNAL];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(stats.replicas); i++) {
|
|
sum.data += stats.replicas[i].data[BCH_DATA_BTREE];
|
|
sum.data += stats.replicas[i].data[BCH_DATA_USER];
|
|
sum.cached += stats.replicas[i].data[BCH_DATA_CACHED];
|
|
sum.reserved += stats.replicas[i].persistent_reserved;
|
|
}
|
|
|
|
sum.reserved += stats.online_reserved;
|
|
return sum;
|
|
}
|
|
|
|
#define RESERVE_FACTOR 6
|
|
|
|
static u64 reserve_factor(u64 r)
|
|
{
|
|
return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR);
|
|
}
|
|
|
|
static u64 avail_factor(u64 r)
|
|
{
|
|
return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1);
|
|
}
|
|
|
|
static inline u64 __bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats)
|
|
{
|
|
struct fs_usage_sum sum = __fs_usage_sum(stats);
|
|
|
|
return sum.hidden + sum.data + reserve_factor(sum.reserved);
|
|
}
|
|
|
|
u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage stats)
|
|
{
|
|
return min(c->capacity, __bch2_fs_sectors_used(c, stats));
|
|
}
|
|
|
|
static u64 bch2_fs_sectors_free(struct bch_fs *c, struct bch_fs_usage stats)
|
|
{
|
|
return c->capacity - bch2_fs_sectors_used(c, stats);
|
|
}
|
|
|
|
static inline int is_unavailable_bucket(struct bucket_mark m)
|
|
{
|
|
return !is_available_bucket(m);
|
|
}
|
|
|
|
static inline int is_fragmented_bucket(struct bucket_mark m,
|
|
struct bch_dev *ca)
|
|
{
|
|
if (!m.owned_by_allocator &&
|
|
m.data_type == BCH_DATA_USER &&
|
|
bucket_sectors_used(m))
|
|
return max_t(int, 0, (int) ca->mi.bucket_size -
|
|
bucket_sectors_used(m));
|
|
return 0;
|
|
}
|
|
|
|
static inline enum bch_data_type bucket_type(struct bucket_mark m)
|
|
{
|
|
return m.cached_sectors && !m.dirty_sectors
|
|
? BCH_DATA_CACHED
|
|
: m.data_type;
|
|
}
|
|
|
|
static bool bucket_became_unavailable(struct bch_fs *c,
|
|
struct bucket_mark old,
|
|
struct bucket_mark new)
|
|
{
|
|
return is_available_bucket(old) &&
|
|
!is_available_bucket(new) &&
|
|
(!c || c->gc_pos.phase == GC_PHASE_DONE);
|
|
}
|
|
|
|
void bch2_fs_usage_apply(struct bch_fs *c,
|
|
struct bch_fs_usage *stats,
|
|
struct disk_reservation *disk_res,
|
|
struct gc_pos gc_pos)
|
|
{
|
|
struct fs_usage_sum sum = __fs_usage_sum(*stats);
|
|
s64 added = sum.data + sum.reserved;
|
|
|
|
/*
|
|
* Not allowed to reduce sectors_available except by getting a
|
|
* reservation:
|
|
*/
|
|
BUG_ON(added > (s64) (disk_res ? disk_res->sectors : 0));
|
|
|
|
if (added > 0) {
|
|
disk_res->sectors -= added;
|
|
stats->online_reserved -= added;
|
|
}
|
|
|
|
percpu_down_read(&c->usage_lock);
|
|
preempt_disable();
|
|
/* online_reserved not subject to gc: */
|
|
this_cpu_add(c->usage_percpu->online_reserved, stats->online_reserved);
|
|
stats->online_reserved = 0;
|
|
|
|
if (!gc_will_visit(c, gc_pos))
|
|
bch2_usage_add(this_cpu_ptr(c->usage_percpu), stats);
|
|
|
|
bch2_fs_stats_verify(c);
|
|
preempt_enable();
|
|
percpu_up_read(&c->usage_lock);
|
|
|
|
memset(stats, 0, sizeof(*stats));
|
|
}
|
|
|
|
static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca,
|
|
struct bch_fs_usage *stats,
|
|
struct bucket_mark old, struct bucket_mark new)
|
|
{
|
|
struct bch_dev_usage *dev_usage;
|
|
|
|
percpu_rwsem_assert_held(&c->usage_lock);
|
|
|
|
bch2_fs_inconsistent_on(old.data_type && new.data_type &&
|
|
old.data_type != new.data_type, c,
|
|
"different types of data in same bucket: %s, %s",
|
|
bch2_data_types[old.data_type],
|
|
bch2_data_types[new.data_type]);
|
|
|
|
stats->buckets[bucket_type(old)] -= ca->mi.bucket_size;
|
|
stats->buckets[bucket_type(new)] += ca->mi.bucket_size;
|
|
|
|
preempt_disable();
|
|
dev_usage = this_cpu_ptr(ca->usage_percpu);
|
|
|
|
dev_usage->buckets[bucket_type(old)]--;
|
|
dev_usage->buckets[bucket_type(new)]++;
|
|
|
|
dev_usage->buckets_alloc +=
|
|
(int) new.owned_by_allocator - (int) old.owned_by_allocator;
|
|
dev_usage->buckets_unavailable +=
|
|
is_unavailable_bucket(new) - is_unavailable_bucket(old);
|
|
|
|
dev_usage->sectors[old.data_type] -= old.dirty_sectors;
|
|
dev_usage->sectors[new.data_type] += new.dirty_sectors;
|
|
dev_usage->sectors[BCH_DATA_CACHED] +=
|
|
(int) new.cached_sectors - (int) old.cached_sectors;
|
|
dev_usage->sectors_fragmented +=
|
|
is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca);
|
|
preempt_enable();
|
|
|
|
if (!is_available_bucket(old) && is_available_bucket(new))
|
|
bch2_wake_allocator(ca);
|
|
|
|
bch2_dev_stats_verify(ca);
|
|
}
|
|
|
|
#define bucket_data_cmpxchg(c, ca, stats, g, new, expr) \
|
|
({ \
|
|
struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \
|
|
\
|
|
bch2_dev_usage_update(c, ca, stats, _old, new); \
|
|
_old; \
|
|
})
|
|
|
|
void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, struct bucket_mark *old)
|
|
{
|
|
struct bch_fs_usage *stats = this_cpu_ptr(c->usage_percpu);
|
|
struct bucket *g;
|
|
struct bucket_mark new;
|
|
|
|
percpu_rwsem_assert_held(&c->usage_lock);
|
|
|
|
g = bucket(ca, b);
|
|
|
|
*old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
|
|
BUG_ON(!is_available_bucket(new));
|
|
|
|
new.owned_by_allocator = 1;
|
|
new.data_type = 0;
|
|
new.cached_sectors = 0;
|
|
new.dirty_sectors = 0;
|
|
new.gen++;
|
|
}));
|
|
|
|
/*
|
|
* This isn't actually correct yet, since fs usage is still
|
|
* uncompressed sectors:
|
|
*/
|
|
stats->replicas[0].data[BCH_DATA_CACHED] -= old->cached_sectors;
|
|
|
|
if (!old->owned_by_allocator && old->cached_sectors)
|
|
trace_invalidate(ca, bucket_to_sector(ca, b),
|
|
old->cached_sectors);
|
|
}
|
|
|
|
void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, bool owned_by_allocator,
|
|
struct gc_pos pos, unsigned flags)
|
|
{
|
|
struct bch_fs_usage *stats = this_cpu_ptr(c->usage_percpu);
|
|
struct bucket *g;
|
|
struct bucket_mark old, new;
|
|
|
|
percpu_rwsem_assert_held(&c->usage_lock);
|
|
g = bucket(ca, b);
|
|
|
|
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
|
|
gc_will_visit(c, pos))
|
|
return;
|
|
|
|
old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
|
|
new.owned_by_allocator = owned_by_allocator;
|
|
}));
|
|
|
|
BUG_ON(!owned_by_allocator && !old.owned_by_allocator &&
|
|
c->gc_pos.phase == GC_PHASE_DONE);
|
|
}
|
|
|
|
#define checked_add(a, b) \
|
|
do { \
|
|
unsigned _res = (unsigned) (a) + (b); \
|
|
(a) = _res; \
|
|
BUG_ON((a) != _res); \
|
|
} while (0)
|
|
|
|
void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca,
|
|
size_t b, enum bch_data_type type,
|
|
unsigned sectors, struct gc_pos pos,
|
|
unsigned flags)
|
|
{
|
|
struct bch_fs_usage *stats;
|
|
struct bucket *g;
|
|
struct bucket_mark old, new;
|
|
|
|
BUG_ON(type != BCH_DATA_SB &&
|
|
type != BCH_DATA_JOURNAL);
|
|
|
|
if (likely(c)) {
|
|
percpu_rwsem_assert_held(&c->usage_lock);
|
|
|
|
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
|
|
gc_will_visit(c, pos))
|
|
return;
|
|
|
|
preempt_disable();
|
|
stats = this_cpu_ptr(c->usage_percpu);
|
|
|
|
g = bucket(ca, b);
|
|
old = bucket_data_cmpxchg(c, ca, stats, g, new, ({
|
|
new.data_type = type;
|
|
checked_add(new.dirty_sectors, sectors);
|
|
}));
|
|
|
|
stats->replicas[0].data[type] += sectors;
|
|
preempt_enable();
|
|
} else {
|
|
rcu_read_lock();
|
|
|
|
g = bucket(ca, b);
|
|
old = bucket_cmpxchg(g, new, ({
|
|
new.data_type = type;
|
|
checked_add(new.dirty_sectors, sectors);
|
|
}));
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) &&
|
|
bucket_became_unavailable(c, old, new));
|
|
}
|
|
|
|
static int __disk_sectors(struct bch_extent_crc_unpacked crc, unsigned sectors)
|
|
{
|
|
if (!sectors)
|
|
return 0;
|
|
|
|
return max(1U, DIV_ROUND_UP(sectors * crc.compressed_size,
|
|
crc.uncompressed_size));
|
|
}
|
|
|
|
static s64 ptr_disk_sectors(struct bkey_s_c_extent e,
|
|
struct extent_ptr_decoded p,
|
|
s64 sectors)
|
|
{
|
|
|
|
if (p.crc.compression_type) {
|
|
unsigned old_sectors, new_sectors;
|
|
|
|
if (sectors > 0) {
|
|
old_sectors = 0;
|
|
new_sectors = sectors;
|
|
} else {
|
|
old_sectors = e.k->size;
|
|
new_sectors = e.k->size + sectors;
|
|
}
|
|
|
|
sectors = -__disk_sectors(p.crc, old_sectors)
|
|
+__disk_sectors(p.crc, new_sectors);
|
|
}
|
|
|
|
return sectors;
|
|
}
|
|
|
|
/*
|
|
* Checking against gc's position has to be done here, inside the cmpxchg()
|
|
* loop, to avoid racing with the start of gc clearing all the marks - GC does
|
|
* that with the gc pos seqlock held.
|
|
*/
|
|
static void bch2_mark_pointer(struct bch_fs *c,
|
|
struct bkey_s_c_extent e,
|
|
struct extent_ptr_decoded p,
|
|
s64 sectors, enum bch_data_type data_type,
|
|
struct bch_fs_usage *fs_usage,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
struct bucket_mark old, new;
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
|
|
struct bucket *g = PTR_BUCKET(ca, &p.ptr);
|
|
u64 v;
|
|
|
|
if (flags & BCH_BUCKET_MARK_GC_WILL_VISIT) {
|
|
if (journal_seq)
|
|
bucket_cmpxchg(g, new, ({
|
|
new.journal_seq_valid = 1;
|
|
new.journal_seq = journal_seq;
|
|
}));
|
|
|
|
return;
|
|
}
|
|
|
|
v = atomic64_read(&g->_mark.v);
|
|
do {
|
|
new.v.counter = old.v.counter = v;
|
|
|
|
/*
|
|
* Check this after reading bucket mark to guard against
|
|
* the allocator invalidating a bucket after we've already
|
|
* checked the gen
|
|
*/
|
|
if (gen_after(new.gen, p.ptr.gen)) {
|
|
BUG_ON(!test_bit(BCH_FS_ALLOC_READ_DONE, &c->flags));
|
|
EBUG_ON(!p.ptr.cached &&
|
|
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags));
|
|
return;
|
|
}
|
|
|
|
if (!p.ptr.cached)
|
|
checked_add(new.dirty_sectors, sectors);
|
|
else
|
|
checked_add(new.cached_sectors, sectors);
|
|
|
|
if (!new.dirty_sectors &&
|
|
!new.cached_sectors) {
|
|
new.data_type = 0;
|
|
|
|
if (journal_seq) {
|
|
new.journal_seq_valid = 1;
|
|
new.journal_seq = journal_seq;
|
|
}
|
|
} else {
|
|
new.data_type = data_type;
|
|
}
|
|
|
|
if (flags & BCH_BUCKET_MARK_NOATOMIC) {
|
|
g->_mark = new;
|
|
break;
|
|
}
|
|
} while ((v = atomic64_cmpxchg(&g->_mark.v,
|
|
old.v.counter,
|
|
new.v.counter)) != old.v.counter);
|
|
|
|
bch2_dev_usage_update(c, ca, fs_usage, old, new);
|
|
|
|
BUG_ON(!(flags & BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE) &&
|
|
bucket_became_unavailable(c, old, new));
|
|
}
|
|
|
|
static void bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k,
|
|
s64 sectors, enum bch_data_type data_type,
|
|
struct gc_pos pos,
|
|
struct bch_fs_usage *stats,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
unsigned replicas = bch2_extent_nr_dirty_ptrs(k);
|
|
|
|
BUG_ON(replicas && replicas - 1 > ARRAY_SIZE(stats->replicas));
|
|
BUG_ON(!sectors);
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED: {
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p;
|
|
|
|
extent_for_each_ptr_decode(e, p, entry) {
|
|
s64 disk_sectors = ptr_disk_sectors(e, p, sectors);
|
|
|
|
/*
|
|
* fs level usage (which determines free space) is in
|
|
* uncompressed sectors, until copygc + compression is
|
|
* sorted out:
|
|
*
|
|
* note also that we always update @fs_usage, even when
|
|
* we otherwise wouldn't do anything because gc is
|
|
* running - this is because the caller still needs to
|
|
* account w.r.t. its disk reservation. It is caller's
|
|
* responsibility to not apply @fs_usage if gc is in
|
|
* progress.
|
|
*/
|
|
stats->replicas
|
|
[!p.ptr.cached && replicas ? replicas - 1 : 0].data
|
|
[!p.ptr.cached ? data_type : BCH_DATA_CACHED] +=
|
|
sectors;
|
|
|
|
bch2_mark_pointer(c, e, p, disk_sectors, data_type,
|
|
stats, journal_seq, flags);
|
|
}
|
|
break;
|
|
}
|
|
case BCH_RESERVATION:
|
|
if (replicas)
|
|
stats->replicas[replicas - 1].persistent_reserved +=
|
|
sectors * replicas;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void bch2_mark_key(struct bch_fs *c,
|
|
enum bkey_type type, struct bkey_s_c k,
|
|
bool inserting, s64 sectors,
|
|
struct gc_pos pos,
|
|
struct bch_fs_usage *stats,
|
|
u64 journal_seq, unsigned flags)
|
|
{
|
|
/*
|
|
* synchronization w.r.t. GC:
|
|
*
|
|
* Normally, bucket sector counts/marks are updated on the fly, as
|
|
* references are added/removed from the btree, the lists of buckets the
|
|
* allocator owns, other metadata buckets, etc.
|
|
*
|
|
* When GC is in progress and going to mark this reference, we do _not_
|
|
* mark this reference here, to avoid double counting - GC will count it
|
|
* when it gets to it.
|
|
*
|
|
* To know whether we should mark a given reference (GC either isn't
|
|
* running, or has already marked references at this position) we
|
|
* construct a total order for everything GC walks. Then, we can simply
|
|
* compare the position of the reference we're marking - @pos - with
|
|
* GC's current position. If GC is going to mark this reference, GC's
|
|
* current position will be less than @pos; if GC's current position is
|
|
* greater than @pos GC has either already walked this position, or
|
|
* isn't running.
|
|
*
|
|
* To avoid racing with GC's position changing, we have to deal with
|
|
* - GC's position being set to GC_POS_MIN when GC starts:
|
|
* usage_lock guards against this
|
|
* - GC's position overtaking @pos: we guard against this with
|
|
* whatever lock protects the data structure the reference lives in
|
|
* (e.g. the btree node lock, or the relevant allocator lock).
|
|
*/
|
|
|
|
percpu_down_read(&c->usage_lock);
|
|
if (!(flags & BCH_BUCKET_MARK_GC_LOCK_HELD) &&
|
|
gc_will_visit(c, pos))
|
|
flags |= BCH_BUCKET_MARK_GC_WILL_VISIT;
|
|
|
|
if (!stats)
|
|
stats = this_cpu_ptr(c->usage_percpu);
|
|
|
|
switch (type) {
|
|
case BKEY_TYPE_BTREE:
|
|
bch2_mark_extent(c, k, inserting
|
|
? c->opts.btree_node_size
|
|
: -c->opts.btree_node_size,
|
|
BCH_DATA_BTREE,
|
|
pos, stats, journal_seq, flags);
|
|
break;
|
|
case BKEY_TYPE_EXTENTS:
|
|
bch2_mark_extent(c, k, sectors, BCH_DATA_USER,
|
|
pos, stats, journal_seq, flags);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
percpu_up_read(&c->usage_lock);
|
|
}
|
|
|
|
/* Disk reservations: */
|
|
|
|
static u64 __recalc_sectors_available(struct bch_fs *c)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu_ptr(c->usage_percpu, cpu)->available_cache = 0;
|
|
|
|
return avail_factor(bch2_fs_sectors_free(c, bch2_fs_usage_read(c)));
|
|
}
|
|
|
|
/* Used by gc when it's starting: */
|
|
void bch2_recalc_sectors_available(struct bch_fs *c)
|
|
{
|
|
percpu_down_write(&c->usage_lock);
|
|
atomic64_set(&c->sectors_available, __recalc_sectors_available(c));
|
|
percpu_up_write(&c->usage_lock);
|
|
}
|
|
|
|
void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res)
|
|
{
|
|
percpu_down_read(&c->usage_lock);
|
|
this_cpu_sub(c->usage_percpu->online_reserved,
|
|
res->sectors);
|
|
|
|
bch2_fs_stats_verify(c);
|
|
percpu_up_read(&c->usage_lock);
|
|
|
|
res->sectors = 0;
|
|
}
|
|
|
|
#define SECTORS_CACHE 1024
|
|
|
|
int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res,
|
|
unsigned sectors, int flags)
|
|
{
|
|
struct bch_fs_usage *stats;
|
|
u64 old, v, get;
|
|
s64 sectors_available;
|
|
int ret;
|
|
|
|
percpu_down_read(&c->usage_lock);
|
|
preempt_disable();
|
|
stats = this_cpu_ptr(c->usage_percpu);
|
|
|
|
if (sectors <= stats->available_cache)
|
|
goto out;
|
|
|
|
v = atomic64_read(&c->sectors_available);
|
|
do {
|
|
old = v;
|
|
get = min((u64) sectors + SECTORS_CACHE, old);
|
|
|
|
if (get < sectors) {
|
|
preempt_enable();
|
|
percpu_up_read(&c->usage_lock);
|
|
goto recalculate;
|
|
}
|
|
} while ((v = atomic64_cmpxchg(&c->sectors_available,
|
|
old, old - get)) != old);
|
|
|
|
stats->available_cache += get;
|
|
|
|
out:
|
|
stats->available_cache -= sectors;
|
|
stats->online_reserved += sectors;
|
|
res->sectors += sectors;
|
|
|
|
bch2_disk_reservations_verify(c, flags);
|
|
bch2_fs_stats_verify(c);
|
|
preempt_enable();
|
|
percpu_up_read(&c->usage_lock);
|
|
return 0;
|
|
|
|
recalculate:
|
|
/*
|
|
* GC recalculates sectors_available when it starts, so that hopefully
|
|
* we don't normally end up blocking here:
|
|
*/
|
|
|
|
/*
|
|
* Piss fuck, we can be called from extent_insert_fixup() with btree
|
|
* locks held:
|
|
*/
|
|
|
|
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) {
|
|
if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD))
|
|
down_read(&c->gc_lock);
|
|
else if (!down_read_trylock(&c->gc_lock))
|
|
return -EINTR;
|
|
}
|
|
|
|
percpu_down_write(&c->usage_lock);
|
|
sectors_available = __recalc_sectors_available(c);
|
|
|
|
if (sectors <= sectors_available ||
|
|
(flags & BCH_DISK_RESERVATION_NOFAIL)) {
|
|
atomic64_set(&c->sectors_available,
|
|
max_t(s64, 0, sectors_available - sectors));
|
|
stats->online_reserved += sectors;
|
|
res->sectors += sectors;
|
|
ret = 0;
|
|
|
|
bch2_disk_reservations_verify(c, flags);
|
|
} else {
|
|
atomic64_set(&c->sectors_available, sectors_available);
|
|
ret = -ENOSPC;
|
|
}
|
|
|
|
bch2_fs_stats_verify(c);
|
|
percpu_up_write(&c->usage_lock);
|
|
|
|
if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD))
|
|
up_read(&c->gc_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Startup/shutdown: */
|
|
|
|
static void buckets_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct bucket_array *buckets =
|
|
container_of(rcu, struct bucket_array, rcu);
|
|
|
|
kvpfree(buckets,
|
|
sizeof(struct bucket_array) +
|
|
buckets->nbuckets * sizeof(struct bucket));
|
|
}
|
|
|
|
int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
|
|
{
|
|
struct bucket_array *buckets = NULL, *old_buckets = NULL;
|
|
unsigned long *buckets_dirty = NULL;
|
|
u8 *oldest_gens = NULL;
|
|
alloc_fifo free[RESERVE_NR];
|
|
alloc_fifo free_inc;
|
|
alloc_heap alloc_heap;
|
|
copygc_heap copygc_heap;
|
|
|
|
size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
|
|
ca->mi.bucket_size / c->opts.btree_node_size);
|
|
/* XXX: these should be tunable */
|
|
size_t reserve_none = max_t(size_t, 4, nbuckets >> 9);
|
|
size_t copygc_reserve = max_t(size_t, 16, nbuckets >> 7);
|
|
size_t free_inc_nr = max(max_t(size_t, 16, nbuckets >> 12),
|
|
btree_reserve);
|
|
bool resize = ca->buckets != NULL,
|
|
start_copygc = ca->copygc_thread != NULL;
|
|
int ret = -ENOMEM;
|
|
unsigned i;
|
|
|
|
memset(&free, 0, sizeof(free));
|
|
memset(&free_inc, 0, sizeof(free_inc));
|
|
memset(&alloc_heap, 0, sizeof(alloc_heap));
|
|
memset(©gc_heap, 0, sizeof(copygc_heap));
|
|
|
|
if (!(buckets = kvpmalloc(sizeof(struct bucket_array) +
|
|
nbuckets * sizeof(struct bucket),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!(oldest_gens = kvpmalloc(nbuckets * sizeof(u8),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!(buckets_dirty = kvpmalloc(BITS_TO_LONGS(nbuckets) *
|
|
sizeof(unsigned long),
|
|
GFP_KERNEL|__GFP_ZERO)) ||
|
|
!init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) ||
|
|
!init_fifo(&free[RESERVE_MOVINGGC],
|
|
copygc_reserve, GFP_KERNEL) ||
|
|
!init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) ||
|
|
!init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) ||
|
|
!init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) ||
|
|
!init_heap(©gc_heap, copygc_reserve, GFP_KERNEL))
|
|
goto err;
|
|
|
|
buckets->first_bucket = ca->mi.first_bucket;
|
|
buckets->nbuckets = nbuckets;
|
|
|
|
bch2_copygc_stop(ca);
|
|
|
|
if (resize) {
|
|
down_write(&c->gc_lock);
|
|
down_write(&ca->bucket_lock);
|
|
percpu_down_write(&c->usage_lock);
|
|
}
|
|
|
|
old_buckets = bucket_array(ca);
|
|
|
|
if (resize) {
|
|
size_t n = min(buckets->nbuckets, old_buckets->nbuckets);
|
|
|
|
memcpy(buckets->b,
|
|
old_buckets->b,
|
|
n * sizeof(struct bucket));
|
|
memcpy(oldest_gens,
|
|
ca->oldest_gens,
|
|
n * sizeof(u8));
|
|
memcpy(buckets_dirty,
|
|
ca->buckets_dirty,
|
|
BITS_TO_LONGS(n) * sizeof(unsigned long));
|
|
}
|
|
|
|
rcu_assign_pointer(ca->buckets, buckets);
|
|
buckets = old_buckets;
|
|
|
|
swap(ca->oldest_gens, oldest_gens);
|
|
swap(ca->buckets_dirty, buckets_dirty);
|
|
|
|
if (resize)
|
|
percpu_up_write(&c->usage_lock);
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
for (i = 0; i < RESERVE_NR; i++) {
|
|
fifo_move(&free[i], &ca->free[i]);
|
|
swap(ca->free[i], free[i]);
|
|
}
|
|
fifo_move(&free_inc, &ca->free_inc);
|
|
swap(ca->free_inc, free_inc);
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
/* with gc lock held, alloc_heap can't be in use: */
|
|
swap(ca->alloc_heap, alloc_heap);
|
|
|
|
/* and we shut down copygc: */
|
|
swap(ca->copygc_heap, copygc_heap);
|
|
|
|
nbuckets = ca->mi.nbuckets;
|
|
|
|
if (resize) {
|
|
up_write(&ca->bucket_lock);
|
|
up_write(&c->gc_lock);
|
|
}
|
|
|
|
if (start_copygc &&
|
|
bch2_copygc_start(c, ca))
|
|
bch_err(ca, "error restarting copygc thread");
|
|
|
|
ret = 0;
|
|
err:
|
|
free_heap(©gc_heap);
|
|
free_heap(&alloc_heap);
|
|
free_fifo(&free_inc);
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
free_fifo(&free[i]);
|
|
kvpfree(buckets_dirty,
|
|
BITS_TO_LONGS(nbuckets) * sizeof(unsigned long));
|
|
kvpfree(oldest_gens,
|
|
nbuckets * sizeof(u8));
|
|
if (buckets)
|
|
call_rcu(&old_buckets->rcu, buckets_free_rcu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_dev_buckets_free(struct bch_dev *ca)
|
|
{
|
|
unsigned i;
|
|
|
|
free_heap(&ca->copygc_heap);
|
|
free_heap(&ca->alloc_heap);
|
|
free_fifo(&ca->free_inc);
|
|
for (i = 0; i < RESERVE_NR; i++)
|
|
free_fifo(&ca->free[i]);
|
|
kvpfree(ca->buckets_dirty,
|
|
BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long));
|
|
kvpfree(ca->oldest_gens, ca->mi.nbuckets * sizeof(u8));
|
|
kvpfree(rcu_dereference_protected(ca->buckets, 1),
|
|
sizeof(struct bucket_array) +
|
|
ca->mi.nbuckets * sizeof(struct bucket));
|
|
|
|
free_percpu(ca->usage_percpu);
|
|
}
|
|
|
|
int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca)
|
|
{
|
|
if (!(ca->usage_percpu = alloc_percpu(struct bch_dev_usage)))
|
|
return -ENOMEM;
|
|
|
|
return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);;
|
|
}
|