linux/drivers/net/xen-netfront.c
Jan Beulich f63c2c2032 xen-netfront: restore __skb_queue_tail() positioning in xennet_get_responses()
The commit referenced below moved the invocation past the "next" label,
without any explanation. In fact this allows misbehaving backends undue
control over the domain the frontend runs in, as earlier detected errors
require the skb to not be freed (it may be retained for later processing
via xennet_move_rx_slot(), or it may simply be unsafe to have it freed).

This is CVE-2022-33743 / XSA-405.

Fixes: 6c5aa6fc4def ("xen networking: add basic XDP support for xen-netfront")
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
2022-07-01 10:01:23 +02:00

2713 lines
67 KiB
C

/*
* Virtual network driver for conversing with remote driver backends.
*
* Copyright (c) 2002-2005, K A Fraser
* Copyright (c) 2005, XenSource Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation; or, when distributed
* separately from the Linux kernel or incorporated into other
* software packages, subject to the following license:
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this source file (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <net/tcp.h>
#include <linux/udp.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <net/ip.h>
#include <linux/bpf.h>
#include <net/page_pool.h>
#include <linux/bpf_trace.h>
#include <xen/xen.h>
#include <xen/xenbus.h>
#include <xen/events.h>
#include <xen/page.h>
#include <xen/platform_pci.h>
#include <xen/grant_table.h>
#include <xen/interface/io/netif.h>
#include <xen/interface/memory.h>
#include <xen/interface/grant_table.h>
/* Module parameters */
#define MAX_QUEUES_DEFAULT 8
static unsigned int xennet_max_queues;
module_param_named(max_queues, xennet_max_queues, uint, 0644);
MODULE_PARM_DESC(max_queues,
"Maximum number of queues per virtual interface");
static bool __read_mostly xennet_trusted = true;
module_param_named(trusted, xennet_trusted, bool, 0644);
MODULE_PARM_DESC(trusted, "Is the backend trusted");
#define XENNET_TIMEOUT (5 * HZ)
static const struct ethtool_ops xennet_ethtool_ops;
struct netfront_cb {
int pull_to;
};
#define NETFRONT_SKB_CB(skb) ((struct netfront_cb *)((skb)->cb))
#define RX_COPY_THRESHOLD 256
#define NET_TX_RING_SIZE __CONST_RING_SIZE(xen_netif_tx, XEN_PAGE_SIZE)
#define NET_RX_RING_SIZE __CONST_RING_SIZE(xen_netif_rx, XEN_PAGE_SIZE)
/* Minimum number of Rx slots (includes slot for GSO metadata). */
#define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1)
/* Queue name is interface name with "-qNNN" appended */
#define QUEUE_NAME_SIZE (IFNAMSIZ + 6)
/* IRQ name is queue name with "-tx" or "-rx" appended */
#define IRQ_NAME_SIZE (QUEUE_NAME_SIZE + 3)
static DECLARE_WAIT_QUEUE_HEAD(module_wq);
struct netfront_stats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct netfront_info;
struct netfront_queue {
unsigned int id; /* Queue ID, 0-based */
char name[QUEUE_NAME_SIZE]; /* DEVNAME-qN */
struct netfront_info *info;
struct bpf_prog __rcu *xdp_prog;
struct napi_struct napi;
/* Split event channels support, tx_* == rx_* when using
* single event channel.
*/
unsigned int tx_evtchn, rx_evtchn;
unsigned int tx_irq, rx_irq;
/* Only used when split event channels support is enabled */
char tx_irq_name[IRQ_NAME_SIZE]; /* DEVNAME-qN-tx */
char rx_irq_name[IRQ_NAME_SIZE]; /* DEVNAME-qN-rx */
spinlock_t tx_lock;
struct xen_netif_tx_front_ring tx;
int tx_ring_ref;
/*
* {tx,rx}_skbs store outstanding skbuffs. Free tx_skb entries
* are linked from tx_skb_freelist through tx_link.
*/
struct sk_buff *tx_skbs[NET_TX_RING_SIZE];
unsigned short tx_link[NET_TX_RING_SIZE];
#define TX_LINK_NONE 0xffff
#define TX_PENDING 0xfffe
grant_ref_t gref_tx_head;
grant_ref_t grant_tx_ref[NET_TX_RING_SIZE];
struct page *grant_tx_page[NET_TX_RING_SIZE];
unsigned tx_skb_freelist;
unsigned int tx_pend_queue;
spinlock_t rx_lock ____cacheline_aligned_in_smp;
struct xen_netif_rx_front_ring rx;
int rx_ring_ref;
struct timer_list rx_refill_timer;
struct sk_buff *rx_skbs[NET_RX_RING_SIZE];
grant_ref_t gref_rx_head;
grant_ref_t grant_rx_ref[NET_RX_RING_SIZE];
unsigned int rx_rsp_unconsumed;
spinlock_t rx_cons_lock;
struct page_pool *page_pool;
struct xdp_rxq_info xdp_rxq;
};
struct netfront_info {
struct list_head list;
struct net_device *netdev;
struct xenbus_device *xbdev;
/* Multi-queue support */
struct netfront_queue *queues;
/* Statistics */
struct netfront_stats __percpu *rx_stats;
struct netfront_stats __percpu *tx_stats;
/* XDP state */
bool netback_has_xdp_headroom;
bool netfront_xdp_enabled;
/* Is device behaving sane? */
bool broken;
/* Should skbs be bounced into a zeroed buffer? */
bool bounce;
atomic_t rx_gso_checksum_fixup;
};
struct netfront_rx_info {
struct xen_netif_rx_response rx;
struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
};
/*
* Access macros for acquiring freeing slots in tx_skbs[].
*/
static void add_id_to_list(unsigned *head, unsigned short *list,
unsigned short id)
{
list[id] = *head;
*head = id;
}
static unsigned short get_id_from_list(unsigned *head, unsigned short *list)
{
unsigned int id = *head;
if (id != TX_LINK_NONE) {
*head = list[id];
list[id] = TX_LINK_NONE;
}
return id;
}
static int xennet_rxidx(RING_IDX idx)
{
return idx & (NET_RX_RING_SIZE - 1);
}
static struct sk_buff *xennet_get_rx_skb(struct netfront_queue *queue,
RING_IDX ri)
{
int i = xennet_rxidx(ri);
struct sk_buff *skb = queue->rx_skbs[i];
queue->rx_skbs[i] = NULL;
return skb;
}
static grant_ref_t xennet_get_rx_ref(struct netfront_queue *queue,
RING_IDX ri)
{
int i = xennet_rxidx(ri);
grant_ref_t ref = queue->grant_rx_ref[i];
queue->grant_rx_ref[i] = INVALID_GRANT_REF;
return ref;
}
#ifdef CONFIG_SYSFS
static const struct attribute_group xennet_dev_group;
#endif
static bool xennet_can_sg(struct net_device *dev)
{
return dev->features & NETIF_F_SG;
}
static void rx_refill_timeout(struct timer_list *t)
{
struct netfront_queue *queue = from_timer(queue, t, rx_refill_timer);
napi_schedule(&queue->napi);
}
static int netfront_tx_slot_available(struct netfront_queue *queue)
{
return (queue->tx.req_prod_pvt - queue->tx.rsp_cons) <
(NET_TX_RING_SIZE - XEN_NETIF_NR_SLOTS_MIN - 1);
}
static void xennet_maybe_wake_tx(struct netfront_queue *queue)
{
struct net_device *dev = queue->info->netdev;
struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, queue->id);
if (unlikely(netif_tx_queue_stopped(dev_queue)) &&
netfront_tx_slot_available(queue) &&
likely(netif_running(dev)))
netif_tx_wake_queue(netdev_get_tx_queue(dev, queue->id));
}
static struct sk_buff *xennet_alloc_one_rx_buffer(struct netfront_queue *queue)
{
struct sk_buff *skb;
struct page *page;
skb = __netdev_alloc_skb(queue->info->netdev,
RX_COPY_THRESHOLD + NET_IP_ALIGN,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
page = page_pool_alloc_pages(queue->page_pool,
GFP_ATOMIC | __GFP_NOWARN | __GFP_ZERO);
if (unlikely(!page)) {
kfree_skb(skb);
return NULL;
}
skb_add_rx_frag(skb, 0, page, 0, 0, PAGE_SIZE);
/* Align ip header to a 16 bytes boundary */
skb_reserve(skb, NET_IP_ALIGN);
skb->dev = queue->info->netdev;
return skb;
}
static void xennet_alloc_rx_buffers(struct netfront_queue *queue)
{
RING_IDX req_prod = queue->rx.req_prod_pvt;
int notify;
int err = 0;
if (unlikely(!netif_carrier_ok(queue->info->netdev)))
return;
for (req_prod = queue->rx.req_prod_pvt;
req_prod - queue->rx.rsp_cons < NET_RX_RING_SIZE;
req_prod++) {
struct sk_buff *skb;
unsigned short id;
grant_ref_t ref;
struct page *page;
struct xen_netif_rx_request *req;
skb = xennet_alloc_one_rx_buffer(queue);
if (!skb) {
err = -ENOMEM;
break;
}
id = xennet_rxidx(req_prod);
BUG_ON(queue->rx_skbs[id]);
queue->rx_skbs[id] = skb;
ref = gnttab_claim_grant_reference(&queue->gref_rx_head);
WARN_ON_ONCE(IS_ERR_VALUE((unsigned long)(int)ref));
queue->grant_rx_ref[id] = ref;
page = skb_frag_page(&skb_shinfo(skb)->frags[0]);
req = RING_GET_REQUEST(&queue->rx, req_prod);
gnttab_page_grant_foreign_access_ref_one(ref,
queue->info->xbdev->otherend_id,
page,
0);
req->id = id;
req->gref = ref;
}
queue->rx.req_prod_pvt = req_prod;
/* Try again later if there are not enough requests or skb allocation
* failed.
* Enough requests is quantified as the sum of newly created slots and
* the unconsumed slots at the backend.
*/
if (req_prod - queue->rx.rsp_cons < NET_RX_SLOTS_MIN ||
unlikely(err)) {
mod_timer(&queue->rx_refill_timer, jiffies + (HZ/10));
return;
}
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&queue->rx, notify);
if (notify)
notify_remote_via_irq(queue->rx_irq);
}
static int xennet_open(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
unsigned int num_queues = dev->real_num_tx_queues;
unsigned int i = 0;
struct netfront_queue *queue = NULL;
if (!np->queues || np->broken)
return -ENODEV;
for (i = 0; i < num_queues; ++i) {
queue = &np->queues[i];
napi_enable(&queue->napi);
spin_lock_bh(&queue->rx_lock);
if (netif_carrier_ok(dev)) {
xennet_alloc_rx_buffers(queue);
queue->rx.sring->rsp_event = queue->rx.rsp_cons + 1;
if (RING_HAS_UNCONSUMED_RESPONSES(&queue->rx))
napi_schedule(&queue->napi);
}
spin_unlock_bh(&queue->rx_lock);
}
netif_tx_start_all_queues(dev);
return 0;
}
static bool xennet_tx_buf_gc(struct netfront_queue *queue)
{
RING_IDX cons, prod;
unsigned short id;
struct sk_buff *skb;
bool more_to_do;
bool work_done = false;
const struct device *dev = &queue->info->netdev->dev;
BUG_ON(!netif_carrier_ok(queue->info->netdev));
do {
prod = queue->tx.sring->rsp_prod;
if (RING_RESPONSE_PROD_OVERFLOW(&queue->tx, prod)) {
dev_alert(dev, "Illegal number of responses %u\n",
prod - queue->tx.rsp_cons);
goto err;
}
rmb(); /* Ensure we see responses up to 'rp'. */
for (cons = queue->tx.rsp_cons; cons != prod; cons++) {
struct xen_netif_tx_response txrsp;
work_done = true;
RING_COPY_RESPONSE(&queue->tx, cons, &txrsp);
if (txrsp.status == XEN_NETIF_RSP_NULL)
continue;
id = txrsp.id;
if (id >= RING_SIZE(&queue->tx)) {
dev_alert(dev,
"Response has incorrect id (%u)\n",
id);
goto err;
}
if (queue->tx_link[id] != TX_PENDING) {
dev_alert(dev,
"Response for inactive request\n");
goto err;
}
queue->tx_link[id] = TX_LINK_NONE;
skb = queue->tx_skbs[id];
queue->tx_skbs[id] = NULL;
if (unlikely(!gnttab_end_foreign_access_ref(
queue->grant_tx_ref[id]))) {
dev_alert(dev,
"Grant still in use by backend domain\n");
goto err;
}
gnttab_release_grant_reference(
&queue->gref_tx_head, queue->grant_tx_ref[id]);
queue->grant_tx_ref[id] = INVALID_GRANT_REF;
queue->grant_tx_page[id] = NULL;
add_id_to_list(&queue->tx_skb_freelist, queue->tx_link, id);
dev_kfree_skb_irq(skb);
}
queue->tx.rsp_cons = prod;
RING_FINAL_CHECK_FOR_RESPONSES(&queue->tx, more_to_do);
} while (more_to_do);
xennet_maybe_wake_tx(queue);
return work_done;
err:
queue->info->broken = true;
dev_alert(dev, "Disabled for further use\n");
return work_done;
}
struct xennet_gnttab_make_txreq {
struct netfront_queue *queue;
struct sk_buff *skb;
struct page *page;
struct xen_netif_tx_request *tx; /* Last request on ring page */
struct xen_netif_tx_request tx_local; /* Last request local copy*/
unsigned int size;
};
static void xennet_tx_setup_grant(unsigned long gfn, unsigned int offset,
unsigned int len, void *data)
{
struct xennet_gnttab_make_txreq *info = data;
unsigned int id;
struct xen_netif_tx_request *tx;
grant_ref_t ref;
/* convenient aliases */
struct page *page = info->page;
struct netfront_queue *queue = info->queue;
struct sk_buff *skb = info->skb;
id = get_id_from_list(&queue->tx_skb_freelist, queue->tx_link);
tx = RING_GET_REQUEST(&queue->tx, queue->tx.req_prod_pvt++);
ref = gnttab_claim_grant_reference(&queue->gref_tx_head);
WARN_ON_ONCE(IS_ERR_VALUE((unsigned long)(int)ref));
gnttab_grant_foreign_access_ref(ref, queue->info->xbdev->otherend_id,
gfn, GNTMAP_readonly);
queue->tx_skbs[id] = skb;
queue->grant_tx_page[id] = page;
queue->grant_tx_ref[id] = ref;
info->tx_local.id = id;
info->tx_local.gref = ref;
info->tx_local.offset = offset;
info->tx_local.size = len;
info->tx_local.flags = 0;
*tx = info->tx_local;
/*
* Put the request in the pending queue, it will be set to be pending
* when the producer index is about to be raised.
*/
add_id_to_list(&queue->tx_pend_queue, queue->tx_link, id);
info->tx = tx;
info->size += info->tx_local.size;
}
static struct xen_netif_tx_request *xennet_make_first_txreq(
struct xennet_gnttab_make_txreq *info,
unsigned int offset, unsigned int len)
{
info->size = 0;
gnttab_for_one_grant(info->page, offset, len, xennet_tx_setup_grant, info);
return info->tx;
}
static void xennet_make_one_txreq(unsigned long gfn, unsigned int offset,
unsigned int len, void *data)
{
struct xennet_gnttab_make_txreq *info = data;
info->tx->flags |= XEN_NETTXF_more_data;
skb_get(info->skb);
xennet_tx_setup_grant(gfn, offset, len, data);
}
static void xennet_make_txreqs(
struct xennet_gnttab_make_txreq *info,
struct page *page,
unsigned int offset, unsigned int len)
{
/* Skip unused frames from start of page */
page += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
while (len) {
info->page = page;
info->size = 0;
gnttab_foreach_grant_in_range(page, offset, len,
xennet_make_one_txreq,
info);
page++;
offset = 0;
len -= info->size;
}
}
/*
* Count how many ring slots are required to send this skb. Each frag
* might be a compound page.
*/
static int xennet_count_skb_slots(struct sk_buff *skb)
{
int i, frags = skb_shinfo(skb)->nr_frags;
int slots;
slots = gnttab_count_grant(offset_in_page(skb->data),
skb_headlen(skb));
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
unsigned long size = skb_frag_size(frag);
unsigned long offset = skb_frag_off(frag);
/* Skip unused frames from start of page */
offset &= ~PAGE_MASK;
slots += gnttab_count_grant(offset, size);
}
return slots;
}
static u16 xennet_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
unsigned int num_queues = dev->real_num_tx_queues;
u32 hash;
u16 queue_idx;
/* First, check if there is only one queue */
if (num_queues == 1) {
queue_idx = 0;
} else {
hash = skb_get_hash(skb);
queue_idx = hash % num_queues;
}
return queue_idx;
}
static void xennet_mark_tx_pending(struct netfront_queue *queue)
{
unsigned int i;
while ((i = get_id_from_list(&queue->tx_pend_queue, queue->tx_link)) !=
TX_LINK_NONE)
queue->tx_link[i] = TX_PENDING;
}
static int xennet_xdp_xmit_one(struct net_device *dev,
struct netfront_queue *queue,
struct xdp_frame *xdpf)
{
struct netfront_info *np = netdev_priv(dev);
struct netfront_stats *tx_stats = this_cpu_ptr(np->tx_stats);
struct xennet_gnttab_make_txreq info = {
.queue = queue,
.skb = NULL,
.page = virt_to_page(xdpf->data),
};
int notify;
xennet_make_first_txreq(&info,
offset_in_page(xdpf->data),
xdpf->len);
xennet_mark_tx_pending(queue);
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&queue->tx, notify);
if (notify)
notify_remote_via_irq(queue->tx_irq);
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->bytes += xdpf->len;
tx_stats->packets++;
u64_stats_update_end(&tx_stats->syncp);
xennet_tx_buf_gc(queue);
return 0;
}
static int xennet_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
unsigned int num_queues = dev->real_num_tx_queues;
struct netfront_info *np = netdev_priv(dev);
struct netfront_queue *queue = NULL;
unsigned long irq_flags;
int nxmit = 0;
int i;
if (unlikely(np->broken))
return -ENODEV;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
queue = &np->queues[smp_processor_id() % num_queues];
spin_lock_irqsave(&queue->tx_lock, irq_flags);
for (i = 0; i < n; i++) {
struct xdp_frame *xdpf = frames[i];
if (!xdpf)
continue;
if (xennet_xdp_xmit_one(dev, queue, xdpf))
break;
nxmit++;
}
spin_unlock_irqrestore(&queue->tx_lock, irq_flags);
return nxmit;
}
struct sk_buff *bounce_skb(const struct sk_buff *skb)
{
unsigned int headerlen = skb_headroom(skb);
/* Align size to allocate full pages and avoid contiguous data leaks */
unsigned int size = ALIGN(skb_end_offset(skb) + skb->data_len,
XEN_PAGE_SIZE);
struct sk_buff *n = alloc_skb(size, GFP_ATOMIC | __GFP_ZERO);
if (!n)
return NULL;
if (!IS_ALIGNED((uintptr_t)n->head, XEN_PAGE_SIZE)) {
WARN_ONCE(1, "misaligned skb allocated\n");
kfree_skb(n);
return NULL;
}
/* Set the data pointer */
skb_reserve(n, headerlen);
/* Set the tail pointer and length */
skb_put(n, skb->len);
BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
skb_copy_header(n, skb);
return n;
}
#define MAX_XEN_SKB_FRAGS (65536 / XEN_PAGE_SIZE + 1)
static netdev_tx_t xennet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
struct netfront_stats *tx_stats = this_cpu_ptr(np->tx_stats);
struct xen_netif_tx_request *first_tx;
unsigned int i;
int notify;
int slots;
struct page *page;
unsigned int offset;
unsigned int len;
unsigned long flags;
struct netfront_queue *queue = NULL;
struct xennet_gnttab_make_txreq info = { };
unsigned int num_queues = dev->real_num_tx_queues;
u16 queue_index;
struct sk_buff *nskb;
/* Drop the packet if no queues are set up */
if (num_queues < 1)
goto drop;
if (unlikely(np->broken))
goto drop;
/* Determine which queue to transmit this SKB on */
queue_index = skb_get_queue_mapping(skb);
queue = &np->queues[queue_index];
/* If skb->len is too big for wire format, drop skb and alert
* user about misconfiguration.
*/
if (unlikely(skb->len > XEN_NETIF_MAX_TX_SIZE)) {
net_alert_ratelimited(
"xennet: skb->len = %u, too big for wire format\n",
skb->len);
goto drop;
}
slots = xennet_count_skb_slots(skb);
if (unlikely(slots > MAX_XEN_SKB_FRAGS + 1)) {
net_dbg_ratelimited("xennet: skb rides the rocket: %d slots, %d bytes\n",
slots, skb->len);
if (skb_linearize(skb))
goto drop;
}
page = virt_to_page(skb->data);
offset = offset_in_page(skb->data);
/* The first req should be at least ETH_HLEN size or the packet will be
* dropped by netback.
*
* If the backend is not trusted bounce all data to zeroed pages to
* avoid exposing contiguous data on the granted page not belonging to
* the skb.
*/
if (np->bounce || unlikely(PAGE_SIZE - offset < ETH_HLEN)) {
nskb = bounce_skb(skb);
if (!nskb)
goto drop;
dev_consume_skb_any(skb);
skb = nskb;
page = virt_to_page(skb->data);
offset = offset_in_page(skb->data);
}
len = skb_headlen(skb);
spin_lock_irqsave(&queue->tx_lock, flags);
if (unlikely(!netif_carrier_ok(dev) ||
(slots > 1 && !xennet_can_sg(dev)) ||
netif_needs_gso(skb, netif_skb_features(skb)))) {
spin_unlock_irqrestore(&queue->tx_lock, flags);
goto drop;
}
/* First request for the linear area. */
info.queue = queue;
info.skb = skb;
info.page = page;
first_tx = xennet_make_first_txreq(&info, offset, len);
offset += info.tx_local.size;
if (offset == PAGE_SIZE) {
page++;
offset = 0;
}
len -= info.tx_local.size;
if (skb->ip_summed == CHECKSUM_PARTIAL)
/* local packet? */
first_tx->flags |= XEN_NETTXF_csum_blank |
XEN_NETTXF_data_validated;
else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
/* remote but checksummed. */
first_tx->flags |= XEN_NETTXF_data_validated;
/* Optional extra info after the first request. */
if (skb_shinfo(skb)->gso_size) {
struct xen_netif_extra_info *gso;
gso = (struct xen_netif_extra_info *)
RING_GET_REQUEST(&queue->tx, queue->tx.req_prod_pvt++);
first_tx->flags |= XEN_NETTXF_extra_info;
gso->u.gso.size = skb_shinfo(skb)->gso_size;
gso->u.gso.type = (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) ?
XEN_NETIF_GSO_TYPE_TCPV6 :
XEN_NETIF_GSO_TYPE_TCPV4;
gso->u.gso.pad = 0;
gso->u.gso.features = 0;
gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
gso->flags = 0;
}
/* Requests for the rest of the linear area. */
xennet_make_txreqs(&info, page, offset, len);
/* Requests for all the frags. */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
xennet_make_txreqs(&info, skb_frag_page(frag),
skb_frag_off(frag),
skb_frag_size(frag));
}
/* First request has the packet length. */
first_tx->size = skb->len;
/* timestamp packet in software */
skb_tx_timestamp(skb);
xennet_mark_tx_pending(queue);
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&queue->tx, notify);
if (notify)
notify_remote_via_irq(queue->tx_irq);
u64_stats_update_begin(&tx_stats->syncp);
tx_stats->bytes += skb->len;
tx_stats->packets++;
u64_stats_update_end(&tx_stats->syncp);
/* Note: It is not safe to access skb after xennet_tx_buf_gc()! */
xennet_tx_buf_gc(queue);
if (!netfront_tx_slot_available(queue))
netif_tx_stop_queue(netdev_get_tx_queue(dev, queue->id));
spin_unlock_irqrestore(&queue->tx_lock, flags);
return NETDEV_TX_OK;
drop:
dev->stats.tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static int xennet_close(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
unsigned int num_queues = dev->real_num_tx_queues;
unsigned int i;
struct netfront_queue *queue;
netif_tx_stop_all_queues(np->netdev);
for (i = 0; i < num_queues; ++i) {
queue = &np->queues[i];
napi_disable(&queue->napi);
}
return 0;
}
static void xennet_destroy_queues(struct netfront_info *info)
{
unsigned int i;
for (i = 0; i < info->netdev->real_num_tx_queues; i++) {
struct netfront_queue *queue = &info->queues[i];
if (netif_running(info->netdev))
napi_disable(&queue->napi);
netif_napi_del(&queue->napi);
}
kfree(info->queues);
info->queues = NULL;
}
static void xennet_uninit(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
xennet_destroy_queues(np);
}
static void xennet_set_rx_rsp_cons(struct netfront_queue *queue, RING_IDX val)
{
unsigned long flags;
spin_lock_irqsave(&queue->rx_cons_lock, flags);
queue->rx.rsp_cons = val;
queue->rx_rsp_unconsumed = XEN_RING_NR_UNCONSUMED_RESPONSES(&queue->rx);
spin_unlock_irqrestore(&queue->rx_cons_lock, flags);
}
static void xennet_move_rx_slot(struct netfront_queue *queue, struct sk_buff *skb,
grant_ref_t ref)
{
int new = xennet_rxidx(queue->rx.req_prod_pvt);
BUG_ON(queue->rx_skbs[new]);
queue->rx_skbs[new] = skb;
queue->grant_rx_ref[new] = ref;
RING_GET_REQUEST(&queue->rx, queue->rx.req_prod_pvt)->id = new;
RING_GET_REQUEST(&queue->rx, queue->rx.req_prod_pvt)->gref = ref;
queue->rx.req_prod_pvt++;
}
static int xennet_get_extras(struct netfront_queue *queue,
struct xen_netif_extra_info *extras,
RING_IDX rp)
{
struct xen_netif_extra_info extra;
struct device *dev = &queue->info->netdev->dev;
RING_IDX cons = queue->rx.rsp_cons;
int err = 0;
do {
struct sk_buff *skb;
grant_ref_t ref;
if (unlikely(cons + 1 == rp)) {
if (net_ratelimit())
dev_warn(dev, "Missing extra info\n");
err = -EBADR;
break;
}
RING_COPY_RESPONSE(&queue->rx, ++cons, &extra);
if (unlikely(!extra.type ||
extra.type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
if (net_ratelimit())
dev_warn(dev, "Invalid extra type: %d\n",
extra.type);
err = -EINVAL;
} else {
extras[extra.type - 1] = extra;
}
skb = xennet_get_rx_skb(queue, cons);
ref = xennet_get_rx_ref(queue, cons);
xennet_move_rx_slot(queue, skb, ref);
} while (extra.flags & XEN_NETIF_EXTRA_FLAG_MORE);
xennet_set_rx_rsp_cons(queue, cons);
return err;
}
static u32 xennet_run_xdp(struct netfront_queue *queue, struct page *pdata,
struct xen_netif_rx_response *rx, struct bpf_prog *prog,
struct xdp_buff *xdp, bool *need_xdp_flush)
{
struct xdp_frame *xdpf;
u32 len = rx->status;
u32 act;
int err;
xdp_init_buff(xdp, XEN_PAGE_SIZE - XDP_PACKET_HEADROOM,
&queue->xdp_rxq);
xdp_prepare_buff(xdp, page_address(pdata), XDP_PACKET_HEADROOM,
len, false);
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_TX:
get_page(pdata);
xdpf = xdp_convert_buff_to_frame(xdp);
err = xennet_xdp_xmit(queue->info->netdev, 1, &xdpf, 0);
if (unlikely(!err))
xdp_return_frame_rx_napi(xdpf);
else if (unlikely(err < 0))
trace_xdp_exception(queue->info->netdev, prog, act);
break;
case XDP_REDIRECT:
get_page(pdata);
err = xdp_do_redirect(queue->info->netdev, xdp, prog);
*need_xdp_flush = true;
if (unlikely(err))
trace_xdp_exception(queue->info->netdev, prog, act);
break;
case XDP_PASS:
case XDP_DROP:
break;
case XDP_ABORTED:
trace_xdp_exception(queue->info->netdev, prog, act);
break;
default:
bpf_warn_invalid_xdp_action(queue->info->netdev, prog, act);
}
return act;
}
static int xennet_get_responses(struct netfront_queue *queue,
struct netfront_rx_info *rinfo, RING_IDX rp,
struct sk_buff_head *list,
bool *need_xdp_flush)
{
struct xen_netif_rx_response *rx = &rinfo->rx, rx_local;
int max = XEN_NETIF_NR_SLOTS_MIN + (rx->status <= RX_COPY_THRESHOLD);
RING_IDX cons = queue->rx.rsp_cons;
struct sk_buff *skb = xennet_get_rx_skb(queue, cons);
struct xen_netif_extra_info *extras = rinfo->extras;
grant_ref_t ref = xennet_get_rx_ref(queue, cons);
struct device *dev = &queue->info->netdev->dev;
struct bpf_prog *xdp_prog;
struct xdp_buff xdp;
int slots = 1;
int err = 0;
u32 verdict;
if (rx->flags & XEN_NETRXF_extra_info) {
err = xennet_get_extras(queue, extras, rp);
if (!err) {
if (extras[XEN_NETIF_EXTRA_TYPE_XDP - 1].type) {
struct xen_netif_extra_info *xdp;
xdp = &extras[XEN_NETIF_EXTRA_TYPE_XDP - 1];
rx->offset = xdp->u.xdp.headroom;
}
}
cons = queue->rx.rsp_cons;
}
for (;;) {
if (unlikely(rx->status < 0 ||
rx->offset + rx->status > XEN_PAGE_SIZE)) {
if (net_ratelimit())
dev_warn(dev, "rx->offset: %u, size: %d\n",
rx->offset, rx->status);
xennet_move_rx_slot(queue, skb, ref);
err = -EINVAL;
goto next;
}
/*
* This definitely indicates a bug, either in this driver or in
* the backend driver. In future this should flag the bad
* situation to the system controller to reboot the backend.
*/
if (ref == INVALID_GRANT_REF) {
if (net_ratelimit())
dev_warn(dev, "Bad rx response id %d.\n",
rx->id);
err = -EINVAL;
goto next;
}
if (!gnttab_end_foreign_access_ref(ref)) {
dev_alert(dev,
"Grant still in use by backend domain\n");
queue->info->broken = true;
dev_alert(dev, "Disabled for further use\n");
return -EINVAL;
}
gnttab_release_grant_reference(&queue->gref_rx_head, ref);
rcu_read_lock();
xdp_prog = rcu_dereference(queue->xdp_prog);
if (xdp_prog) {
if (!(rx->flags & XEN_NETRXF_more_data)) {
/* currently only a single page contains data */
verdict = xennet_run_xdp(queue,
skb_frag_page(&skb_shinfo(skb)->frags[0]),
rx, xdp_prog, &xdp, need_xdp_flush);
if (verdict != XDP_PASS)
err = -EINVAL;
} else {
/* drop the frame */
err = -EINVAL;
}
}
rcu_read_unlock();
__skb_queue_tail(list, skb);
next:
if (!(rx->flags & XEN_NETRXF_more_data))
break;
if (cons + slots == rp) {
if (net_ratelimit())
dev_warn(dev, "Need more slots\n");
err = -ENOENT;
break;
}
RING_COPY_RESPONSE(&queue->rx, cons + slots, &rx_local);
rx = &rx_local;
skb = xennet_get_rx_skb(queue, cons + slots);
ref = xennet_get_rx_ref(queue, cons + slots);
slots++;
}
if (unlikely(slots > max)) {
if (net_ratelimit())
dev_warn(dev, "Too many slots\n");
err = -E2BIG;
}
if (unlikely(err))
xennet_set_rx_rsp_cons(queue, cons + slots);
return err;
}
static int xennet_set_skb_gso(struct sk_buff *skb,
struct xen_netif_extra_info *gso)
{
if (!gso->u.gso.size) {
if (net_ratelimit())
pr_warn("GSO size must not be zero\n");
return -EINVAL;
}
if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4 &&
gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV6) {
if (net_ratelimit())
pr_warn("Bad GSO type %d\n", gso->u.gso.type);
return -EINVAL;
}
skb_shinfo(skb)->gso_size = gso->u.gso.size;
skb_shinfo(skb)->gso_type =
(gso->u.gso.type == XEN_NETIF_GSO_TYPE_TCPV4) ?
SKB_GSO_TCPV4 :
SKB_GSO_TCPV6;
/* Header must be checked, and gso_segs computed. */
skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
skb_shinfo(skb)->gso_segs = 0;
return 0;
}
static int xennet_fill_frags(struct netfront_queue *queue,
struct sk_buff *skb,
struct sk_buff_head *list)
{
RING_IDX cons = queue->rx.rsp_cons;
struct sk_buff *nskb;
while ((nskb = __skb_dequeue(list))) {
struct xen_netif_rx_response rx;
skb_frag_t *nfrag = &skb_shinfo(nskb)->frags[0];
RING_COPY_RESPONSE(&queue->rx, ++cons, &rx);
if (skb_shinfo(skb)->nr_frags == MAX_SKB_FRAGS) {
unsigned int pull_to = NETFRONT_SKB_CB(skb)->pull_to;
BUG_ON(pull_to < skb_headlen(skb));
__pskb_pull_tail(skb, pull_to - skb_headlen(skb));
}
if (unlikely(skb_shinfo(skb)->nr_frags >= MAX_SKB_FRAGS)) {
xennet_set_rx_rsp_cons(queue,
++cons + skb_queue_len(list));
kfree_skb(nskb);
return -ENOENT;
}
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
skb_frag_page(nfrag),
rx.offset, rx.status, PAGE_SIZE);
skb_shinfo(nskb)->nr_frags = 0;
kfree_skb(nskb);
}
xennet_set_rx_rsp_cons(queue, cons);
return 0;
}
static int checksum_setup(struct net_device *dev, struct sk_buff *skb)
{
bool recalculate_partial_csum = false;
/*
* A GSO SKB must be CHECKSUM_PARTIAL. However some buggy
* peers can fail to set NETRXF_csum_blank when sending a GSO
* frame. In this case force the SKB to CHECKSUM_PARTIAL and
* recalculate the partial checksum.
*/
if (skb->ip_summed != CHECKSUM_PARTIAL && skb_is_gso(skb)) {
struct netfront_info *np = netdev_priv(dev);
atomic_inc(&np->rx_gso_checksum_fixup);
skb->ip_summed = CHECKSUM_PARTIAL;
recalculate_partial_csum = true;
}
/* A non-CHECKSUM_PARTIAL SKB does not require setup. */
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
return skb_checksum_setup(skb, recalculate_partial_csum);
}
static int handle_incoming_queue(struct netfront_queue *queue,
struct sk_buff_head *rxq)
{
struct netfront_stats *rx_stats = this_cpu_ptr(queue->info->rx_stats);
int packets_dropped = 0;
struct sk_buff *skb;
while ((skb = __skb_dequeue(rxq)) != NULL) {
int pull_to = NETFRONT_SKB_CB(skb)->pull_to;
if (pull_to > skb_headlen(skb))
__pskb_pull_tail(skb, pull_to - skb_headlen(skb));
/* Ethernet work: Delayed to here as it peeks the header. */
skb->protocol = eth_type_trans(skb, queue->info->netdev);
skb_reset_network_header(skb);
if (checksum_setup(queue->info->netdev, skb)) {
kfree_skb(skb);
packets_dropped++;
queue->info->netdev->stats.rx_errors++;
continue;
}
u64_stats_update_begin(&rx_stats->syncp);
rx_stats->packets++;
rx_stats->bytes += skb->len;
u64_stats_update_end(&rx_stats->syncp);
/* Pass it up. */
napi_gro_receive(&queue->napi, skb);
}
return packets_dropped;
}
static int xennet_poll(struct napi_struct *napi, int budget)
{
struct netfront_queue *queue = container_of(napi, struct netfront_queue, napi);
struct net_device *dev = queue->info->netdev;
struct sk_buff *skb;
struct netfront_rx_info rinfo;
struct xen_netif_rx_response *rx = &rinfo.rx;
struct xen_netif_extra_info *extras = rinfo.extras;
RING_IDX i, rp;
int work_done;
struct sk_buff_head rxq;
struct sk_buff_head errq;
struct sk_buff_head tmpq;
int err;
bool need_xdp_flush = false;
spin_lock(&queue->rx_lock);
skb_queue_head_init(&rxq);
skb_queue_head_init(&errq);
skb_queue_head_init(&tmpq);
rp = queue->rx.sring->rsp_prod;
if (RING_RESPONSE_PROD_OVERFLOW(&queue->rx, rp)) {
dev_alert(&dev->dev, "Illegal number of responses %u\n",
rp - queue->rx.rsp_cons);
queue->info->broken = true;
spin_unlock(&queue->rx_lock);
return 0;
}
rmb(); /* Ensure we see queued responses up to 'rp'. */
i = queue->rx.rsp_cons;
work_done = 0;
while ((i != rp) && (work_done < budget)) {
RING_COPY_RESPONSE(&queue->rx, i, rx);
memset(extras, 0, sizeof(rinfo.extras));
err = xennet_get_responses(queue, &rinfo, rp, &tmpq,
&need_xdp_flush);
if (unlikely(err)) {
if (queue->info->broken) {
spin_unlock(&queue->rx_lock);
return 0;
}
err:
while ((skb = __skb_dequeue(&tmpq)))
__skb_queue_tail(&errq, skb);
dev->stats.rx_errors++;
i = queue->rx.rsp_cons;
continue;
}
skb = __skb_dequeue(&tmpq);
if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
struct xen_netif_extra_info *gso;
gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
if (unlikely(xennet_set_skb_gso(skb, gso))) {
__skb_queue_head(&tmpq, skb);
xennet_set_rx_rsp_cons(queue,
queue->rx.rsp_cons +
skb_queue_len(&tmpq));
goto err;
}
}
NETFRONT_SKB_CB(skb)->pull_to = rx->status;
if (NETFRONT_SKB_CB(skb)->pull_to > RX_COPY_THRESHOLD)
NETFRONT_SKB_CB(skb)->pull_to = RX_COPY_THRESHOLD;
skb_frag_off_set(&skb_shinfo(skb)->frags[0], rx->offset);
skb_frag_size_set(&skb_shinfo(skb)->frags[0], rx->status);
skb->data_len = rx->status;
skb->len += rx->status;
if (unlikely(xennet_fill_frags(queue, skb, &tmpq)))
goto err;
if (rx->flags & XEN_NETRXF_csum_blank)
skb->ip_summed = CHECKSUM_PARTIAL;
else if (rx->flags & XEN_NETRXF_data_validated)
skb->ip_summed = CHECKSUM_UNNECESSARY;
__skb_queue_tail(&rxq, skb);
i = queue->rx.rsp_cons + 1;
xennet_set_rx_rsp_cons(queue, i);
work_done++;
}
if (need_xdp_flush)
xdp_do_flush();
__skb_queue_purge(&errq);
work_done -= handle_incoming_queue(queue, &rxq);
xennet_alloc_rx_buffers(queue);
if (work_done < budget) {
int more_to_do = 0;
napi_complete_done(napi, work_done);
RING_FINAL_CHECK_FOR_RESPONSES(&queue->rx, more_to_do);
if (more_to_do)
napi_schedule(napi);
}
spin_unlock(&queue->rx_lock);
return work_done;
}
static int xennet_change_mtu(struct net_device *dev, int mtu)
{
int max = xennet_can_sg(dev) ? XEN_NETIF_MAX_TX_SIZE : ETH_DATA_LEN;
if (mtu > max)
return -EINVAL;
dev->mtu = mtu;
return 0;
}
static void xennet_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *tot)
{
struct netfront_info *np = netdev_priv(dev);
int cpu;
for_each_possible_cpu(cpu) {
struct netfront_stats *rx_stats = per_cpu_ptr(np->rx_stats, cpu);
struct netfront_stats *tx_stats = per_cpu_ptr(np->tx_stats, cpu);
u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
unsigned int start;
do {
start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
tx_packets = tx_stats->packets;
tx_bytes = tx_stats->bytes;
} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
do {
start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
rx_packets = rx_stats->packets;
rx_bytes = rx_stats->bytes;
} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
tot->rx_packets += rx_packets;
tot->tx_packets += tx_packets;
tot->rx_bytes += rx_bytes;
tot->tx_bytes += tx_bytes;
}
tot->rx_errors = dev->stats.rx_errors;
tot->tx_dropped = dev->stats.tx_dropped;
}
static void xennet_release_tx_bufs(struct netfront_queue *queue)
{
struct sk_buff *skb;
int i;
for (i = 0; i < NET_TX_RING_SIZE; i++) {
/* Skip over entries which are actually freelist references */
if (!queue->tx_skbs[i])
continue;
skb = queue->tx_skbs[i];
queue->tx_skbs[i] = NULL;
get_page(queue->grant_tx_page[i]);
gnttab_end_foreign_access(queue->grant_tx_ref[i],
queue->grant_tx_page[i]);
queue->grant_tx_page[i] = NULL;
queue->grant_tx_ref[i] = INVALID_GRANT_REF;
add_id_to_list(&queue->tx_skb_freelist, queue->tx_link, i);
dev_kfree_skb_irq(skb);
}
}
static void xennet_release_rx_bufs(struct netfront_queue *queue)
{
int id, ref;
spin_lock_bh(&queue->rx_lock);
for (id = 0; id < NET_RX_RING_SIZE; id++) {
struct sk_buff *skb;
struct page *page;
skb = queue->rx_skbs[id];
if (!skb)
continue;
ref = queue->grant_rx_ref[id];
if (ref == INVALID_GRANT_REF)
continue;
page = skb_frag_page(&skb_shinfo(skb)->frags[0]);
/* gnttab_end_foreign_access() needs a page ref until
* foreign access is ended (which may be deferred).
*/
get_page(page);
gnttab_end_foreign_access(ref, page);
queue->grant_rx_ref[id] = INVALID_GRANT_REF;
kfree_skb(skb);
}
spin_unlock_bh(&queue->rx_lock);
}
static netdev_features_t xennet_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct netfront_info *np = netdev_priv(dev);
if (features & NETIF_F_SG &&
!xenbus_read_unsigned(np->xbdev->otherend, "feature-sg", 0))
features &= ~NETIF_F_SG;
if (features & NETIF_F_IPV6_CSUM &&
!xenbus_read_unsigned(np->xbdev->otherend,
"feature-ipv6-csum-offload", 0))
features &= ~NETIF_F_IPV6_CSUM;
if (features & NETIF_F_TSO &&
!xenbus_read_unsigned(np->xbdev->otherend, "feature-gso-tcpv4", 0))
features &= ~NETIF_F_TSO;
if (features & NETIF_F_TSO6 &&
!xenbus_read_unsigned(np->xbdev->otherend, "feature-gso-tcpv6", 0))
features &= ~NETIF_F_TSO6;
return features;
}
static int xennet_set_features(struct net_device *dev,
netdev_features_t features)
{
if (!(features & NETIF_F_SG) && dev->mtu > ETH_DATA_LEN) {
netdev_info(dev, "Reducing MTU because no SG offload");
dev->mtu = ETH_DATA_LEN;
}
return 0;
}
static bool xennet_handle_tx(struct netfront_queue *queue, unsigned int *eoi)
{
unsigned long flags;
if (unlikely(queue->info->broken))
return false;
spin_lock_irqsave(&queue->tx_lock, flags);
if (xennet_tx_buf_gc(queue))
*eoi = 0;
spin_unlock_irqrestore(&queue->tx_lock, flags);
return true;
}
static irqreturn_t xennet_tx_interrupt(int irq, void *dev_id)
{
unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
if (likely(xennet_handle_tx(dev_id, &eoiflag)))
xen_irq_lateeoi(irq, eoiflag);
return IRQ_HANDLED;
}
static bool xennet_handle_rx(struct netfront_queue *queue, unsigned int *eoi)
{
unsigned int work_queued;
unsigned long flags;
if (unlikely(queue->info->broken))
return false;
spin_lock_irqsave(&queue->rx_cons_lock, flags);
work_queued = XEN_RING_NR_UNCONSUMED_RESPONSES(&queue->rx);
if (work_queued > queue->rx_rsp_unconsumed) {
queue->rx_rsp_unconsumed = work_queued;
*eoi = 0;
} else if (unlikely(work_queued < queue->rx_rsp_unconsumed)) {
const struct device *dev = &queue->info->netdev->dev;
spin_unlock_irqrestore(&queue->rx_cons_lock, flags);
dev_alert(dev, "RX producer index going backwards\n");
dev_alert(dev, "Disabled for further use\n");
queue->info->broken = true;
return false;
}
spin_unlock_irqrestore(&queue->rx_cons_lock, flags);
if (likely(netif_carrier_ok(queue->info->netdev) && work_queued))
napi_schedule(&queue->napi);
return true;
}
static irqreturn_t xennet_rx_interrupt(int irq, void *dev_id)
{
unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
if (likely(xennet_handle_rx(dev_id, &eoiflag)))
xen_irq_lateeoi(irq, eoiflag);
return IRQ_HANDLED;
}
static irqreturn_t xennet_interrupt(int irq, void *dev_id)
{
unsigned int eoiflag = XEN_EOI_FLAG_SPURIOUS;
if (xennet_handle_tx(dev_id, &eoiflag) &&
xennet_handle_rx(dev_id, &eoiflag))
xen_irq_lateeoi(irq, eoiflag);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void xennet_poll_controller(struct net_device *dev)
{
/* Poll each queue */
struct netfront_info *info = netdev_priv(dev);
unsigned int num_queues = dev->real_num_tx_queues;
unsigned int i;
if (info->broken)
return;
for (i = 0; i < num_queues; ++i)
xennet_interrupt(0, &info->queues[i]);
}
#endif
#define NETBACK_XDP_HEADROOM_DISABLE 0
#define NETBACK_XDP_HEADROOM_ENABLE 1
static int talk_to_netback_xdp(struct netfront_info *np, int xdp)
{
int err;
unsigned short headroom;
headroom = xdp ? XDP_PACKET_HEADROOM : 0;
err = xenbus_printf(XBT_NIL, np->xbdev->nodename,
"xdp-headroom", "%hu",
headroom);
if (err)
pr_warn("Error writing xdp-headroom\n");
return err;
}
static int xennet_xdp_set(struct net_device *dev, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
unsigned long max_mtu = XEN_PAGE_SIZE - XDP_PACKET_HEADROOM;
struct netfront_info *np = netdev_priv(dev);
struct bpf_prog *old_prog;
unsigned int i, err;
if (dev->mtu > max_mtu) {
netdev_warn(dev, "XDP requires MTU less than %lu\n", max_mtu);
return -EINVAL;
}
if (!np->netback_has_xdp_headroom)
return 0;
xenbus_switch_state(np->xbdev, XenbusStateReconfiguring);
err = talk_to_netback_xdp(np, prog ? NETBACK_XDP_HEADROOM_ENABLE :
NETBACK_XDP_HEADROOM_DISABLE);
if (err)
return err;
/* avoid the race with XDP headroom adjustment */
wait_event(module_wq,
xenbus_read_driver_state(np->xbdev->otherend) ==
XenbusStateReconfigured);
np->netfront_xdp_enabled = true;
old_prog = rtnl_dereference(np->queues[0].xdp_prog);
if (prog)
bpf_prog_add(prog, dev->real_num_tx_queues);
for (i = 0; i < dev->real_num_tx_queues; ++i)
rcu_assign_pointer(np->queues[i].xdp_prog, prog);
if (old_prog)
for (i = 0; i < dev->real_num_tx_queues; ++i)
bpf_prog_put(old_prog);
xenbus_switch_state(np->xbdev, XenbusStateConnected);
return 0;
}
static int xennet_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
struct netfront_info *np = netdev_priv(dev);
if (np->broken)
return -ENODEV;
switch (xdp->command) {
case XDP_SETUP_PROG:
return xennet_xdp_set(dev, xdp->prog, xdp->extack);
default:
return -EINVAL;
}
}
static const struct net_device_ops xennet_netdev_ops = {
.ndo_uninit = xennet_uninit,
.ndo_open = xennet_open,
.ndo_stop = xennet_close,
.ndo_start_xmit = xennet_start_xmit,
.ndo_change_mtu = xennet_change_mtu,
.ndo_get_stats64 = xennet_get_stats64,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_fix_features = xennet_fix_features,
.ndo_set_features = xennet_set_features,
.ndo_select_queue = xennet_select_queue,
.ndo_bpf = xennet_xdp,
.ndo_xdp_xmit = xennet_xdp_xmit,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = xennet_poll_controller,
#endif
};
static void xennet_free_netdev(struct net_device *netdev)
{
struct netfront_info *np = netdev_priv(netdev);
free_percpu(np->rx_stats);
free_percpu(np->tx_stats);
free_netdev(netdev);
}
static struct net_device *xennet_create_dev(struct xenbus_device *dev)
{
int err;
struct net_device *netdev;
struct netfront_info *np;
netdev = alloc_etherdev_mq(sizeof(struct netfront_info), xennet_max_queues);
if (!netdev)
return ERR_PTR(-ENOMEM);
np = netdev_priv(netdev);
np->xbdev = dev;
np->queues = NULL;
err = -ENOMEM;
np->rx_stats = netdev_alloc_pcpu_stats(struct netfront_stats);
if (np->rx_stats == NULL)
goto exit;
np->tx_stats = netdev_alloc_pcpu_stats(struct netfront_stats);
if (np->tx_stats == NULL)
goto exit;
netdev->netdev_ops = &xennet_netdev_ops;
netdev->features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_GSO_ROBUST;
netdev->hw_features = NETIF_F_SG |
NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6;
/*
* Assume that all hw features are available for now. This set
* will be adjusted by the call to netdev_update_features() in
* xennet_connect() which is the earliest point where we can
* negotiate with the backend regarding supported features.
*/
netdev->features |= netdev->hw_features;
netdev->ethtool_ops = &xennet_ethtool_ops;
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = XEN_NETIF_MAX_TX_SIZE;
SET_NETDEV_DEV(netdev, &dev->dev);
np->netdev = netdev;
np->netfront_xdp_enabled = false;
netif_carrier_off(netdev);
do {
xenbus_switch_state(dev, XenbusStateInitialising);
err = wait_event_timeout(module_wq,
xenbus_read_driver_state(dev->otherend) !=
XenbusStateClosed &&
xenbus_read_driver_state(dev->otherend) !=
XenbusStateUnknown, XENNET_TIMEOUT);
} while (!err);
return netdev;
exit:
xennet_free_netdev(netdev);
return ERR_PTR(err);
}
/*
* Entry point to this code when a new device is created. Allocate the basic
* structures and the ring buffers for communication with the backend, and
* inform the backend of the appropriate details for those.
*/
static int netfront_probe(struct xenbus_device *dev,
const struct xenbus_device_id *id)
{
int err;
struct net_device *netdev;
struct netfront_info *info;
netdev = xennet_create_dev(dev);
if (IS_ERR(netdev)) {
err = PTR_ERR(netdev);
xenbus_dev_fatal(dev, err, "creating netdev");
return err;
}
info = netdev_priv(netdev);
dev_set_drvdata(&dev->dev, info);
#ifdef CONFIG_SYSFS
info->netdev->sysfs_groups[0] = &xennet_dev_group;
#endif
return 0;
}
static void xennet_end_access(int ref, void *page)
{
/* This frees the page as a side-effect */
if (ref != INVALID_GRANT_REF)
gnttab_end_foreign_access(ref, virt_to_page(page));
}
static void xennet_disconnect_backend(struct netfront_info *info)
{
unsigned int i = 0;
unsigned int num_queues = info->netdev->real_num_tx_queues;
netif_carrier_off(info->netdev);
for (i = 0; i < num_queues && info->queues; ++i) {
struct netfront_queue *queue = &info->queues[i];
del_timer_sync(&queue->rx_refill_timer);
if (queue->tx_irq && (queue->tx_irq == queue->rx_irq))
unbind_from_irqhandler(queue->tx_irq, queue);
if (queue->tx_irq && (queue->tx_irq != queue->rx_irq)) {
unbind_from_irqhandler(queue->tx_irq, queue);
unbind_from_irqhandler(queue->rx_irq, queue);
}
queue->tx_evtchn = queue->rx_evtchn = 0;
queue->tx_irq = queue->rx_irq = 0;
if (netif_running(info->netdev))
napi_synchronize(&queue->napi);
xennet_release_tx_bufs(queue);
xennet_release_rx_bufs(queue);
gnttab_free_grant_references(queue->gref_tx_head);
gnttab_free_grant_references(queue->gref_rx_head);
/* End access and free the pages */
xennet_end_access(queue->tx_ring_ref, queue->tx.sring);
xennet_end_access(queue->rx_ring_ref, queue->rx.sring);
queue->tx_ring_ref = INVALID_GRANT_REF;
queue->rx_ring_ref = INVALID_GRANT_REF;
queue->tx.sring = NULL;
queue->rx.sring = NULL;
page_pool_destroy(queue->page_pool);
}
}
/*
* We are reconnecting to the backend, due to a suspend/resume, or a backend
* driver restart. We tear down our netif structure and recreate it, but
* leave the device-layer structures intact so that this is transparent to the
* rest of the kernel.
*/
static int netfront_resume(struct xenbus_device *dev)
{
struct netfront_info *info = dev_get_drvdata(&dev->dev);
dev_dbg(&dev->dev, "%s\n", dev->nodename);
netif_tx_lock_bh(info->netdev);
netif_device_detach(info->netdev);
netif_tx_unlock_bh(info->netdev);
xennet_disconnect_backend(info);
return 0;
}
static int xen_net_read_mac(struct xenbus_device *dev, u8 mac[])
{
char *s, *e, *macstr;
int i;
macstr = s = xenbus_read(XBT_NIL, dev->nodename, "mac", NULL);
if (IS_ERR(macstr))
return PTR_ERR(macstr);
for (i = 0; i < ETH_ALEN; i++) {
mac[i] = simple_strtoul(s, &e, 16);
if ((s == e) || (*e != ((i == ETH_ALEN-1) ? '\0' : ':'))) {
kfree(macstr);
return -ENOENT;
}
s = e+1;
}
kfree(macstr);
return 0;
}
static int setup_netfront_single(struct netfront_queue *queue)
{
int err;
err = xenbus_alloc_evtchn(queue->info->xbdev, &queue->tx_evtchn);
if (err < 0)
goto fail;
err = bind_evtchn_to_irqhandler_lateeoi(queue->tx_evtchn,
xennet_interrupt, 0,
queue->info->netdev->name,
queue);
if (err < 0)
goto bind_fail;
queue->rx_evtchn = queue->tx_evtchn;
queue->rx_irq = queue->tx_irq = err;
return 0;
bind_fail:
xenbus_free_evtchn(queue->info->xbdev, queue->tx_evtchn);
queue->tx_evtchn = 0;
fail:
return err;
}
static int setup_netfront_split(struct netfront_queue *queue)
{
int err;
err = xenbus_alloc_evtchn(queue->info->xbdev, &queue->tx_evtchn);
if (err < 0)
goto fail;
err = xenbus_alloc_evtchn(queue->info->xbdev, &queue->rx_evtchn);
if (err < 0)
goto alloc_rx_evtchn_fail;
snprintf(queue->tx_irq_name, sizeof(queue->tx_irq_name),
"%s-tx", queue->name);
err = bind_evtchn_to_irqhandler_lateeoi(queue->tx_evtchn,
xennet_tx_interrupt, 0,
queue->tx_irq_name, queue);
if (err < 0)
goto bind_tx_fail;
queue->tx_irq = err;
snprintf(queue->rx_irq_name, sizeof(queue->rx_irq_name),
"%s-rx", queue->name);
err = bind_evtchn_to_irqhandler_lateeoi(queue->rx_evtchn,
xennet_rx_interrupt, 0,
queue->rx_irq_name, queue);
if (err < 0)
goto bind_rx_fail;
queue->rx_irq = err;
return 0;
bind_rx_fail:
unbind_from_irqhandler(queue->tx_irq, queue);
queue->tx_irq = 0;
bind_tx_fail:
xenbus_free_evtchn(queue->info->xbdev, queue->rx_evtchn);
queue->rx_evtchn = 0;
alloc_rx_evtchn_fail:
xenbus_free_evtchn(queue->info->xbdev, queue->tx_evtchn);
queue->tx_evtchn = 0;
fail:
return err;
}
static int setup_netfront(struct xenbus_device *dev,
struct netfront_queue *queue, unsigned int feature_split_evtchn)
{
struct xen_netif_tx_sring *txs;
struct xen_netif_rx_sring *rxs;
int err;
queue->tx_ring_ref = INVALID_GRANT_REF;
queue->rx_ring_ref = INVALID_GRANT_REF;
queue->rx.sring = NULL;
queue->tx.sring = NULL;
err = xenbus_setup_ring(dev, GFP_NOIO | __GFP_HIGH, (void **)&txs,
1, &queue->tx_ring_ref);
if (err)
goto fail;
XEN_FRONT_RING_INIT(&queue->tx, txs, XEN_PAGE_SIZE);
err = xenbus_setup_ring(dev, GFP_NOIO | __GFP_HIGH, (void **)&rxs,
1, &queue->rx_ring_ref);
if (err)
goto fail;
XEN_FRONT_RING_INIT(&queue->rx, rxs, XEN_PAGE_SIZE);
if (feature_split_evtchn)
err = setup_netfront_split(queue);
/* setup single event channel if
* a) feature-split-event-channels == 0
* b) feature-split-event-channels == 1 but failed to setup
*/
if (!feature_split_evtchn || err)
err = setup_netfront_single(queue);
if (err)
goto fail;
return 0;
fail:
xenbus_teardown_ring((void **)&queue->rx.sring, 1, &queue->rx_ring_ref);
xenbus_teardown_ring((void **)&queue->tx.sring, 1, &queue->tx_ring_ref);
return err;
}
/* Queue-specific initialisation
* This used to be done in xennet_create_dev() but must now
* be run per-queue.
*/
static int xennet_init_queue(struct netfront_queue *queue)
{
unsigned short i;
int err = 0;
char *devid;
spin_lock_init(&queue->tx_lock);
spin_lock_init(&queue->rx_lock);
spin_lock_init(&queue->rx_cons_lock);
timer_setup(&queue->rx_refill_timer, rx_refill_timeout, 0);
devid = strrchr(queue->info->xbdev->nodename, '/') + 1;
snprintf(queue->name, sizeof(queue->name), "vif%s-q%u",
devid, queue->id);
/* Initialise tx_skb_freelist as a free chain containing every entry. */
queue->tx_skb_freelist = 0;
queue->tx_pend_queue = TX_LINK_NONE;
for (i = 0; i < NET_TX_RING_SIZE; i++) {
queue->tx_link[i] = i + 1;
queue->grant_tx_ref[i] = INVALID_GRANT_REF;
queue->grant_tx_page[i] = NULL;
}
queue->tx_link[NET_TX_RING_SIZE - 1] = TX_LINK_NONE;
/* Clear out rx_skbs */
for (i = 0; i < NET_RX_RING_SIZE; i++) {
queue->rx_skbs[i] = NULL;
queue->grant_rx_ref[i] = INVALID_GRANT_REF;
}
/* A grant for every tx ring slot */
if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
&queue->gref_tx_head) < 0) {
pr_alert("can't alloc tx grant refs\n");
err = -ENOMEM;
goto exit;
}
/* A grant for every rx ring slot */
if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
&queue->gref_rx_head) < 0) {
pr_alert("can't alloc rx grant refs\n");
err = -ENOMEM;
goto exit_free_tx;
}
return 0;
exit_free_tx:
gnttab_free_grant_references(queue->gref_tx_head);
exit:
return err;
}
static int write_queue_xenstore_keys(struct netfront_queue *queue,
struct xenbus_transaction *xbt, int write_hierarchical)
{
/* Write the queue-specific keys into XenStore in the traditional
* way for a single queue, or in a queue subkeys for multiple
* queues.
*/
struct xenbus_device *dev = queue->info->xbdev;
int err;
const char *message;
char *path;
size_t pathsize;
/* Choose the correct place to write the keys */
if (write_hierarchical) {
pathsize = strlen(dev->nodename) + 10;
path = kzalloc(pathsize, GFP_KERNEL);
if (!path) {
err = -ENOMEM;
message = "out of memory while writing ring references";
goto error;
}
snprintf(path, pathsize, "%s/queue-%u",
dev->nodename, queue->id);
} else {
path = (char *)dev->nodename;
}
/* Write ring references */
err = xenbus_printf(*xbt, path, "tx-ring-ref", "%u",
queue->tx_ring_ref);
if (err) {
message = "writing tx-ring-ref";
goto error;
}
err = xenbus_printf(*xbt, path, "rx-ring-ref", "%u",
queue->rx_ring_ref);
if (err) {
message = "writing rx-ring-ref";
goto error;
}
/* Write event channels; taking into account both shared
* and split event channel scenarios.
*/
if (queue->tx_evtchn == queue->rx_evtchn) {
/* Shared event channel */
err = xenbus_printf(*xbt, path,
"event-channel", "%u", queue->tx_evtchn);
if (err) {
message = "writing event-channel";
goto error;
}
} else {
/* Split event channels */
err = xenbus_printf(*xbt, path,
"event-channel-tx", "%u", queue->tx_evtchn);
if (err) {
message = "writing event-channel-tx";
goto error;
}
err = xenbus_printf(*xbt, path,
"event-channel-rx", "%u", queue->rx_evtchn);
if (err) {
message = "writing event-channel-rx";
goto error;
}
}
if (write_hierarchical)
kfree(path);
return 0;
error:
if (write_hierarchical)
kfree(path);
xenbus_dev_fatal(dev, err, "%s", message);
return err;
}
static int xennet_create_page_pool(struct netfront_queue *queue)
{
int err;
struct page_pool_params pp_params = {
.order = 0,
.flags = 0,
.pool_size = NET_RX_RING_SIZE,
.nid = NUMA_NO_NODE,
.dev = &queue->info->netdev->dev,
.offset = XDP_PACKET_HEADROOM,
.max_len = XEN_PAGE_SIZE - XDP_PACKET_HEADROOM,
};
queue->page_pool = page_pool_create(&pp_params);
if (IS_ERR(queue->page_pool)) {
err = PTR_ERR(queue->page_pool);
queue->page_pool = NULL;
return err;
}
err = xdp_rxq_info_reg(&queue->xdp_rxq, queue->info->netdev,
queue->id, 0);
if (err) {
netdev_err(queue->info->netdev, "xdp_rxq_info_reg failed\n");
goto err_free_pp;
}
err = xdp_rxq_info_reg_mem_model(&queue->xdp_rxq,
MEM_TYPE_PAGE_POOL, queue->page_pool);
if (err) {
netdev_err(queue->info->netdev, "xdp_rxq_info_reg_mem_model failed\n");
goto err_unregister_rxq;
}
return 0;
err_unregister_rxq:
xdp_rxq_info_unreg(&queue->xdp_rxq);
err_free_pp:
page_pool_destroy(queue->page_pool);
queue->page_pool = NULL;
return err;
}
static int xennet_create_queues(struct netfront_info *info,
unsigned int *num_queues)
{
unsigned int i;
int ret;
info->queues = kcalloc(*num_queues, sizeof(struct netfront_queue),
GFP_KERNEL);
if (!info->queues)
return -ENOMEM;
for (i = 0; i < *num_queues; i++) {
struct netfront_queue *queue = &info->queues[i];
queue->id = i;
queue->info = info;
ret = xennet_init_queue(queue);
if (ret < 0) {
dev_warn(&info->xbdev->dev,
"only created %d queues\n", i);
*num_queues = i;
break;
}
/* use page pool recycling instead of buddy allocator */
ret = xennet_create_page_pool(queue);
if (ret < 0) {
dev_err(&info->xbdev->dev, "can't allocate page pool\n");
*num_queues = i;
return ret;
}
netif_napi_add(queue->info->netdev, &queue->napi,
xennet_poll, 64);
if (netif_running(info->netdev))
napi_enable(&queue->napi);
}
netif_set_real_num_tx_queues(info->netdev, *num_queues);
if (*num_queues == 0) {
dev_err(&info->xbdev->dev, "no queues\n");
return -EINVAL;
}
return 0;
}
/* Common code used when first setting up, and when resuming. */
static int talk_to_netback(struct xenbus_device *dev,
struct netfront_info *info)
{
const char *message;
struct xenbus_transaction xbt;
int err;
unsigned int feature_split_evtchn;
unsigned int i = 0;
unsigned int max_queues = 0;
struct netfront_queue *queue = NULL;
unsigned int num_queues = 1;
u8 addr[ETH_ALEN];
info->netdev->irq = 0;
/* Check if backend is trusted. */
info->bounce = !xennet_trusted ||
!xenbus_read_unsigned(dev->nodename, "trusted", 1);
/* Check if backend supports multiple queues */
max_queues = xenbus_read_unsigned(info->xbdev->otherend,
"multi-queue-max-queues", 1);
num_queues = min(max_queues, xennet_max_queues);
/* Check feature-split-event-channels */
feature_split_evtchn = xenbus_read_unsigned(info->xbdev->otherend,
"feature-split-event-channels", 0);
/* Read mac addr. */
err = xen_net_read_mac(dev, addr);
if (err) {
xenbus_dev_fatal(dev, err, "parsing %s/mac", dev->nodename);
goto out_unlocked;
}
eth_hw_addr_set(info->netdev, addr);
info->netback_has_xdp_headroom = xenbus_read_unsigned(info->xbdev->otherend,
"feature-xdp-headroom", 0);
if (info->netback_has_xdp_headroom) {
/* set the current xen-netfront xdp state */
err = talk_to_netback_xdp(info, info->netfront_xdp_enabled ?
NETBACK_XDP_HEADROOM_ENABLE :
NETBACK_XDP_HEADROOM_DISABLE);
if (err)
goto out_unlocked;
}
rtnl_lock();
if (info->queues)
xennet_destroy_queues(info);
/* For the case of a reconnect reset the "broken" indicator. */
info->broken = false;
err = xennet_create_queues(info, &num_queues);
if (err < 0) {
xenbus_dev_fatal(dev, err, "creating queues");
kfree(info->queues);
info->queues = NULL;
goto out;
}
rtnl_unlock();
/* Create shared ring, alloc event channel -- for each queue */
for (i = 0; i < num_queues; ++i) {
queue = &info->queues[i];
err = setup_netfront(dev, queue, feature_split_evtchn);
if (err)
goto destroy_ring;
}
again:
err = xenbus_transaction_start(&xbt);
if (err) {
xenbus_dev_fatal(dev, err, "starting transaction");
goto destroy_ring;
}
if (xenbus_exists(XBT_NIL,
info->xbdev->otherend, "multi-queue-max-queues")) {
/* Write the number of queues */
err = xenbus_printf(xbt, dev->nodename,
"multi-queue-num-queues", "%u", num_queues);
if (err) {
message = "writing multi-queue-num-queues";
goto abort_transaction_no_dev_fatal;
}
}
if (num_queues == 1) {
err = write_queue_xenstore_keys(&info->queues[0], &xbt, 0); /* flat */
if (err)
goto abort_transaction_no_dev_fatal;
} else {
/* Write the keys for each queue */
for (i = 0; i < num_queues; ++i) {
queue = &info->queues[i];
err = write_queue_xenstore_keys(queue, &xbt, 1); /* hierarchical */
if (err)
goto abort_transaction_no_dev_fatal;
}
}
/* The remaining keys are not queue-specific */
err = xenbus_printf(xbt, dev->nodename, "request-rx-copy", "%u",
1);
if (err) {
message = "writing request-rx-copy";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-rx-notify", "%d", 1);
if (err) {
message = "writing feature-rx-notify";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-sg", "%d", 1);
if (err) {
message = "writing feature-sg";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-gso-tcpv4", "%d", 1);
if (err) {
message = "writing feature-gso-tcpv4";
goto abort_transaction;
}
err = xenbus_write(xbt, dev->nodename, "feature-gso-tcpv6", "1");
if (err) {
message = "writing feature-gso-tcpv6";
goto abort_transaction;
}
err = xenbus_write(xbt, dev->nodename, "feature-ipv6-csum-offload",
"1");
if (err) {
message = "writing feature-ipv6-csum-offload";
goto abort_transaction;
}
err = xenbus_transaction_end(xbt, 0);
if (err) {
if (err == -EAGAIN)
goto again;
xenbus_dev_fatal(dev, err, "completing transaction");
goto destroy_ring;
}
return 0;
abort_transaction:
xenbus_dev_fatal(dev, err, "%s", message);
abort_transaction_no_dev_fatal:
xenbus_transaction_end(xbt, 1);
destroy_ring:
xennet_disconnect_backend(info);
rtnl_lock();
xennet_destroy_queues(info);
out:
rtnl_unlock();
out_unlocked:
device_unregister(&dev->dev);
return err;
}
static int xennet_connect(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
unsigned int num_queues = 0;
int err;
unsigned int j = 0;
struct netfront_queue *queue = NULL;
if (!xenbus_read_unsigned(np->xbdev->otherend, "feature-rx-copy", 0)) {
dev_info(&dev->dev,
"backend does not support copying receive path\n");
return -ENODEV;
}
err = talk_to_netback(np->xbdev, np);
if (err)
return err;
if (np->netback_has_xdp_headroom)
pr_info("backend supports XDP headroom\n");
if (np->bounce)
dev_info(&np->xbdev->dev,
"bouncing transmitted data to zeroed pages\n");
/* talk_to_netback() sets the correct number of queues */
num_queues = dev->real_num_tx_queues;
if (dev->reg_state == NETREG_UNINITIALIZED) {
err = register_netdev(dev);
if (err) {
pr_warn("%s: register_netdev err=%d\n", __func__, err);
device_unregister(&np->xbdev->dev);
return err;
}
}
rtnl_lock();
netdev_update_features(dev);
rtnl_unlock();
/*
* All public and private state should now be sane. Get
* ready to start sending and receiving packets and give the driver
* domain a kick because we've probably just requeued some
* packets.
*/
netif_tx_lock_bh(np->netdev);
netif_device_attach(np->netdev);
netif_tx_unlock_bh(np->netdev);
netif_carrier_on(np->netdev);
for (j = 0; j < num_queues; ++j) {
queue = &np->queues[j];
notify_remote_via_irq(queue->tx_irq);
if (queue->tx_irq != queue->rx_irq)
notify_remote_via_irq(queue->rx_irq);
spin_lock_irq(&queue->tx_lock);
xennet_tx_buf_gc(queue);
spin_unlock_irq(&queue->tx_lock);
spin_lock_bh(&queue->rx_lock);
xennet_alloc_rx_buffers(queue);
spin_unlock_bh(&queue->rx_lock);
}
return 0;
}
/*
* Callback received when the backend's state changes.
*/
static void netback_changed(struct xenbus_device *dev,
enum xenbus_state backend_state)
{
struct netfront_info *np = dev_get_drvdata(&dev->dev);
struct net_device *netdev = np->netdev;
dev_dbg(&dev->dev, "%s\n", xenbus_strstate(backend_state));
wake_up_all(&module_wq);
switch (backend_state) {
case XenbusStateInitialising:
case XenbusStateInitialised:
case XenbusStateReconfiguring:
case XenbusStateReconfigured:
case XenbusStateUnknown:
break;
case XenbusStateInitWait:
if (dev->state != XenbusStateInitialising)
break;
if (xennet_connect(netdev) != 0)
break;
xenbus_switch_state(dev, XenbusStateConnected);
break;
case XenbusStateConnected:
netdev_notify_peers(netdev);
break;
case XenbusStateClosed:
if (dev->state == XenbusStateClosed)
break;
fallthrough; /* Missed the backend's CLOSING state */
case XenbusStateClosing:
xenbus_frontend_closed(dev);
break;
}
}
static const struct xennet_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} xennet_stats[] = {
{
"rx_gso_checksum_fixup",
offsetof(struct netfront_info, rx_gso_checksum_fixup)
},
};
static int xennet_get_sset_count(struct net_device *dev, int string_set)
{
switch (string_set) {
case ETH_SS_STATS:
return ARRAY_SIZE(xennet_stats);
default:
return -EINVAL;
}
}
static void xennet_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 * data)
{
void *np = netdev_priv(dev);
int i;
for (i = 0; i < ARRAY_SIZE(xennet_stats); i++)
data[i] = atomic_read((atomic_t *)(np + xennet_stats[i].offset));
}
static void xennet_get_strings(struct net_device *dev, u32 stringset, u8 * data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(xennet_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
xennet_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
static const struct ethtool_ops xennet_ethtool_ops =
{
.get_link = ethtool_op_get_link,
.get_sset_count = xennet_get_sset_count,
.get_ethtool_stats = xennet_get_ethtool_stats,
.get_strings = xennet_get_strings,
.get_ts_info = ethtool_op_get_ts_info,
};
#ifdef CONFIG_SYSFS
static ssize_t show_rxbuf(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", NET_RX_RING_SIZE);
}
static ssize_t store_rxbuf(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
char *endp;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
simple_strtoul(buf, &endp, 0);
if (endp == buf)
return -EBADMSG;
/* rxbuf_min and rxbuf_max are no longer configurable. */
return len;
}
static DEVICE_ATTR(rxbuf_min, 0644, show_rxbuf, store_rxbuf);
static DEVICE_ATTR(rxbuf_max, 0644, show_rxbuf, store_rxbuf);
static DEVICE_ATTR(rxbuf_cur, 0444, show_rxbuf, NULL);
static struct attribute *xennet_dev_attrs[] = {
&dev_attr_rxbuf_min.attr,
&dev_attr_rxbuf_max.attr,
&dev_attr_rxbuf_cur.attr,
NULL
};
static const struct attribute_group xennet_dev_group = {
.attrs = xennet_dev_attrs
};
#endif /* CONFIG_SYSFS */
static void xennet_bus_close(struct xenbus_device *dev)
{
int ret;
if (xenbus_read_driver_state(dev->otherend) == XenbusStateClosed)
return;
do {
xenbus_switch_state(dev, XenbusStateClosing);
ret = wait_event_timeout(module_wq,
xenbus_read_driver_state(dev->otherend) ==
XenbusStateClosing ||
xenbus_read_driver_state(dev->otherend) ==
XenbusStateClosed ||
xenbus_read_driver_state(dev->otherend) ==
XenbusStateUnknown,
XENNET_TIMEOUT);
} while (!ret);
if (xenbus_read_driver_state(dev->otherend) == XenbusStateClosed)
return;
do {
xenbus_switch_state(dev, XenbusStateClosed);
ret = wait_event_timeout(module_wq,
xenbus_read_driver_state(dev->otherend) ==
XenbusStateClosed ||
xenbus_read_driver_state(dev->otherend) ==
XenbusStateUnknown,
XENNET_TIMEOUT);
} while (!ret);
}
static int xennet_remove(struct xenbus_device *dev)
{
struct netfront_info *info = dev_get_drvdata(&dev->dev);
xennet_bus_close(dev);
xennet_disconnect_backend(info);
if (info->netdev->reg_state == NETREG_REGISTERED)
unregister_netdev(info->netdev);
if (info->queues) {
rtnl_lock();
xennet_destroy_queues(info);
rtnl_unlock();
}
xennet_free_netdev(info->netdev);
return 0;
}
static const struct xenbus_device_id netfront_ids[] = {
{ "vif" },
{ "" }
};
static struct xenbus_driver netfront_driver = {
.ids = netfront_ids,
.probe = netfront_probe,
.remove = xennet_remove,
.resume = netfront_resume,
.otherend_changed = netback_changed,
};
static int __init netif_init(void)
{
if (!xen_domain())
return -ENODEV;
if (!xen_has_pv_nic_devices())
return -ENODEV;
pr_info("Initialising Xen virtual ethernet driver\n");
/* Allow as many queues as there are CPUs inut max. 8 if user has not
* specified a value.
*/
if (xennet_max_queues == 0)
xennet_max_queues = min_t(unsigned int, MAX_QUEUES_DEFAULT,
num_online_cpus());
return xenbus_register_frontend(&netfront_driver);
}
module_init(netif_init);
static void __exit netif_exit(void)
{
xenbus_unregister_driver(&netfront_driver);
}
module_exit(netif_exit);
MODULE_DESCRIPTION("Xen virtual network device frontend");
MODULE_LICENSE("GPL");
MODULE_ALIAS("xen:vif");
MODULE_ALIAS("xennet");