linux/sound/soc/codecs/tscs454.c
Mark Brown df63fb10a5
ASoC: tscs454: Use modern ASoC DAI format terminology
As part of moving to remove the old style defines for the bus clocks update
the tscs454 driver to use more modern terminology for clocking.

Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220223002751.1574345-2-broonie@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-02-28 13:33:34 +00:00

3486 lines
107 KiB
C

// SPDX-License-Identifier: GPL-2.0
// tscs454.c -- TSCS454 ALSA SoC Audio driver
// Copyright 2018 Tempo Semiconductor, Inc.
// Author: Steven Eckhoff <steven.eckhoff.opensource@gmail.com>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/regmap.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <sound/tlv.h>
#include <sound/pcm_params.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include "tscs454.h"
static const unsigned int PLL_44_1K_RATE = (44100 * 256);
#define COEFF_SIZE 3
#define BIQUAD_COEFF_COUNT 5
#define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT)
#define COEFF_RAM_MAX_ADDR 0xcd
#define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1)
#define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT)
enum {
TSCS454_DAI1_ID,
TSCS454_DAI2_ID,
TSCS454_DAI3_ID,
TSCS454_DAI_COUNT,
};
struct pll {
int id;
unsigned int users;
struct mutex lock;
};
static inline void pll_init(struct pll *pll, int id)
{
pll->id = id;
mutex_init(&pll->lock);
}
struct internal_rate {
struct pll *pll;
};
struct aif {
unsigned int id;
bool provider;
struct pll *pll;
};
static inline void aif_init(struct aif *aif, unsigned int id)
{
aif->id = id;
}
struct coeff_ram {
u8 cache[COEFF_RAM_SIZE];
bool synced;
struct mutex lock;
};
static inline void init_coeff_ram_cache(u8 *cache)
{
static const u8 norm_addrs[] = { 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19,
0x1f, 0x20, 0x25, 0x2a, 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45,
0x4a, 0x4f, 0x54, 0x59, 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74,
0x79, 0x7f, 0x80, 0x85, 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3,
0xa8, 0xad, 0xaf, 0xb0, 0xb5, 0xba, 0xbf, 0xc4, 0xc9};
int i;
for (i = 0; i < ARRAY_SIZE(norm_addrs); i++)
cache[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40;
}
static inline void coeff_ram_init(struct coeff_ram *ram)
{
init_coeff_ram_cache(ram->cache);
mutex_init(&ram->lock);
}
struct aifs_status {
u8 streams;
};
static inline void set_aif_status_active(struct aifs_status *status,
int aif_id, bool playback)
{
u8 mask = 0x01 << (aif_id * 2 + !playback);
status->streams |= mask;
}
static inline void set_aif_status_inactive(struct aifs_status *status,
int aif_id, bool playback)
{
u8 mask = ~(0x01 << (aif_id * 2 + !playback));
status->streams &= mask;
}
static bool aifs_active(struct aifs_status *status)
{
return status->streams;
}
static bool aif_active(struct aifs_status *status, int aif_id)
{
return (0x03 << aif_id * 2) & status->streams;
}
struct tscs454 {
struct regmap *regmap;
struct aif aifs[TSCS454_DAI_COUNT];
struct aifs_status aifs_status;
struct mutex aifs_status_lock;
struct pll pll1;
struct pll pll2;
struct internal_rate internal_rate;
struct coeff_ram dac_ram;
struct coeff_ram spk_ram;
struct coeff_ram sub_ram;
struct clk *sysclk;
int sysclk_src_id;
unsigned int bclk_freq;
};
struct coeff_ram_ctl {
unsigned int addr;
struct soc_bytes_ext bytes_ext;
};
static const struct reg_sequence tscs454_patch[] = {
/* Assign ASRC out of the box so DAI 1 just works */
{ R_AUDIOMUX1, FV_ASRCIMUX_I2S1 | FV_I2S2MUX_I2S2 },
{ R_AUDIOMUX2, FV_ASRCOMUX_I2S1 | FV_DACMUX_I2S1 | FV_I2S3MUX_I2S3 },
{ R_AUDIOMUX3, FV_CLSSDMUX_I2S1 | FV_SUBMUX_I2S1_LR },
{ R_TDMCTL0, FV_TDMMD_256 },
{ VIRT_ADDR(0x0A, 0x13), 1 << 3 },
};
static bool tscs454_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_PLLSTAT:
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_SPKCRS:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_DACCRS:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
case R_SUBCRS:
return true;
default:
return false;
}
}
static bool tscs454_writable(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
return false;
default:
return true;
}
}
static bool tscs454_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRWDL:
case R_SPKCRWDM:
case R_SPKCRWDH:
case R_DACCRWDL:
case R_DACCRWDM:
case R_DACCRWDH:
case R_SUBCRWDL:
case R_SUBCRWDM:
case R_SUBCRWDH:
return false;
default:
return true;
}
}
static bool tscs454_precious(struct device *dev, unsigned int reg)
{
switch (reg) {
case R_SPKCRWDL:
case R_SPKCRWDM:
case R_SPKCRWDH:
case R_SPKCRRDL:
case R_SPKCRRDM:
case R_SPKCRRDH:
case R_DACCRWDL:
case R_DACCRWDM:
case R_DACCRWDH:
case R_DACCRRDL:
case R_DACCRRDM:
case R_DACCRRDH:
case R_SUBCRWDL:
case R_SUBCRWDM:
case R_SUBCRWDH:
case R_SUBCRRDL:
case R_SUBCRRDM:
case R_SUBCRRDH:
return true;
default:
return false;
}
}
static const struct regmap_range_cfg tscs454_regmap_range_cfg = {
.name = "Pages",
.range_min = VIRT_BASE,
.range_max = VIRT_ADDR(0xFE, 0x02),
.selector_reg = R_PAGESEL,
.selector_mask = 0xff,
.selector_shift = 0,
.window_start = 0,
.window_len = 0x100,
};
static struct regmap_config const tscs454_regmap_cfg = {
.reg_bits = 8,
.val_bits = 8,
.writeable_reg = tscs454_writable,
.readable_reg = tscs454_readable,
.volatile_reg = tscs454_volatile,
.precious_reg = tscs454_precious,
.ranges = &tscs454_regmap_range_cfg,
.num_ranges = 1,
.max_register = VIRT_ADDR(0xFE, 0x02),
.cache_type = REGCACHE_RBTREE,
};
static inline int tscs454_data_init(struct tscs454 *tscs454,
struct i2c_client *i2c)
{
int i;
int ret;
tscs454->regmap = devm_regmap_init_i2c(i2c, &tscs454_regmap_cfg);
if (IS_ERR(tscs454->regmap)) {
ret = PTR_ERR(tscs454->regmap);
return ret;
}
for (i = 0; i < TSCS454_DAI_COUNT; i++)
aif_init(&tscs454->aifs[i], i);
mutex_init(&tscs454->aifs_status_lock);
pll_init(&tscs454->pll1, 1);
pll_init(&tscs454->pll2, 2);
coeff_ram_init(&tscs454->dac_ram);
coeff_ram_init(&tscs454->spk_ram);
coeff_ram_init(&tscs454->sub_ram);
return 0;
}
struct reg_setting {
unsigned int addr;
unsigned int val;
};
static int coeff_ram_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
u8 *coeff_ram;
struct mutex *coeff_ram_lock;
if (strstr(kcontrol->id.name, "DAC")) {
coeff_ram = tscs454->dac_ram.cache;
coeff_ram_lock = &tscs454->dac_ram.lock;
} else if (strstr(kcontrol->id.name, "Speaker")) {
coeff_ram = tscs454->spk_ram.cache;
coeff_ram_lock = &tscs454->spk_ram.lock;
} else if (strstr(kcontrol->id.name, "Sub")) {
coeff_ram = tscs454->sub_ram.cache;
coeff_ram_lock = &tscs454->sub_ram.lock;
} else {
return -EINVAL;
}
mutex_lock(coeff_ram_lock);
memcpy(ucontrol->value.bytes.data,
&coeff_ram[ctl->addr * COEFF_SIZE], params->max);
mutex_unlock(coeff_ram_lock);
return 0;
}
#define DACCRSTAT_MAX_TRYS 10
static int write_coeff_ram(struct snd_soc_component *component, u8 *coeff_ram,
unsigned int r_stat, unsigned int r_addr, unsigned int r_wr,
unsigned int coeff_addr, unsigned int coeff_cnt)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int cnt;
int trys;
int ret;
for (cnt = 0; cnt < coeff_cnt; cnt++, coeff_addr++) {
for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) {
val = snd_soc_component_read(component, r_stat);
if (!val)
break;
}
if (trys == DACCRSTAT_MAX_TRYS) {
ret = -EIO;
dev_err(component->dev,
"Coefficient write error (%d)\n", ret);
return ret;
}
ret = regmap_write(tscs454->regmap, r_addr, coeff_addr);
if (ret < 0) {
dev_err(component->dev,
"Failed to write dac ram address (%d)\n", ret);
return ret;
}
ret = regmap_bulk_write(tscs454->regmap, r_wr,
&coeff_ram[coeff_addr * COEFF_SIZE],
COEFF_SIZE);
if (ret < 0) {
dev_err(component->dev,
"Failed to write dac ram (%d)\n", ret);
return ret;
}
}
return 0;
}
static int coeff_ram_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component =
snd_soc_kcontrol_component(kcontrol);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
unsigned int coeff_cnt = params->max / COEFF_SIZE;
u8 *coeff_ram;
struct mutex *coeff_ram_lock;
bool *coeff_ram_synced;
unsigned int r_stat;
unsigned int r_addr;
unsigned int r_wr;
unsigned int val;
int ret;
if (strstr(kcontrol->id.name, "DAC")) {
coeff_ram = tscs454->dac_ram.cache;
coeff_ram_lock = &tscs454->dac_ram.lock;
coeff_ram_synced = &tscs454->dac_ram.synced;
r_stat = R_DACCRS;
r_addr = R_DACCRADD;
r_wr = R_DACCRWDL;
} else if (strstr(kcontrol->id.name, "Speaker")) {
coeff_ram = tscs454->spk_ram.cache;
coeff_ram_lock = &tscs454->spk_ram.lock;
coeff_ram_synced = &tscs454->spk_ram.synced;
r_stat = R_SPKCRS;
r_addr = R_SPKCRADD;
r_wr = R_SPKCRWDL;
} else if (strstr(kcontrol->id.name, "Sub")) {
coeff_ram = tscs454->sub_ram.cache;
coeff_ram_lock = &tscs454->sub_ram.lock;
coeff_ram_synced = &tscs454->sub_ram.synced;
r_stat = R_SUBCRS;
r_addr = R_SUBCRADD;
r_wr = R_SUBCRWDL;
} else {
return -EINVAL;
}
mutex_lock(coeff_ram_lock);
*coeff_ram_synced = false;
memcpy(&coeff_ram[ctl->addr * COEFF_SIZE],
ucontrol->value.bytes.data, params->max);
mutex_lock(&tscs454->pll1.lock);
mutex_lock(&tscs454->pll2.lock);
val = snd_soc_component_read(component, R_PLLSTAT);
if (val) { /* PLLs locked */
ret = write_coeff_ram(component, coeff_ram,
r_stat, r_addr, r_wr,
ctl->addr, coeff_cnt);
if (ret < 0) {
dev_err(component->dev,
"Failed to flush coeff ram cache (%d)\n", ret);
goto exit;
}
*coeff_ram_synced = true;
}
ret = 0;
exit:
mutex_unlock(&tscs454->pll2.lock);
mutex_unlock(&tscs454->pll1.lock);
mutex_unlock(coeff_ram_lock);
return ret;
}
static inline int coeff_ram_sync(struct snd_soc_component *component,
struct tscs454 *tscs454)
{
int ret;
mutex_lock(&tscs454->dac_ram.lock);
if (!tscs454->dac_ram.synced) {
ret = write_coeff_ram(component, tscs454->dac_ram.cache,
R_DACCRS, R_DACCRADD, R_DACCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->dac_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->dac_ram.lock);
mutex_lock(&tscs454->spk_ram.lock);
if (!tscs454->spk_ram.synced) {
ret = write_coeff_ram(component, tscs454->spk_ram.cache,
R_SPKCRS, R_SPKCRADD, R_SPKCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->spk_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->spk_ram.lock);
mutex_lock(&tscs454->sub_ram.lock);
if (!tscs454->sub_ram.synced) {
ret = write_coeff_ram(component, tscs454->sub_ram.cache,
R_SUBCRS, R_SUBCRADD, R_SUBCRWDL,
0x00, COEFF_RAM_COEFF_COUNT);
if (ret < 0) {
mutex_unlock(&tscs454->sub_ram.lock);
return ret;
}
}
mutex_unlock(&tscs454->sub_ram.lock);
return 0;
}
#define PLL_REG_SETTINGS_COUNT 11
struct pll_ctl {
int freq_in;
struct reg_setting settings[PLL_REG_SETTINGS_COUNT];
};
#define PLL_CTL(f, t, c1, r1, o1, f1l, f1h, c2, r2, o2, f2l, f2h) \
{ \
.freq_in = f, \
.settings = { \
{R_PLL1CTL, c1}, \
{R_PLL1RDIV, r1}, \
{R_PLL1ODIV, o1}, \
{R_PLL1FDIVL, f1l}, \
{R_PLL1FDIVH, f1h}, \
{R_PLL2CTL, c2}, \
{R_PLL2RDIV, r2}, \
{R_PLL2ODIV, o2}, \
{R_PLL2FDIVL, f2l}, \
{R_PLL2FDIVH, f2h}, \
{R_TIMEBASE, t}, \
}, \
}
static const struct pll_ctl pll_ctls[] = {
PLL_CTL(1411200, 0x05,
0xB9, 0x07, 0x02, 0xC3, 0x04,
0x5A, 0x02, 0x03, 0xE0, 0x01),
PLL_CTL(1536000, 0x05,
0x5A, 0x02, 0x03, 0xE0, 0x01,
0x5A, 0x02, 0x03, 0xB9, 0x01),
PLL_CTL(2822400, 0x0A,
0x63, 0x07, 0x04, 0xC3, 0x04,
0x62, 0x07, 0x03, 0x48, 0x03),
PLL_CTL(3072000, 0x0B,
0x62, 0x07, 0x03, 0x48, 0x03,
0x5A, 0x04, 0x03, 0xB9, 0x01),
PLL_CTL(5644800, 0x15,
0x63, 0x0E, 0x04, 0xC3, 0x04,
0x5A, 0x08, 0x03, 0xE0, 0x01),
PLL_CTL(6144000, 0x17,
0x5A, 0x08, 0x03, 0xE0, 0x01,
0x5A, 0x08, 0x03, 0xB9, 0x01),
PLL_CTL(12000000, 0x2E,
0x5B, 0x19, 0x03, 0x00, 0x03,
0x6A, 0x19, 0x05, 0x98, 0x04),
PLL_CTL(19200000, 0x4A,
0x53, 0x14, 0x03, 0x80, 0x01,
0x5A, 0x19, 0x03, 0xB9, 0x01),
PLL_CTL(22000000, 0x55,
0x6A, 0x37, 0x05, 0x00, 0x06,
0x62, 0x26, 0x03, 0x49, 0x02),
PLL_CTL(22579200, 0x57,
0x62, 0x31, 0x03, 0x20, 0x03,
0x53, 0x1D, 0x03, 0xB3, 0x01),
PLL_CTL(24000000, 0x5D,
0x53, 0x19, 0x03, 0x80, 0x01,
0x5B, 0x19, 0x05, 0x4C, 0x02),
PLL_CTL(24576000, 0x5F,
0x53, 0x1D, 0x03, 0xB3, 0x01,
0x62, 0x40, 0x03, 0x72, 0x03),
PLL_CTL(27000000, 0x68,
0x62, 0x4B, 0x03, 0x00, 0x04,
0x6A, 0x7D, 0x03, 0x20, 0x06),
PLL_CTL(36000000, 0x8C,
0x5B, 0x4B, 0x03, 0x00, 0x03,
0x6A, 0x7D, 0x03, 0x98, 0x04),
PLL_CTL(11289600, 0x2B,
0x6A, 0x31, 0x03, 0x40, 0x06,
0x5A, 0x12, 0x03, 0x1C, 0x02),
PLL_CTL(26000000, 0x65,
0x63, 0x41, 0x05, 0x00, 0x06,
0x5A, 0x26, 0x03, 0xEF, 0x01),
PLL_CTL(12288000, 0x2F,
0x5A, 0x12, 0x03, 0x1C, 0x02,
0x62, 0x20, 0x03, 0x72, 0x03),
PLL_CTL(40000000, 0x9B,
0xA2, 0x7D, 0x03, 0x80, 0x04,
0x63, 0x7D, 0x05, 0xE4, 0x06),
PLL_CTL(512000, 0x01,
0x62, 0x01, 0x03, 0xD0, 0x02,
0x5B, 0x01, 0x04, 0x72, 0x03),
PLL_CTL(705600, 0x02,
0x62, 0x02, 0x03, 0x15, 0x04,
0x62, 0x01, 0x04, 0x80, 0x02),
PLL_CTL(1024000, 0x03,
0x62, 0x02, 0x03, 0xD0, 0x02,
0x5B, 0x02, 0x04, 0x72, 0x03),
PLL_CTL(2048000, 0x07,
0x62, 0x04, 0x03, 0xD0, 0x02,
0x5B, 0x04, 0x04, 0x72, 0x03),
PLL_CTL(2400000, 0x08,
0x62, 0x05, 0x03, 0x00, 0x03,
0x63, 0x05, 0x05, 0x98, 0x04),
};
static inline const struct pll_ctl *get_pll_ctl(unsigned long freq_in)
{
int i;
struct pll_ctl const *pll_ctl = NULL;
for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i)
if (pll_ctls[i].freq_in == freq_in) {
pll_ctl = &pll_ctls[i];
break;
}
return pll_ctl;
}
enum {
PLL_INPUT_XTAL = 0,
PLL_INPUT_MCLK1,
PLL_INPUT_MCLK2,
PLL_INPUT_BCLK,
};
static int set_sysclk(struct snd_soc_component *component)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct pll_ctl const *pll_ctl;
unsigned long freq;
int i;
int ret;
if (tscs454->sysclk_src_id < PLL_INPUT_BCLK)
freq = clk_get_rate(tscs454->sysclk);
else
freq = tscs454->bclk_freq;
pll_ctl = get_pll_ctl(freq);
if (!pll_ctl) {
ret = -EINVAL;
dev_err(component->dev,
"Invalid PLL input %lu (%d)\n", freq, ret);
return ret;
}
for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) {
ret = snd_soc_component_write(component,
pll_ctl->settings[i].addr,
pll_ctl->settings[i].val);
if (ret < 0) {
dev_err(component->dev,
"Failed to set pll setting (%d)\n",
ret);
return ret;
}
}
return 0;
}
static inline void reserve_pll(struct pll *pll)
{
mutex_lock(&pll->lock);
pll->users++;
mutex_unlock(&pll->lock);
}
static inline void free_pll(struct pll *pll)
{
mutex_lock(&pll->lock);
pll->users--;
mutex_unlock(&pll->lock);
}
static int pll_connected(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(source->dapm);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
int users;
if (strstr(source->name, "PLL 1")) {
mutex_lock(&tscs454->pll1.lock);
users = tscs454->pll1.users;
mutex_unlock(&tscs454->pll1.lock);
dev_dbg(component->dev, "%s(): PLL 1 users = %d\n", __func__,
users);
} else {
mutex_lock(&tscs454->pll2.lock);
users = tscs454->pll2.users;
mutex_unlock(&tscs454->pll2.lock);
dev_dbg(component->dev, "%s(): PLL 2 users = %d\n", __func__,
users);
}
return users;
}
/*
* PLL must be enabled after power up and must be disabled before power down
* for proper clock switching.
*/
static int pll_power_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
bool enable;
bool pll1;
unsigned int msk;
unsigned int val;
int ret;
if (strstr(w->name, "PLL 1"))
pll1 = true;
else
pll1 = false;
msk = pll1 ? FM_PLLCTL_PLL1CLKEN : FM_PLLCTL_PLL2CLKEN;
if (event == SND_SOC_DAPM_POST_PMU)
enable = true;
else
enable = false;
if (enable)
val = pll1 ? FV_PLL1CLKEN_ENABLE : FV_PLL2CLKEN_ENABLE;
else
/*
* FV_PLL1CLKEN_DISABLE and FV_PLL2CLKEN_DISABLE are
* identical zero vzalues, there is no need to test
* the PLL index
*/
val = FV_PLL1CLKEN_DISABLE;
ret = snd_soc_component_update_bits(component, R_PLLCTL, msk, val);
if (ret < 0) {
dev_err(component->dev, "Failed to %s PLL %d (%d)\n",
enable ? "enable" : "disable",
pll1 ? 1 : 2,
ret);
return ret;
}
if (enable) {
msleep(20); // Wait for lock
ret = coeff_ram_sync(component, tscs454);
if (ret < 0) {
dev_err(component->dev,
"Failed to sync coeff ram (%d)\n", ret);
return ret;
}
}
return 0;
}
static inline int aif_set_provider(struct snd_soc_component *component,
unsigned int aif_id, bool provider)
{
unsigned int reg;
unsigned int mask;
unsigned int val;
int ret;
switch (aif_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -ENODEV;
dev_err(component->dev, "Unknown DAI %d (%d)\n", aif_id, ret);
return ret;
}
mask = FM_I2SPCTL_PORTMS;
val = provider ? FV_PORTMS_MASTER : FV_PORTMS_SLAVE;
ret = snd_soc_component_update_bits(component, reg, mask, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set DAI %d to %s (%d)\n",
aif_id, provider ? "provider" : "consumer", ret);
return ret;
}
return 0;
}
static inline
int aif_prepare(struct snd_soc_component *component, struct aif *aif)
{
int ret;
ret = aif_set_provider(component, aif->id, aif->provider);
if (ret < 0)
return ret;
return 0;
}
static inline int aif_free(struct snd_soc_component *component,
struct aif *aif, bool playback)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
mutex_lock(&tscs454->aifs_status_lock);
dev_dbg(component->dev, "%s(): aif %d\n", __func__, aif->id);
set_aif_status_inactive(&tscs454->aifs_status, aif->id, playback);
dev_dbg(component->dev, "Set aif %d inactive. Streams status is 0x%x\n",
aif->id, tscs454->aifs_status.streams);
if (!aif_active(&tscs454->aifs_status, aif->id)) {
/* Do config in slave mode */
aif_set_provider(component, aif->id, false);
dev_dbg(component->dev, "Freeing pll %d from aif %d\n",
aif->pll->id, aif->id);
free_pll(aif->pll);
}
if (!aifs_active(&tscs454->aifs_status)) {
dev_dbg(component->dev, "Freeing pll %d from ir\n",
tscs454->internal_rate.pll->id);
free_pll(tscs454->internal_rate.pll);
}
mutex_unlock(&tscs454->aifs_status_lock);
return 0;
}
/* R_PLLCTL PG 0 ADDR 0x15 */
static char const * const bclk_sel_txt[] = {
"BCLK 1", "BCLK 2", "BCLK 3"};
static struct soc_enum const bclk_sel_enum =
SOC_ENUM_SINGLE(R_PLLCTL, FB_PLLCTL_BCLKSEL,
ARRAY_SIZE(bclk_sel_txt), bclk_sel_txt);
/* R_ISRC PG 0 ADDR 0x16 */
static char const * const isrc_br_txt[] = {
"44.1kHz", "48kHz"};
static struct soc_enum const isrc_br_enum =
SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBR,
ARRAY_SIZE(isrc_br_txt), isrc_br_txt);
static char const * const isrc_bm_txt[] = {
"0.25x", "0.5x", "1.0x", "2.0x"};
static struct soc_enum const isrc_bm_enum =
SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBM,
ARRAY_SIZE(isrc_bm_txt), isrc_bm_txt);
/* R_SCLKCTL PG 0 ADDR 0x18 */
static char const * const modular_rate_txt[] = {
"Reserved", "Half", "Full", "Auto",};
static struct soc_enum const adc_modular_rate_enum =
SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_ASDM,
ARRAY_SIZE(modular_rate_txt), modular_rate_txt);
static struct soc_enum const dac_modular_rate_enum =
SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_DSDM,
ARRAY_SIZE(modular_rate_txt), modular_rate_txt);
/* R_I2SIDCTL PG 0 ADDR 0x38 */
static char const * const data_ctrl_txt[] = {
"L/R", "L/L", "R/R", "R/L"};
static struct soc_enum const data_in_ctrl_enums[] = {
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI1DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI2DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI3DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
};
/* R_I2SODCTL PG 0 ADDR 0x39 */
static struct soc_enum const data_out_ctrl_enums[] = {
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO1DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO2DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO3DCTL,
ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt),
};
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
static char const * const asrc_mux_txt[] = {
"None", "DAI 1", "DAI 2", "DAI 3"};
static struct soc_enum const asrc_in_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_ASRCIMUX,
ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt);
static char const * const dai_mux_txt[] = {
"CH 0_1", "CH 2_3", "CH 4_5", "ADC/DMic 1",
"DMic 2", "ClassD", "DAC", "Sub"};
static struct soc_enum const dai2_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S2MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai2_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 2 Mux", dai2_mux_enum);
static struct soc_enum const dai1_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S1MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai1_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 1 Mux", dai1_mux_enum);
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
static struct soc_enum const asrc_out_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_ASRCOMUX,
ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt);
static struct soc_enum const dac_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_DACMUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dac_mux_dapm_enum =
SOC_DAPM_ENUM("DAC Mux", dac_mux_enum);
static struct soc_enum const dai3_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_I2S3MUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const dai3_mux_dapm_enum =
SOC_DAPM_ENUM("DAI 3 Mux", dai3_mux_enum);
/* R_AUDIOMUX3 PG 0 ADDR 0x3C */
static char const * const sub_mux_txt[] = {
"CH 0", "CH 1", "CH 0 + 1",
"CH 2", "CH 3", "CH 2 + 3",
"CH 4", "CH 5", "CH 4 + 5",
"ADC/DMic 1 Left", "ADC/DMic 1 Right",
"ADC/DMic 1 Left Plus Right",
"DMic 2 Left", "DMic 2 Right", "DMic 2 Left Plus Right",
"ClassD Left", "ClassD Right", "ClassD Left Plus Right"};
static struct soc_enum const sub_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_SUBMUX,
ARRAY_SIZE(sub_mux_txt), sub_mux_txt);
static struct snd_kcontrol_new const sub_mux_dapm_enum =
SOC_DAPM_ENUM("Sub Mux", sub_mux_enum);
static struct soc_enum const classd_mux_enum =
SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_CLSSDMUX,
ARRAY_SIZE(dai_mux_txt), dai_mux_txt);
static struct snd_kcontrol_new const classd_mux_dapm_enum =
SOC_DAPM_ENUM("ClassD Mux", classd_mux_enum);
/* R_HSDCTL1 PG 1 ADDR 0x01 */
static char const * const jack_type_txt[] = {
"3 Terminal", "4 Terminal"};
static struct soc_enum const hp_jack_type_enum =
SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HPJKTYPE,
ARRAY_SIZE(jack_type_txt), jack_type_txt);
static char const * const hs_det_pol_txt[] = {
"Rising", "Falling"};
static struct soc_enum const hs_det_pol_enum =
SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HSDETPOL,
ARRAY_SIZE(hs_det_pol_txt), hs_det_pol_txt);
/* R_HSDCTL1 PG 1 ADDR 0x02 */
static char const * const hs_mic_bias_force_txt[] = {
"Off", "Ring", "Sleeve"};
static struct soc_enum const hs_mic_bias_force_enum =
SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FMICBIAS1,
ARRAY_SIZE(hs_mic_bias_force_txt),
hs_mic_bias_force_txt);
static char const * const plug_type_txt[] = {
"OMTP", "CTIA", "Reserved", "Headphone"};
static struct soc_enum const plug_type_force_enum =
SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FPLUGTYPE,
ARRAY_SIZE(plug_type_txt), plug_type_txt);
/* R_CH0AIC PG 1 ADDR 0x06 */
static char const * const in_bst_mux_txt[] = {
"Input 1", "Input 2", "Input 3", "D2S"};
static struct soc_enum const in_bst_mux_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_INSELL,
ARRAY_SIZE(in_bst_mux_txt),
in_bst_mux_txt);
static struct snd_kcontrol_new const in_bst_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("Input Boost Channel 0 Enum",
in_bst_mux_ch0_enum);
static DECLARE_TLV_DB_SCALE(in_bst_vol_tlv_arr, 0, 1000, 0);
static char const * const adc_mux_txt[] = {
"Input 1 Boost Bypass", "Input 2 Boost Bypass",
"Input 3 Boost Bypass", "Input Boost"};
static struct soc_enum const adc_mux_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_LADCIN,
ARRAY_SIZE(adc_mux_txt), adc_mux_txt);
static struct snd_kcontrol_new const adc_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("ADC Channel 0 Enum", adc_mux_ch0_enum);
static char const * const in_proc_mux_txt[] = {
"ADC", "DMic"};
static struct soc_enum const in_proc_ch0_enum =
SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_IPCH0S,
ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt);
static struct snd_kcontrol_new const in_proc_mux_ch0_dapm_enum =
SOC_DAPM_ENUM("Input Processor Channel 0 Enum",
in_proc_ch0_enum);
/* R_CH1AIC PG 1 ADDR 0x07 */
static struct soc_enum const in_bst_mux_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_INSELR,
ARRAY_SIZE(in_bst_mux_txt),
in_bst_mux_txt);
static struct snd_kcontrol_new const in_bst_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("Input Boost Channel 1 Enum",
in_bst_mux_ch1_enum);
static struct soc_enum const adc_mux_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_RADCIN,
ARRAY_SIZE(adc_mux_txt), adc_mux_txt);
static struct snd_kcontrol_new const adc_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("ADC Channel 1 Enum", adc_mux_ch1_enum);
static struct soc_enum const in_proc_ch1_enum =
SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_IPCH1S,
ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt);
static struct snd_kcontrol_new const in_proc_mux_ch1_dapm_enum =
SOC_DAPM_ENUM("Input Processor Channel 1 Enum",
in_proc_ch1_enum);
/* R_ICTL0 PG 1 ADDR 0x0A */
static char const * const pol_txt[] = {
"Normal", "Invert"};
static struct soc_enum const in_pol_ch1_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN0POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_pol_ch0_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN1POL,
ARRAY_SIZE(pol_txt), pol_txt);
static char const * const in_proc_ch_sel_txt[] = {
"Normal", "Mono Mix to Channel 0",
"Mono Mix to Channel 1", "Add"};
static struct soc_enum const in_proc_ch01_sel_enum =
SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_INPCH10SEL,
ARRAY_SIZE(in_proc_ch_sel_txt),
in_proc_ch_sel_txt);
/* R_ICTL1 PG 1 ADDR 0x0B */
static struct soc_enum const in_pol_ch3_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN2POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_pol_ch2_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN3POL,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const in_proc_ch23_sel_enum =
SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_INPCH32SEL,
ARRAY_SIZE(in_proc_ch_sel_txt),
in_proc_ch_sel_txt);
/* R_MICBIAS PG 1 ADDR 0x0C */
static char const * const mic_bias_txt[] = {
"2.5V", "2.1V", "1.8V", "Vdd"};
static struct soc_enum const mic_bias_2_enum =
SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV2,
ARRAY_SIZE(mic_bias_txt), mic_bias_txt);
static struct soc_enum const mic_bias_1_enum =
SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV1,
ARRAY_SIZE(mic_bias_txt), mic_bias_txt);
/* R_PGACTL0 PG 1 ADDR 0x0D */
/* R_PGACTL1 PG 1 ADDR 0x0E */
/* R_PGACTL2 PG 1 ADDR 0x0F */
/* R_PGACTL3 PG 1 ADDR 0x10 */
static DECLARE_TLV_DB_SCALE(in_pga_vol_tlv_arr, -1725, 75, 0);
/* R_ICH0VOL PG1 ADDR 0x12 */
/* R_ICH1VOL PG1 ADDR 0x13 */
/* R_ICH2VOL PG1 ADDR 0x14 */
/* R_ICH3VOL PG1 ADDR 0x15 */
static DECLARE_TLV_DB_MINMAX(in_vol_tlv_arr, -7125, 2400);
/* R_ASRCILVOL PG1 ADDR 0x16 */
/* R_ASRCIRVOL PG1 ADDR 0x17 */
/* R_ASRCOLVOL PG1 ADDR 0x18 */
/* R_ASRCORVOL PG1 ADDR 0x19 */
static DECLARE_TLV_DB_MINMAX(asrc_vol_tlv_arr, -9562, 600);
/* R_ALCCTL0 PG1 ADDR 0x1D */
static char const * const alc_mode_txt[] = {
"ALC", "Limiter"};
static struct soc_enum const alc_mode_enum =
SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCMODE,
ARRAY_SIZE(alc_mode_txt), alc_mode_txt);
static char const * const alc_ref_text[] = {
"Channel 0", "Channel 1", "Channel 2", "Channel 3", "Peak"};
static struct soc_enum const alc_ref_enum =
SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCREF,
ARRAY_SIZE(alc_ref_text), alc_ref_text);
/* R_ALCCTL1 PG 1 ADDR 0x1E */
static DECLARE_TLV_DB_SCALE(alc_max_gain_tlv_arr, -1200, 600, 0);
static DECLARE_TLV_DB_SCALE(alc_target_tlv_arr, -2850, 150, 0);
/* R_ALCCTL2 PG 1 ADDR 0x1F */
static DECLARE_TLV_DB_SCALE(alc_min_gain_tlv_arr, -1725, 600, 0);
/* R_NGATE PG 1 ADDR 0x21 */
static DECLARE_TLV_DB_SCALE(ngth_tlv_arr, -7650, 150, 0);
static char const * const ngate_type_txt[] = {
"PGA Constant", "ADC Mute"};
static struct soc_enum const ngate_type_enum =
SOC_ENUM_SINGLE(R_NGATE, FB_NGATE_NGG,
ARRAY_SIZE(ngate_type_txt), ngate_type_txt);
/* R_DMICCTL PG 1 ADDR 0x22 */
static char const * const dmic_mono_sel_txt[] = {
"Stereo", "Mono"};
static struct soc_enum const dmic_mono_sel_enum =
SOC_ENUM_SINGLE(R_DMICCTL, FB_DMICCTL_DMONO,
ARRAY_SIZE(dmic_mono_sel_txt), dmic_mono_sel_txt);
/* R_DACCTL PG 2 ADDR 0x01 */
static struct soc_enum const dac_pol_r_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLR,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const dac_pol_l_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLL,
ARRAY_SIZE(pol_txt), pol_txt);
static char const * const dac_dith_txt[] = {
"Half", "Full", "Disabled", "Static"};
static struct soc_enum const dac_dith_enum =
SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACDITH,
ARRAY_SIZE(dac_dith_txt), dac_dith_txt);
/* R_SPKCTL PG 2 ADDR 0x02 */
static struct soc_enum const spk_pol_r_enum =
SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLR,
ARRAY_SIZE(pol_txt), pol_txt);
static struct soc_enum const spk_pol_l_enum =
SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLL,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBCTL PG 2 ADDR 0x03 */
static struct soc_enum const sub_pol_enum =
SOC_ENUM_SINGLE(R_SUBCTL, FB_SUBCTL_SUBPOL,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_MVOLL PG 2 ADDR 0x08 */
/* R_MVOLR PG 2 ADDR 0x09 */
static DECLARE_TLV_DB_MINMAX(mvol_tlv_arr, -9562, 0);
/* R_HPVOLL PG 2 ADDR 0x0A */
/* R_HPVOLR PG 2 ADDR 0x0B */
static DECLARE_TLV_DB_SCALE(hp_vol_tlv_arr, -8850, 75, 0);
/* R_SPKVOLL PG 2 ADDR 0x0C */
/* R_SPKVOLR PG 2 ADDR 0x0D */
static DECLARE_TLV_DB_SCALE(spk_vol_tlv_arr, -7725, 75, 0);
/* R_SPKEQFILT PG 3 ADDR 0x01 */
static char const * const eq_txt[] = {
"Pre Scale",
"Pre Scale + EQ Band 0",
"Pre Scale + EQ Band 0 - 1",
"Pre Scale + EQ Band 0 - 2",
"Pre Scale + EQ Band 0 - 3",
"Pre Scale + EQ Band 0 - 4",
"Pre Scale + EQ Band 0 - 5",
};
static struct soc_enum const spk_eq_enums[] = {
SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_SPKMBCCTL PG 3 ADDR 0x0B */
static char const * const lvl_mode_txt[] = {
"Average", "Peak"};
static struct soc_enum const spk_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static char const * const win_sel_txt[] = {
"512", "64"};
static struct soc_enum const spk_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const spk_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const spk_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SPKMBCMUG1 PG 3 ADDR 0x0C */
static struct soc_enum const spk_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG1, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
static DECLARE_TLV_DB_MINMAX(mbc_mug_tlv_arr, -4650, 0);
/* R_SPKMBCTHR1 PG 3 ADDR 0x0D */
static DECLARE_TLV_DB_MINMAX(thr_tlv_arr, -9562, 0);
/* R_SPKMBCRAT1 PG 3 ADDR 0x0E */
static char const * const comp_rat_txt[] = {
"Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1",
"7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1",
"15:1", "16:1", "17:1", "18:1", "19:1", "20:1"};
static struct soc_enum const spk_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT1, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKMBCMUG2 PG 3 ADDR 0x13 */
static struct soc_enum const spk_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG2, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SPKMBCRAT2 PG 3 ADDR 0x15 */
static struct soc_enum const spk_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT2, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKMBCMUG3 PG 3 ADDR 0x1A */
static struct soc_enum const spk_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_SPKMBCMUG3, FB_SPKMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SPKMBCRAT3 PG 3 ADDR 0x1C */
static struct soc_enum const spk_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKMBCRAT3, FB_SPKMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKCLECTL PG 3 ADDR 0x21 */
static struct soc_enum const spk_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const spk_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SPKCLEMUG PG 3 ADDR 0x22 */
static DECLARE_TLV_DB_MINMAX(cle_mug_tlv_arr, 0, 4650);
/* R_SPKCOMPRAT PG 3 ADDR 0x24 */
static struct soc_enum const spk_comp_rat_enum =
SOC_ENUM_SINGLE(R_SPKCOMPRAT, FB_SPKCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SPKEXPTHR PG 3 ADDR 0x2F */
static char const * const exp_rat_txt[] = {
"Reserved", "Reserved", "1:2", "1:3",
"1:4", "1:5", "1:6", "1:7"};
static struct soc_enum const spk_exp_rat_enum =
SOC_ENUM_SINGLE(R_SPKEXPRAT, FB_SPKEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
/* R_DACEQFILT PG 4 ADDR 0x01 */
static struct soc_enum const dac_eq_enums[] = {
SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_DACMBCCTL PG 4 ADDR 0x0B */
static struct soc_enum const dac_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const dac_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const dac_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_DACMBCMUG1 PG 4 ADDR 0x0C */
static struct soc_enum const dac_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG1, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT1 PG 4 ADDR 0x0E */
static struct soc_enum const dac_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACMBCMUG2 PG 4 ADDR 0x13 */
static struct soc_enum const dac_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG2, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT2 PG 4 ADDR 0x15 */
static struct soc_enum const dac_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACMBCMUG3 PG 4 ADDR 0x1A */
static struct soc_enum const dac_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_DACMBCMUG3, FB_DACMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_DACMBCRAT3 PG 4 ADDR 0x1C */
static struct soc_enum const dac_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACCLECTL PG 4 ADDR 0x21 */
static struct soc_enum const dac_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const dac_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_DACCOMPRAT PG 4 ADDR 0x24 */
static struct soc_enum const dac_comp_rat_enum =
SOC_ENUM_SINGLE(R_DACCOMPRAT, FB_DACCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_DACEXPRAT PG 4 ADDR 0x30 */
static struct soc_enum const dac_exp_rat_enum =
SOC_ENUM_SINGLE(R_DACEXPRAT, FB_DACEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
/* R_SUBEQFILT PG 5 ADDR 0x01 */
static struct soc_enum const sub_eq_enums[] = {
SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ2BE,
ARRAY_SIZE(eq_txt), eq_txt),
SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ1BE,
ARRAY_SIZE(eq_txt), eq_txt),
};
/* R_SUBMBCCTL PG 5 ADDR 0x0B */
static struct soc_enum const sub_mbc3_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE3,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc3_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL3,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const sub_mbc2_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE2,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc2_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL2,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
static struct soc_enum const sub_mbc1_lvl_det_mode_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE1,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_mbc1_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL1,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SUBMBCMUG1 PG 5 ADDR 0x0C */
static struct soc_enum const sub_mbc1_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG1, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT1 PG 5 ADDR 0x0E */
static struct soc_enum const sub_mbc1_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT1, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBMBCMUG2 PG 5 ADDR 0x13 */
static struct soc_enum const sub_mbc2_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG2, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT2 PG 5 ADDR 0x15 */
static struct soc_enum const sub_mbc2_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT2, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBMBCMUG3 PG 5 ADDR 0x1A */
static struct soc_enum const sub_mbc3_phase_pol_enum =
SOC_ENUM_SINGLE(R_SUBMBCMUG3, FB_SUBMBCMUG_PHASE,
ARRAY_SIZE(pol_txt), pol_txt);
/* R_SUBMBCRAT3 PG 5 ADDR 0x1C */
static struct soc_enum const sub_mbc3_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBMBCRAT3, FB_SUBMBCRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBCLECTL PG 5 ADDR 0x21 */
static struct soc_enum const sub_cle_lvl_mode_enum =
SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_LVLMODE,
ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt);
static struct soc_enum const sub_cle_win_sel_enum =
SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_WINSEL,
ARRAY_SIZE(win_sel_txt), win_sel_txt);
/* R_SUBCOMPRAT PG 5 ADDR 0x24 */
static struct soc_enum const sub_comp_rat_enum =
SOC_ENUM_SINGLE(R_SUBCOMPRAT, FB_SUBCOMPRAT_RATIO,
ARRAY_SIZE(comp_rat_txt), comp_rat_txt);
/* R_SUBEXPRAT PG 5 ADDR 0x30 */
static struct soc_enum const sub_exp_rat_enum =
SOC_ENUM_SINGLE(R_SUBEXPRAT, FB_SUBEXPRAT_RATIO,
ARRAY_SIZE(exp_rat_txt), exp_rat_txt);
static int bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct coeff_ram_ctl *ctl =
(struct coeff_ram_ctl *)kcontrol->private_value;
struct soc_bytes_ext *params = &ctl->bytes_ext;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
/* CH 0_1 Input Mux */
static char const * const ch_0_1_mux_txt[] = {"DAI 1", "TDM 0_1"};
static struct soc_enum const ch_0_1_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_0_1_mux_txt), ch_0_1_mux_txt);
static struct snd_kcontrol_new const ch_0_1_mux_dapm_enum =
SOC_DAPM_ENUM("CH 0_1 Input Mux", ch_0_1_mux_enum);
/* CH 2_3 Input Mux */
static char const * const ch_2_3_mux_txt[] = {"DAI 2", "TDM 2_3"};
static struct soc_enum const ch_2_3_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_2_3_mux_txt), ch_2_3_mux_txt);
static struct snd_kcontrol_new const ch_2_3_mux_dapm_enum =
SOC_DAPM_ENUM("CH 2_3 Input Mux", ch_2_3_mux_enum);
/* CH 4_5 Input Mux */
static char const * const ch_4_5_mux_txt[] = {"DAI 3", "TDM 4_5"};
static struct soc_enum const ch_4_5_mux_enum =
SOC_ENUM_SINGLE(SND_SOC_NOPM, 0,
ARRAY_SIZE(ch_4_5_mux_txt), ch_4_5_mux_txt);
static struct snd_kcontrol_new const ch_4_5_mux_dapm_enum =
SOC_DAPM_ENUM("CH 4_5 Input Mux", ch_4_5_mux_enum);
#define COEFF_RAM_CTL(xname, xcount, xaddr) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = bytes_info_ext, \
.get = coeff_ram_get, .put = coeff_ram_put, \
.private_value = (unsigned long)&(struct coeff_ram_ctl) { \
.addr = xaddr, \
.bytes_ext = {.max = xcount, }, \
} \
}
static struct snd_kcontrol_new const tscs454_snd_controls[] = {
/* R_PLLCTL PG 0 ADDR 0x15 */
SOC_ENUM("PLL BCLK Input", bclk_sel_enum),
/* R_ISRC PG 0 ADDR 0x16 */
SOC_ENUM("Internal Rate", isrc_br_enum),
SOC_ENUM("Internal Rate Multiple", isrc_bm_enum),
/* R_SCLKCTL PG 0 ADDR 0x18 */
SOC_ENUM("ADC Modular Rate", adc_modular_rate_enum),
SOC_ENUM("DAC Modular Rate", dac_modular_rate_enum),
/* R_ASRC PG 0 ADDR 0x28 */
SOC_SINGLE("ASRC Out High Bandwidth Switch",
R_ASRC, FB_ASRC_ASRCOBW, 1, 0),
SOC_SINGLE("ASRC In High Bandwidth Switch",
R_ASRC, FB_ASRC_ASRCIBW, 1, 0),
/* R_I2SIDCTL PG 0 ADDR 0x38 */
SOC_ENUM("I2S 1 Data In Control", data_in_ctrl_enums[0]),
SOC_ENUM("I2S 2 Data In Control", data_in_ctrl_enums[1]),
SOC_ENUM("I2S 3 Data In Control", data_in_ctrl_enums[2]),
/* R_I2SODCTL PG 0 ADDR 0x39 */
SOC_ENUM("I2S 1 Data Out Control", data_out_ctrl_enums[0]),
SOC_ENUM("I2S 2 Data Out Control", data_out_ctrl_enums[1]),
SOC_ENUM("I2S 3 Data Out Control", data_out_ctrl_enums[2]),
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
SOC_ENUM("ASRC In", asrc_in_mux_enum),
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
SOC_ENUM("ASRC Out", asrc_out_mux_enum),
/* R_HSDCTL1 PG 1 ADDR 0x01 */
SOC_ENUM("Headphone Jack Type", hp_jack_type_enum),
SOC_ENUM("Headset Detection Polarity", hs_det_pol_enum),
SOC_SINGLE("Headphone Detection Switch",
R_HSDCTL1, FB_HSDCTL1_HPID_EN, 1, 0),
SOC_SINGLE("Headset OMTP/CTIA Switch",
R_HSDCTL1, FB_HSDCTL1_GBLHS_EN, 1, 0),
/* R_HSDCTL1 PG 1 ADDR 0x02 */
SOC_ENUM("Headset Mic Bias Force", hs_mic_bias_force_enum),
SOC_SINGLE("Manual Mic Bias Switch",
R_HSDCTL2, FB_HSDCTL2_MB1MODE, 1, 0),
SOC_SINGLE("Ring/Sleeve Auto Switch",
R_HSDCTL2, FB_HSDCTL2_SWMODE, 1, 0),
SOC_ENUM("Manual Mode Plug Type", plug_type_force_enum),
/* R_CH0AIC PG 1 ADDR 0x06 */
SOC_SINGLE_TLV("Input Boost Channel 0 Volume", R_CH0AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH1AIC PG 1 ADDR 0x07 */
SOC_SINGLE_TLV("Input Boost Channel 1 Volume", R_CH1AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH2AIC PG 1 ADDR 0x08 */
SOC_SINGLE_TLV("Input Boost Channel 2 Volume", R_CH2AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_CH3AIC PG 1 ADDR 0x09 */
SOC_SINGLE_TLV("Input Boost Channel 3 Volume", R_CH3AIC,
FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr),
/* R_ICTL0 PG 1 ADDR 0x0A */
SOC_ENUM("Input Channel 1 Polarity", in_pol_ch1_enum),
SOC_ENUM("Input Channel 0 Polarity", in_pol_ch0_enum),
SOC_ENUM("Input Processor Channel 0/1 Operation",
in_proc_ch01_sel_enum),
SOC_SINGLE("Input Channel 1 Mute Switch",
R_ICTL0, FB_ICTL0_IN1MUTE, 1, 0),
SOC_SINGLE("Input Channel 0 Mute Switch",
R_ICTL0, FB_ICTL0_IN0MUTE, 1, 0),
SOC_SINGLE("Input Channel 1 HPF Disable Switch",
R_ICTL0, FB_ICTL0_IN1HP, 1, 0),
SOC_SINGLE("Input Channel 0 HPF Disable Switch",
R_ICTL0, FB_ICTL0_IN0HP, 1, 0),
/* R_ICTL1 PG 1 ADDR 0x0B */
SOC_ENUM("Input Channel 3 Polarity", in_pol_ch3_enum),
SOC_ENUM("Input Channel 2 Polarity", in_pol_ch2_enum),
SOC_ENUM("Input Processor Channel 2/3 Operation",
in_proc_ch23_sel_enum),
SOC_SINGLE("Input Channel 3 Mute Switch",
R_ICTL1, FB_ICTL1_IN3MUTE, 1, 0),
SOC_SINGLE("Input Channel 2 Mute Switch",
R_ICTL1, FB_ICTL1_IN2MUTE, 1, 0),
SOC_SINGLE("Input Channel 3 HPF Disable Switch",
R_ICTL1, FB_ICTL1_IN3HP, 1, 0),
SOC_SINGLE("Input Channel 2 HPF Disable Switch",
R_ICTL1, FB_ICTL1_IN2HP, 1, 0),
/* R_MICBIAS PG 1 ADDR 0x0C */
SOC_ENUM("Mic Bias 2 Voltage", mic_bias_2_enum),
SOC_ENUM("Mic Bias 1 Voltage", mic_bias_1_enum),
/* R_PGACTL0 PG 1 ADDR 0x0D */
SOC_SINGLE("Input Channel 0 PGA Mute Switch",
R_PGACTL0, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 0 PGA Volume", R_PGACTL0,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL1 PG 1 ADDR 0x0E */
SOC_SINGLE("Input Channel 1 PGA Mute Switch",
R_PGACTL1, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 1 PGA Volume", R_PGACTL1,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL2 PG 1 ADDR 0x0F */
SOC_SINGLE("Input Channel 2 PGA Mute Switch",
R_PGACTL2, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 2 PGA Volume", R_PGACTL2,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_PGACTL3 PG 1 ADDR 0x10 */
SOC_SINGLE("Input Channel 3 PGA Mute Switch",
R_PGACTL3, FB_PGACTL_PGAMUTE, 1, 0),
SOC_SINGLE_TLV("Input Channel 3 PGA Volume", R_PGACTL3,
FB_PGACTL_PGAVOL,
FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr),
/* R_ICH0VOL PG 1 ADDR 0x12 */
SOC_SINGLE_TLV("Input Channel 0 Volume", R_ICH0VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH1VOL PG 1 ADDR 0x13 */
SOC_SINGLE_TLV("Input Channel 1 Volume", R_ICH1VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH2VOL PG 1 ADDR 0x14 */
SOC_SINGLE_TLV("Input Channel 2 Volume", R_ICH2VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ICH3VOL PG 1 ADDR 0x15 */
SOC_SINGLE_TLV("Input Channel 3 Volume", R_ICH3VOL,
FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr),
/* R_ASRCILVOL PG 1 ADDR 0x16 */
SOC_SINGLE_TLV("ASRC Input Left Volume", R_ASRCILVOL,
FB_ASRCILVOL_ASRCILVOL, FM_ASRCILVOL_ASRCILVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCIRVOL PG 1 ADDR 0x17 */
SOC_SINGLE_TLV("ASRC Input Right Volume", R_ASRCIRVOL,
FB_ASRCIRVOL_ASRCIRVOL, FM_ASRCIRVOL_ASRCIRVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCOLVOL PG 1 ADDR 0x18 */
SOC_SINGLE_TLV("ASRC Output Left Volume", R_ASRCOLVOL,
FB_ASRCOLVOL_ASRCOLVOL, FM_ASRCOLVOL_ASRCOLVOL,
0, asrc_vol_tlv_arr),
/* R_ASRCORVOL PG 1 ADDR 0x19 */
SOC_SINGLE_TLV("ASRC Output Right Volume", R_ASRCORVOL,
FB_ASRCORVOL_ASRCOLVOL, FM_ASRCORVOL_ASRCOLVOL,
0, asrc_vol_tlv_arr),
/* R_IVOLCTLU PG 1 ADDR 0x1C */
/* R_ALCCTL0 PG 1 ADDR 0x1D */
SOC_ENUM("ALC Mode", alc_mode_enum),
SOC_ENUM("ALC Reference", alc_ref_enum),
SOC_SINGLE("Input Channel 3 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN3, 1, 0),
SOC_SINGLE("Input Channel 2 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN2, 1, 0),
SOC_SINGLE("Input Channel 1 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN1, 1, 0),
SOC_SINGLE("Input Channel 0 ALC Switch",
R_ALCCTL0, FB_ALCCTL0_ALCEN0, 1, 0),
/* R_ALCCTL1 PG 1 ADDR 0x1E */
SOC_SINGLE_TLV("ALC Max Gain Volume", R_ALCCTL1,
FB_ALCCTL1_MAXGAIN, FM_ALCCTL1_MAXGAIN,
0, alc_max_gain_tlv_arr),
SOC_SINGLE_TLV("ALC Target Volume", R_ALCCTL1,
FB_ALCCTL1_ALCL, FM_ALCCTL1_ALCL,
0, alc_target_tlv_arr),
/* R_ALCCTL2 PG 1 ADDR 0x1F */
SOC_SINGLE("ALC Zero Cross Switch",
R_ALCCTL2, FB_ALCCTL2_ALCZC, 1, 0),
SOC_SINGLE_TLV("ALC Min Gain Volume", R_ALCCTL2,
FB_ALCCTL2_MINGAIN, FM_ALCCTL2_MINGAIN,
0, alc_min_gain_tlv_arr),
SOC_SINGLE_RANGE("ALC Hold", R_ALCCTL2,
FB_ALCCTL2_HLD, 0, FM_ALCCTL2_HLD, 0),
/* R_ALCCTL3 PG 1 ADDR 0x20 */
SOC_SINGLE_RANGE("ALC Decay", R_ALCCTL3,
FB_ALCCTL3_DCY, 0, FM_ALCCTL3_DCY, 0),
SOC_SINGLE_RANGE("ALC Attack", R_ALCCTL3,
FB_ALCCTL3_ATK, 0, FM_ALCCTL3_ATK, 0),
/* R_NGATE PG 1 ADDR 0x21 */
SOC_SINGLE_TLV("Noise Gate Threshold Volume", R_NGATE,
FB_NGATE_NGTH, FM_NGATE_NGTH, 0, ngth_tlv_arr),
SOC_ENUM("Noise Gate Type", ngate_type_enum),
SOC_SINGLE("Noise Gate Switch", R_NGATE, FB_NGATE_NGAT, 1, 0),
/* R_DMICCTL PG 1 ADDR 0x22 */
SOC_SINGLE("Digital Mic 2 Switch", R_DMICCTL, FB_DMICCTL_DMIC2EN, 1, 0),
SOC_SINGLE("Digital Mic 1 Switch", R_DMICCTL, FB_DMICCTL_DMIC1EN, 1, 0),
SOC_ENUM("Digital Mic Mono Select", dmic_mono_sel_enum),
/* R_DACCTL PG 2 ADDR 0x01 */
SOC_ENUM("DAC Polarity Left", dac_pol_r_enum),
SOC_ENUM("DAC Polarity Right", dac_pol_l_enum),
SOC_ENUM("DAC Dither", dac_dith_enum),
SOC_SINGLE("DAC Mute Switch", R_DACCTL, FB_DACCTL_DACMUTE, 1, 0),
SOC_SINGLE("DAC De-Emphasis Switch", R_DACCTL, FB_DACCTL_DACDEM, 1, 0),
/* R_SPKCTL PG 2 ADDR 0x02 */
SOC_ENUM("Speaker Polarity Right", spk_pol_r_enum),
SOC_ENUM("Speaker Polarity Left", spk_pol_l_enum),
SOC_SINGLE("Speaker Mute Switch", R_SPKCTL, FB_SPKCTL_SPKMUTE, 1, 0),
SOC_SINGLE("Speaker De-Emphasis Switch",
R_SPKCTL, FB_SPKCTL_SPKDEM, 1, 0),
/* R_SUBCTL PG 2 ADDR 0x03 */
SOC_ENUM("Sub Polarity", sub_pol_enum),
SOC_SINGLE("SUB Mute Switch", R_SUBCTL, FB_SUBCTL_SUBMUTE, 1, 0),
SOC_SINGLE("Sub De-Emphasis Switch", R_SUBCTL, FB_SUBCTL_SUBDEM, 1, 0),
/* R_DCCTL PG 2 ADDR 0x04 */
SOC_SINGLE("Sub DC Removal Switch", R_DCCTL, FB_DCCTL_SUBDCBYP, 1, 1),
SOC_SINGLE("DAC DC Removal Switch", R_DCCTL, FB_DCCTL_DACDCBYP, 1, 1),
SOC_SINGLE("Speaker DC Removal Switch",
R_DCCTL, FB_DCCTL_SPKDCBYP, 1, 1),
SOC_SINGLE("DC Removal Coefficient Switch", R_DCCTL, FB_DCCTL_DCCOEFSEL,
FM_DCCTL_DCCOEFSEL, 0),
/* R_OVOLCTLU PG 2 ADDR 0x06 */
SOC_SINGLE("Output Fade Switch", R_OVOLCTLU, FB_OVOLCTLU_OFADE, 1, 0),
/* R_MVOLL PG 2 ADDR 0x08 */
/* R_MVOLR PG 2 ADDR 0x09 */
SOC_DOUBLE_R_TLV("Master Volume", R_MVOLL, R_MVOLR,
FB_MVOLL_MVOL_L, FM_MVOLL_MVOL_L, 0, mvol_tlv_arr),
/* R_HPVOLL PG 2 ADDR 0x0A */
/* R_HPVOLR PG 2 ADDR 0x0B */
SOC_DOUBLE_R_TLV("Headphone Volume", R_HPVOLL, R_HPVOLR,
FB_HPVOLL_HPVOL_L, FM_HPVOLL_HPVOL_L, 0,
hp_vol_tlv_arr),
/* R_SPKVOLL PG 2 ADDR 0x0C */
/* R_SPKVOLR PG 2 ADDR 0x0D */
SOC_DOUBLE_R_TLV("Speaker Volume", R_SPKVOLL, R_SPKVOLR,
FB_SPKVOLL_SPKVOL_L, FM_SPKVOLL_SPKVOL_L, 0,
spk_vol_tlv_arr),
/* R_SUBVOL PG 2 ADDR 0x10 */
SOC_SINGLE_TLV("Sub Volume", R_SUBVOL,
FB_SUBVOL_SUBVOL, FM_SUBVOL_SUBVOL, 0, spk_vol_tlv_arr),
/* R_SPKEQFILT PG 3 ADDR 0x01 */
SOC_SINGLE("Speaker EQ 2 Switch",
R_SPKEQFILT, FB_SPKEQFILT_EQ2EN, 1, 0),
SOC_ENUM("Speaker EQ 2 Band", spk_eq_enums[0]),
SOC_SINGLE("Speaker EQ 1 Switch",
R_SPKEQFILT, FB_SPKEQFILT_EQ1EN, 1, 0),
SOC_ENUM("Speaker EQ 1 Band", spk_eq_enums[1]),
/* R_SPKMBCEN PG 3 ADDR 0x0A */
SOC_SINGLE("Speaker MBC 3 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("Speaker MBC 2 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("Speaker MBC 1 Switch",
R_SPKMBCEN, FB_SPKMBCEN_MBCEN1, 1, 0),
/* R_SPKMBCCTL PG 3 ADDR 0x0B */
SOC_ENUM("Speaker MBC 3 Mode", spk_mbc3_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 3 Window", spk_mbc3_win_sel_enum),
SOC_ENUM("Speaker MBC 2 Mode", spk_mbc2_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 2 Window", spk_mbc2_win_sel_enum),
SOC_ENUM("Speaker MBC 1 Mode", spk_mbc1_lvl_det_mode_enum),
SOC_ENUM("Speaker MBC 1 Window", spk_mbc1_win_sel_enum),
/* R_SPKMBCMUG1 PG 3 ADDR 0x0C */
SOC_ENUM("Speaker MBC 1 Phase Polarity", spk_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC1 Make-Up Gain Volume", R_SPKMBCMUG1,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR1 PG 3 ADDR 0x0D */
SOC_SINGLE_TLV("Speaker MBC 1 Compressor Threshold Volume",
R_SPKMBCTHR1, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT1 PG 3 ADDR 0x0E */
SOC_ENUM("Speaker MBC 1 Compressor Ratio", spk_mbc1_comp_rat_enum),
/* R_SPKMBCATK1L PG 3 ADDR 0x0F */
/* R_SPKMBCATK1H PG 3 ADDR 0x10 */
SND_SOC_BYTES("Speaker MBC 1 Attack", R_SPKMBCATK1L, 2),
/* R_SPKMBCREL1L PG 3 ADDR 0x11 */
/* R_SPKMBCREL1H PG 3 ADDR 0x12 */
SND_SOC_BYTES("Speaker MBC 1 Release", R_SPKMBCREL1L, 2),
/* R_SPKMBCMUG2 PG 3 ADDR 0x13 */
SOC_ENUM("Speaker MBC 2 Phase Polarity", spk_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC2 Make-Up Gain Volume", R_SPKMBCMUG2,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR2 PG 3 ADDR 0x14 */
SOC_SINGLE_TLV("Speaker MBC 2 Compressor Threshold Volume",
R_SPKMBCTHR2, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT2 PG 3 ADDR 0x15 */
SOC_ENUM("Speaker MBC 2 Compressor Ratio", spk_mbc2_comp_rat_enum),
/* R_SPKMBCATK2L PG 3 ADDR 0x16 */
/* R_SPKMBCATK2H PG 3 ADDR 0x17 */
SND_SOC_BYTES("Speaker MBC 2 Attack", R_SPKMBCATK2L, 2),
/* R_SPKMBCREL2L PG 3 ADDR 0x18 */
/* R_SPKMBCREL2H PG 3 ADDR 0x19 */
SND_SOC_BYTES("Speaker MBC 2 Release", R_SPKMBCREL2L, 2),
/* R_SPKMBCMUG3 PG 3 ADDR 0x1A */
SOC_ENUM("Speaker MBC 3 Phase Polarity", spk_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("Speaker MBC 3 Make-Up Gain Volume", R_SPKMBCMUG3,
FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SPKMBCTHR3 PG 3 ADDR 0x1B */
SOC_SINGLE_TLV("Speaker MBC 3 Threshold Volume", R_SPKMBCTHR3,
FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKMBCRAT3 PG 3 ADDR 0x1C */
SOC_ENUM("Speaker MBC 3 Compressor Ratio", spk_mbc3_comp_rat_enum),
/* R_SPKMBCATK3L PG 3 ADDR 0x1D */
/* R_SPKMBCATK3H PG 3 ADDR 0x1E */
SND_SOC_BYTES("Speaker MBC 3 Attack", R_SPKMBCATK3L, 3),
/* R_SPKMBCREL3L PG 3 ADDR 0x1F */
/* R_SPKMBCREL3H PG 3 ADDR 0x20 */
SND_SOC_BYTES("Speaker MBC 3 Release", R_SPKMBCREL3L, 3),
/* R_SPKCLECTL PG 3 ADDR 0x21 */
SOC_ENUM("Speaker CLE Level Mode", spk_cle_lvl_mode_enum),
SOC_ENUM("Speaker CLE Window", spk_cle_win_sel_enum),
SOC_SINGLE("Speaker CLE Expander Switch",
R_SPKCLECTL, FB_SPKCLECTL_EXPEN, 1, 0),
SOC_SINGLE("Speaker CLE Limiter Switch",
R_SPKCLECTL, FB_SPKCLECTL_LIMEN, 1, 0),
SOC_SINGLE("Speaker CLE Compressor Switch",
R_SPKCLECTL, FB_SPKCLECTL_COMPEN, 1, 0),
/* R_SPKCLEMUG PG 3 ADDR 0x22 */
SOC_SINGLE_TLV("Speaker CLE Make-Up Gain Volume", R_SPKCLEMUG,
FB_SPKCLEMUG_MUGAIN, FM_SPKCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_SPKCOMPTHR PG 3 ADDR 0x23 */
SOC_SINGLE_TLV("Speaker Compressor Threshold Volume", R_SPKCOMPTHR,
FB_SPKCOMPTHR_THRESH, FM_SPKCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKCOMPRAT PG 3 ADDR 0x24 */
SOC_ENUM("Speaker Compressor Ratio", spk_comp_rat_enum),
/* R_SPKCOMPATKL PG 3 ADDR 0x25 */
/* R_SPKCOMPATKH PG 3 ADDR 0x26 */
SND_SOC_BYTES("Speaker Compressor Attack", R_SPKCOMPATKL, 2),
/* R_SPKCOMPRELL PG 3 ADDR 0x27 */
/* R_SPKCOMPRELH PG 3 ADDR 0x28 */
SND_SOC_BYTES("Speaker Compressor Release", R_SPKCOMPRELL, 2),
/* R_SPKLIMTHR PG 3 ADDR 0x29 */
SOC_SINGLE_TLV("Speaker Limiter Threshold Volume", R_SPKLIMTHR,
FB_SPKLIMTHR_THRESH, FM_SPKLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKLIMTGT PG 3 ADDR 0x2A */
SOC_SINGLE_TLV("Speaker Limiter Target Volume", R_SPKLIMTGT,
FB_SPKLIMTGT_TARGET, FM_SPKLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_SPKLIMATKL PG 3 ADDR 0x2B */
/* R_SPKLIMATKH PG 3 ADDR 0x2C */
SND_SOC_BYTES("Speaker Limiter Attack", R_SPKLIMATKL, 2),
/* R_SPKLIMRELL PG 3 ADDR 0x2D */
/* R_SPKLIMRELR PG 3 ADDR 0x2E */
SND_SOC_BYTES("Speaker Limiter Release", R_SPKLIMRELL, 2),
/* R_SPKEXPTHR PG 3 ADDR 0x2F */
SOC_SINGLE_TLV("Speaker Expander Threshold Volume", R_SPKEXPTHR,
FB_SPKEXPTHR_THRESH, FM_SPKEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_SPKEXPRAT PG 3 ADDR 0x30 */
SOC_ENUM("Speaker Expander Ratio", spk_exp_rat_enum),
/* R_SPKEXPATKL PG 3 ADDR 0x31 */
/* R_SPKEXPATKR PG 3 ADDR 0x32 */
SND_SOC_BYTES("Speaker Expander Attack", R_SPKEXPATKL, 2),
/* R_SPKEXPRELL PG 3 ADDR 0x33 */
/* R_SPKEXPRELR PG 3 ADDR 0x34 */
SND_SOC_BYTES("Speaker Expander Release", R_SPKEXPRELL, 2),
/* R_SPKFXCTL PG 3 ADDR 0x35 */
SOC_SINGLE("Speaker 3D Switch", R_SPKFXCTL, FB_SPKFXCTL_3DEN, 1, 0),
SOC_SINGLE("Speaker Treble Enhancement Switch",
R_SPKFXCTL, FB_SPKFXCTL_TEEN, 1, 0),
SOC_SINGLE("Speaker Treble NLF Switch",
R_SPKFXCTL, FB_SPKFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("Speaker Bass Enhancement Switch",
R_SPKFXCTL, FB_SPKFXCTL_BEEN, 1, 0),
SOC_SINGLE("Speaker Bass NLF Switch",
R_SPKFXCTL, FB_SPKFXCTL_BNLFBYP, 1, 1),
/* R_DACEQFILT PG 4 ADDR 0x01 */
SOC_SINGLE("DAC EQ 2 Switch",
R_DACEQFILT, FB_DACEQFILT_EQ2EN, 1, 0),
SOC_ENUM("DAC EQ 2 Band", dac_eq_enums[0]),
SOC_SINGLE("DAC EQ 1 Switch", R_DACEQFILT, FB_DACEQFILT_EQ1EN, 1, 0),
SOC_ENUM("DAC EQ 1 Band", dac_eq_enums[1]),
/* R_DACMBCEN PG 4 ADDR 0x0A */
SOC_SINGLE("DAC MBC 3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("DAC MBC 2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("DAC MBC 1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0),
/* R_DACMBCCTL PG 4 ADDR 0x0B */
SOC_ENUM("DAC MBC 3 Mode", dac_mbc3_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 3 Window", dac_mbc3_win_sel_enum),
SOC_ENUM("DAC MBC 2 Mode", dac_mbc2_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 2 Window", dac_mbc2_win_sel_enum),
SOC_ENUM("DAC MBC 1 Mode", dac_mbc1_lvl_det_mode_enum),
SOC_ENUM("DAC MBC 1 Window", dac_mbc1_win_sel_enum),
/* R_DACMBCMUG1 PG 4 ADDR 0x0C */
SOC_ENUM("DAC MBC 1 Phase Polarity", dac_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 1 Make-Up Gain Volume", R_DACMBCMUG1,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR1 PG 4 ADDR 0x0D */
SOC_SINGLE_TLV("DAC MBC 1 Compressor Threshold Volume", R_DACMBCTHR1,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT1 PG 4 ADDR 0x0E */
SOC_ENUM("DAC MBC 1 Compressor Ratio", dac_mbc1_comp_rat_enum),
/* R_DACMBCATK1L PG 4 ADDR 0x0F */
/* R_DACMBCATK1H PG 4 ADDR 0x10 */
SND_SOC_BYTES("DAC MBC 1 Attack", R_DACMBCATK1L, 2),
/* R_DACMBCREL1L PG 4 ADDR 0x11 */
/* R_DACMBCREL1H PG 4 ADDR 0x12 */
SND_SOC_BYTES("DAC MBC 1 Release", R_DACMBCREL1L, 2),
/* R_DACMBCMUG2 PG 4 ADDR 0x13 */
SOC_ENUM("DAC MBC 2 Phase Polarity", dac_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 2 Make-Up Gain Volume", R_DACMBCMUG2,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR2 PG 4 ADDR 0x14 */
SOC_SINGLE_TLV("DAC MBC 2 Compressor Threshold Volume", R_DACMBCTHR2,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT2 PG 4 ADDR 0x15 */
SOC_ENUM("DAC MBC 2 Compressor Ratio", dac_mbc2_comp_rat_enum),
/* R_DACMBCATK2L PG 4 ADDR 0x16 */
/* R_DACMBCATK2H PG 4 ADDR 0x17 */
SND_SOC_BYTES("DAC MBC 2 Attack", R_DACMBCATK2L, 2),
/* R_DACMBCREL2L PG 4 ADDR 0x18 */
/* R_DACMBCREL2H PG 4 ADDR 0x19 */
SND_SOC_BYTES("DAC MBC 2 Release", R_DACMBCREL2L, 2),
/* R_DACMBCMUG3 PG 4 ADDR 0x1A */
SOC_ENUM("DAC MBC 3 Phase Polarity", dac_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("DAC MBC 3 Make-Up Gain Volume", R_DACMBCMUG3,
FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_DACMBCTHR3 PG 4 ADDR 0x1B */
SOC_SINGLE_TLV("DAC MBC 3 Threshold Volume", R_DACMBCTHR3,
FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_DACMBCRAT3 PG 4 ADDR 0x1C */
SOC_ENUM("DAC MBC 3 Compressor Ratio", dac_mbc3_comp_rat_enum),
/* R_DACMBCATK3L PG 4 ADDR 0x1D */
/* R_DACMBCATK3H PG 4 ADDR 0x1E */
SND_SOC_BYTES("DAC MBC 3 Attack", R_DACMBCATK3L, 3),
/* R_DACMBCREL3L PG 4 ADDR 0x1F */
/* R_DACMBCREL3H PG 4 ADDR 0x20 */
SND_SOC_BYTES("DAC MBC 3 Release", R_DACMBCREL3L, 3),
/* R_DACCLECTL PG 4 ADDR 0x21 */
SOC_ENUM("DAC CLE Level Mode", dac_cle_lvl_mode_enum),
SOC_ENUM("DAC CLE Window", dac_cle_win_sel_enum),
SOC_SINGLE("DAC CLE Expander Switch",
R_DACCLECTL, FB_DACCLECTL_EXPEN, 1, 0),
SOC_SINGLE("DAC CLE Limiter Switch",
R_DACCLECTL, FB_DACCLECTL_LIMEN, 1, 0),
SOC_SINGLE("DAC CLE Compressor Switch",
R_DACCLECTL, FB_DACCLECTL_COMPEN, 1, 0),
/* R_DACCLEMUG PG 4 ADDR 0x22 */
SOC_SINGLE_TLV("DAC CLE Make-Up Gain Volume", R_DACCLEMUG,
FB_DACCLEMUG_MUGAIN, FM_DACCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_DACCOMPTHR PG 4 ADDR 0x23 */
SOC_SINGLE_TLV("DAC Compressor Threshold Volume", R_DACCOMPTHR,
FB_DACCOMPTHR_THRESH, FM_DACCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_DACCOMPRAT PG 4 ADDR 0x24 */
SOC_ENUM("DAC Compressor Ratio", dac_comp_rat_enum),
/* R_DACCOMPATKL PG 4 ADDR 0x25 */
/* R_DACCOMPATKH PG 4 ADDR 0x26 */
SND_SOC_BYTES("DAC Compressor Attack", R_DACCOMPATKL, 2),
/* R_DACCOMPRELL PG 4 ADDR 0x27 */
/* R_DACCOMPRELH PG 4 ADDR 0x28 */
SND_SOC_BYTES("DAC Compressor Release", R_DACCOMPRELL, 2),
/* R_DACLIMTHR PG 4 ADDR 0x29 */
SOC_SINGLE_TLV("DAC Limiter Threshold Volume", R_DACLIMTHR,
FB_DACLIMTHR_THRESH, FM_DACLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_DACLIMTGT PG 4 ADDR 0x2A */
SOC_SINGLE_TLV("DAC Limiter Target Volume", R_DACLIMTGT,
FB_DACLIMTGT_TARGET, FM_DACLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_DACLIMATKL PG 4 ADDR 0x2B */
/* R_DACLIMATKH PG 4 ADDR 0x2C */
SND_SOC_BYTES("DAC Limiter Attack", R_DACLIMATKL, 2),
/* R_DACLIMRELL PG 4 ADDR 0x2D */
/* R_DACLIMRELR PG 4 ADDR 0x2E */
SND_SOC_BYTES("DAC Limiter Release", R_DACLIMRELL, 2),
/* R_DACEXPTHR PG 4 ADDR 0x2F */
SOC_SINGLE_TLV("DAC Expander Threshold Volume", R_DACEXPTHR,
FB_DACEXPTHR_THRESH, FM_DACEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_DACEXPRAT PG 4 ADDR 0x30 */
SOC_ENUM("DAC Expander Ratio", dac_exp_rat_enum),
/* R_DACEXPATKL PG 4 ADDR 0x31 */
/* R_DACEXPATKR PG 4 ADDR 0x32 */
SND_SOC_BYTES("DAC Expander Attack", R_DACEXPATKL, 2),
/* R_DACEXPRELL PG 4 ADDR 0x33 */
/* R_DACEXPRELR PG 4 ADDR 0x34 */
SND_SOC_BYTES("DAC Expander Release", R_DACEXPRELL, 2),
/* R_DACFXCTL PG 4 ADDR 0x35 */
SOC_SINGLE("DAC 3D Switch", R_DACFXCTL, FB_DACFXCTL_3DEN, 1, 0),
SOC_SINGLE("DAC Treble Enhancement Switch",
R_DACFXCTL, FB_DACFXCTL_TEEN, 1, 0),
SOC_SINGLE("DAC Treble NLF Switch",
R_DACFXCTL, FB_DACFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("DAC Bass Enhancement Switch",
R_DACFXCTL, FB_DACFXCTL_BEEN, 1, 0),
SOC_SINGLE("DAC Bass NLF Switch",
R_DACFXCTL, FB_DACFXCTL_BNLFBYP, 1, 1),
/* R_SUBEQFILT PG 5 ADDR 0x01 */
SOC_SINGLE("Sub EQ 2 Switch",
R_SUBEQFILT, FB_SUBEQFILT_EQ2EN, 1, 0),
SOC_ENUM("Sub EQ 2 Band", sub_eq_enums[0]),
SOC_SINGLE("Sub EQ 1 Switch", R_SUBEQFILT, FB_SUBEQFILT_EQ1EN, 1, 0),
SOC_ENUM("Sub EQ 1 Band", sub_eq_enums[1]),
/* R_SUBMBCEN PG 5 ADDR 0x0A */
SOC_SINGLE("Sub MBC 3 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN3, 1, 0),
SOC_SINGLE("Sub MBC 2 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN2, 1, 0),
SOC_SINGLE("Sub MBC 1 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN1, 1, 0),
/* R_SUBMBCCTL PG 5 ADDR 0x0B */
SOC_ENUM("Sub MBC 3 Mode", sub_mbc3_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 3 Window", sub_mbc3_win_sel_enum),
SOC_ENUM("Sub MBC 2 Mode", sub_mbc2_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 2 Window", sub_mbc2_win_sel_enum),
SOC_ENUM("Sub MBC 1 Mode", sub_mbc1_lvl_det_mode_enum),
SOC_ENUM("Sub MBC 1 Window", sub_mbc1_win_sel_enum),
/* R_SUBMBCMUG1 PG 5 ADDR 0x0C */
SOC_ENUM("Sub MBC 1 Phase Polarity", sub_mbc1_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 1 Make-Up Gain Volume", R_SUBMBCMUG1,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR1 PG 5 ADDR 0x0D */
SOC_SINGLE_TLV("Sub MBC 1 Compressor Threshold Volume", R_SUBMBCTHR1,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT1 PG 5 ADDR 0x0E */
SOC_ENUM("Sub MBC 1 Compressor Ratio", sub_mbc1_comp_rat_enum),
/* R_SUBMBCATK1L PG 5 ADDR 0x0F */
/* R_SUBMBCATK1H PG 5 ADDR 0x10 */
SND_SOC_BYTES("Sub MBC 1 Attack", R_SUBMBCATK1L, 2),
/* R_SUBMBCREL1L PG 5 ADDR 0x11 */
/* R_SUBMBCREL1H PG 5 ADDR 0x12 */
SND_SOC_BYTES("Sub MBC 1 Release", R_SUBMBCREL1L, 2),
/* R_SUBMBCMUG2 PG 5 ADDR 0x13 */
SOC_ENUM("Sub MBC 2 Phase Polarity", sub_mbc2_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 2 Make-Up Gain Volume", R_SUBMBCMUG2,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR2 PG 5 ADDR 0x14 */
SOC_SINGLE_TLV("Sub MBC 2 Compressor Threshold Volume", R_SUBMBCTHR2,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT2 PG 5 ADDR 0x15 */
SOC_ENUM("Sub MBC 2 Compressor Ratio", sub_mbc2_comp_rat_enum),
/* R_SUBMBCATK2L PG 5 ADDR 0x16 */
/* R_SUBMBCATK2H PG 5 ADDR 0x17 */
SND_SOC_BYTES("Sub MBC 2 Attack", R_SUBMBCATK2L, 2),
/* R_SUBMBCREL2L PG 5 ADDR 0x18 */
/* R_SUBMBCREL2H PG 5 ADDR 0x19 */
SND_SOC_BYTES("Sub MBC 2 Release", R_SUBMBCREL2L, 2),
/* R_SUBMBCMUG3 PG 5 ADDR 0x1A */
SOC_ENUM("Sub MBC 3 Phase Polarity", sub_mbc3_phase_pol_enum),
SOC_SINGLE_TLV("Sub MBC 3 Make-Up Gain Volume", R_SUBMBCMUG3,
FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN,
0, mbc_mug_tlv_arr),
/* R_SUBMBCTHR3 PG 5 ADDR 0x1B */
SOC_SINGLE_TLV("Sub MBC 3 Threshold Volume", R_SUBMBCTHR3,
FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBMBCRAT3 PG 5 ADDR 0x1C */
SOC_ENUM("Sub MBC 3 Compressor Ratio", sub_mbc3_comp_rat_enum),
/* R_SUBMBCATK3L PG 5 ADDR 0x1D */
/* R_SUBMBCATK3H PG 5 ADDR 0x1E */
SND_SOC_BYTES("Sub MBC 3 Attack", R_SUBMBCATK3L, 3),
/* R_SUBMBCREL3L PG 5 ADDR 0x1F */
/* R_SUBMBCREL3H PG 5 ADDR 0x20 */
SND_SOC_BYTES("Sub MBC 3 Release", R_SUBMBCREL3L, 3),
/* R_SUBCLECTL PG 5 ADDR 0x21 */
SOC_ENUM("Sub CLE Level Mode", sub_cle_lvl_mode_enum),
SOC_ENUM("Sub CLE Window", sub_cle_win_sel_enum),
SOC_SINGLE("Sub CLE Expander Switch",
R_SUBCLECTL, FB_SUBCLECTL_EXPEN, 1, 0),
SOC_SINGLE("Sub CLE Limiter Switch",
R_SUBCLECTL, FB_SUBCLECTL_LIMEN, 1, 0),
SOC_SINGLE("Sub CLE Compressor Switch",
R_SUBCLECTL, FB_SUBCLECTL_COMPEN, 1, 0),
/* R_SUBCLEMUG PG 5 ADDR 0x22 */
SOC_SINGLE_TLV("Sub CLE Make-Up Gain Volume", R_SUBCLEMUG,
FB_SUBCLEMUG_MUGAIN, FM_SUBCLEMUG_MUGAIN,
0, cle_mug_tlv_arr),
/* R_SUBCOMPTHR PG 5 ADDR 0x23 */
SOC_SINGLE_TLV("Sub Compressor Threshold Volume", R_SUBCOMPTHR,
FB_SUBCOMPTHR_THRESH, FM_SUBCOMPTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBCOMPRAT PG 5 ADDR 0x24 */
SOC_ENUM("Sub Compressor Ratio", sub_comp_rat_enum),
/* R_SUBCOMPATKL PG 5 ADDR 0x25 */
/* R_SUBCOMPATKH PG 5 ADDR 0x26 */
SND_SOC_BYTES("Sub Compressor Attack", R_SUBCOMPATKL, 2),
/* R_SUBCOMPRELL PG 5 ADDR 0x27 */
/* R_SUBCOMPRELH PG 5 ADDR 0x28 */
SND_SOC_BYTES("Sub Compressor Release", R_SUBCOMPRELL, 2),
/* R_SUBLIMTHR PG 5 ADDR 0x29 */
SOC_SINGLE_TLV("Sub Limiter Threshold Volume", R_SUBLIMTHR,
FB_SUBLIMTHR_THRESH, FM_SUBLIMTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBLIMTGT PG 5 ADDR 0x2A */
SOC_SINGLE_TLV("Sub Limiter Target Volume", R_SUBLIMTGT,
FB_SUBLIMTGT_TARGET, FM_SUBLIMTGT_TARGET,
0, thr_tlv_arr),
/* R_SUBLIMATKL PG 5 ADDR 0x2B */
/* R_SUBLIMATKH PG 5 ADDR 0x2C */
SND_SOC_BYTES("Sub Limiter Attack", R_SUBLIMATKL, 2),
/* R_SUBLIMRELL PG 5 ADDR 0x2D */
/* R_SUBLIMRELR PG 5 ADDR 0x2E */
SND_SOC_BYTES("Sub Limiter Release", R_SUBLIMRELL, 2),
/* R_SUBEXPTHR PG 5 ADDR 0x2F */
SOC_SINGLE_TLV("Sub Expander Threshold Volume", R_SUBEXPTHR,
FB_SUBEXPTHR_THRESH, FM_SUBEXPTHR_THRESH,
0, thr_tlv_arr),
/* R_SUBEXPRAT PG 5 ADDR 0x30 */
SOC_ENUM("Sub Expander Ratio", sub_exp_rat_enum),
/* R_SUBEXPATKL PG 5 ADDR 0x31 */
/* R_SUBEXPATKR PG 5 ADDR 0x32 */
SND_SOC_BYTES("Sub Expander Attack", R_SUBEXPATKL, 2),
/* R_SUBEXPRELL PG 5 ADDR 0x33 */
/* R_SUBEXPRELR PG 5 ADDR 0x34 */
SND_SOC_BYTES("Sub Expander Release", R_SUBEXPRELL, 2),
/* R_SUBFXCTL PG 5 ADDR 0x35 */
SOC_SINGLE("Sub Treble Enhancement Switch",
R_SUBFXCTL, FB_SUBFXCTL_TEEN, 1, 0),
SOC_SINGLE("Sub Treble NLF Switch",
R_SUBFXCTL, FB_SUBFXCTL_TNLFBYP, 1, 1),
SOC_SINGLE("Sub Bass Enhancement Switch",
R_SUBFXCTL, FB_SUBFXCTL_BEEN, 1, 0),
SOC_SINGLE("Sub Bass NLF Switch",
R_SUBFXCTL, FB_SUBFXCTL_BNLFBYP, 1, 1),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("DAC Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("DAC Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("DAC Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("DAC Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("DAC Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("DAC Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("DAC Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("DAC Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("DAC Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("DAC Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("DAC Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("DAC Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("DAC Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("DAC Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("DAC Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("DAC Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("DAC Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("DAC Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("DAC 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("DAC 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("DAC MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("DAC MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("DAC MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("DAC MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("DAC MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("DAC MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("Speaker Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("Speaker Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("Speaker Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("Speaker Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("Speaker Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("Speaker Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("Speaker Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("Speaker Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("Speaker Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("Speaker Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("Speaker Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("Speaker Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("Speaker Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("Speaker Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("Speaker 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("Speaker 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("Speaker MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("Speaker MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("Speaker MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("Speaker MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("Speaker MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("Speaker MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14),
COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34),
COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39),
COEFF_RAM_CTL("Sub Cascade 1 Left Prescale", COEFF_SIZE, 0x1f),
COEFF_RAM_CTL("Sub Cascade 1 Right Prescale", COEFF_SIZE, 0x3f),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54),
COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74),
COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79),
COEFF_RAM_CTL("Sub Cascade 2 Left Prescale", COEFF_SIZE, 0x5f),
COEFF_RAM_CTL("Sub Cascade 2 Right Prescale", COEFF_SIZE, 0x7f),
COEFF_RAM_CTL("Sub Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80),
COEFF_RAM_CTL("Sub Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85),
COEFF_RAM_CTL("Sub Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
COEFF_RAM_CTL("Sub Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
COEFF_RAM_CTL("Sub Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
COEFF_RAM_CTL("Sub Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
COEFF_RAM_CTL("Sub Bass Mix", COEFF_SIZE, 0x96),
COEFF_RAM_CTL("Sub Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97),
COEFF_RAM_CTL("Sub Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c),
COEFF_RAM_CTL("Sub Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
COEFF_RAM_CTL("Sub Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
COEFF_RAM_CTL("Sub Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
COEFF_RAM_CTL("Sub Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
COEFF_RAM_CTL("Sub Treb Mix", COEFF_SIZE, 0xad),
COEFF_RAM_CTL("Sub 3D", COEFF_SIZE, 0xae),
COEFF_RAM_CTL("Sub 3D Mix", COEFF_SIZE, 0xaf),
COEFF_RAM_CTL("Sub MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0),
COEFF_RAM_CTL("Sub MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5),
COEFF_RAM_CTL("Sub MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba),
COEFF_RAM_CTL("Sub MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf),
COEFF_RAM_CTL("Sub MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4),
COEFF_RAM_CTL("Sub MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9),
};
static struct snd_soc_dapm_widget const tscs454_dapm_widgets[] = {
/* R_PLLCTL PG 0 ADDR 0x15 */
SND_SOC_DAPM_SUPPLY("PLL 1 Power", R_PLLCTL, FB_PLLCTL_PU_PLL1, 0,
pll_power_event,
SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("PLL 2 Power", R_PLLCTL, FB_PLLCTL_PU_PLL2, 0,
pll_power_event,
SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
/* R_I2SPINC0 PG 0 ADDR 0x22 */
SND_SOC_DAPM_AIF_OUT("DAI 3 Out", "DAI 3 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO3TRI, 1),
SND_SOC_DAPM_AIF_OUT("DAI 2 Out", "DAI 2 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO2TRI, 1),
SND_SOC_DAPM_AIF_OUT("DAI 1 Out", "DAI 1 Capture", 0,
R_I2SPINC0, FB_I2SPINC0_SDO1TRI, 1),
/* R_PWRM0 PG 0 ADDR 0x33 */
SND_SOC_DAPM_ADC("Input Processor Channel 3", NULL,
R_PWRM0, FB_PWRM0_INPROC3PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 2", NULL,
R_PWRM0, FB_PWRM0_INPROC2PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 1", NULL,
R_PWRM0, FB_PWRM0_INPROC1PU, 0),
SND_SOC_DAPM_ADC("Input Processor Channel 0", NULL,
R_PWRM0, FB_PWRM0_INPROC0PU, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias 2",
R_PWRM0, FB_PWRM0_MICB2PU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias 1", R_PWRM0,
FB_PWRM0_MICB1PU, 0, NULL, 0),
/* R_PWRM1 PG 0 ADDR 0x34 */
SND_SOC_DAPM_SUPPLY("Sub Power", R_PWRM1, FB_PWRM1_SUBPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Headphone Left Power",
R_PWRM1, FB_PWRM1_HPLPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Headphone Right Power",
R_PWRM1, FB_PWRM1_HPRPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Speaker Left Power",
R_PWRM1, FB_PWRM1_SPKLPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Speaker Right Power",
R_PWRM1, FB_PWRM1_SPKRPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Differential Input 2 Power",
R_PWRM1, FB_PWRM1_D2S2PU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Differential Input 1 Power",
R_PWRM1, FB_PWRM1_D2S1PU, 0, NULL, 0),
/* R_PWRM2 PG 0 ADDR 0x35 */
SND_SOC_DAPM_SUPPLY("DAI 3 Out Power",
R_PWRM2, FB_PWRM2_I2S3OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 2 Out Power",
R_PWRM2, FB_PWRM2_I2S2OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 1 Out Power",
R_PWRM2, FB_PWRM2_I2S1OPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 3 In Power",
R_PWRM2, FB_PWRM2_I2S3IPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 2 In Power",
R_PWRM2, FB_PWRM2_I2S2IPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAI 1 In Power",
R_PWRM2, FB_PWRM2_I2S1IPU, 0, NULL, 0),
/* R_PWRM3 PG 0 ADDR 0x36 */
SND_SOC_DAPM_SUPPLY("Line Out Left Power",
R_PWRM3, FB_PWRM3_LLINEPU, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Line Out Right Power",
R_PWRM3, FB_PWRM3_RLINEPU, 0, NULL, 0),
/* R_PWRM4 PG 0 ADDR 0x37 */
SND_SOC_DAPM_DAC("Sub", NULL, R_PWRM4, FB_PWRM4_OPSUBPU, 0),
SND_SOC_DAPM_DAC("DAC Left", NULL, R_PWRM4, FB_PWRM4_OPDACLPU, 0),
SND_SOC_DAPM_DAC("DAC Right", NULL, R_PWRM4, FB_PWRM4_OPDACRPU, 0),
SND_SOC_DAPM_DAC("ClassD Left", NULL, R_PWRM4, FB_PWRM4_OPSPKLPU, 0),
SND_SOC_DAPM_DAC("ClassD Right", NULL, R_PWRM4, FB_PWRM4_OPSPKRPU, 0),
/* R_AUDIOMUX1 PG 0 ADDR 0x3A */
SND_SOC_DAPM_MUX("DAI 2 Out Mux", SND_SOC_NOPM, 0, 0,
&dai2_mux_dapm_enum),
SND_SOC_DAPM_MUX("DAI 1 Out Mux", SND_SOC_NOPM, 0, 0,
&dai1_mux_dapm_enum),
/* R_AUDIOMUX2 PG 0 ADDR 0x3B */
SND_SOC_DAPM_MUX("DAC Mux", SND_SOC_NOPM, 0, 0,
&dac_mux_dapm_enum),
SND_SOC_DAPM_MUX("DAI 3 Out Mux", SND_SOC_NOPM, 0, 0,
&dai3_mux_dapm_enum),
/* R_AUDIOMUX3 PG 0 ADDR 0x3C */
SND_SOC_DAPM_MUX("Sub Mux", SND_SOC_NOPM, 0, 0,
&sub_mux_dapm_enum),
SND_SOC_DAPM_MUX("Speaker Mux", SND_SOC_NOPM, 0, 0,
&classd_mux_dapm_enum),
/* R_HSDCTL1 PG 1 ADDR 0x01 */
SND_SOC_DAPM_SUPPLY("GHS Detect Power", R_HSDCTL1,
FB_HSDCTL1_CON_DET_PWD, 1, NULL, 0),
/* R_CH0AIC PG 1 ADDR 0x06 */
SND_SOC_DAPM_MUX("Input Boost Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&in_bst_mux_ch0_dapm_enum),
SND_SOC_DAPM_MUX("ADC Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&adc_mux_ch0_dapm_enum),
SND_SOC_DAPM_MUX("Input Processor Channel 0 Mux", SND_SOC_NOPM, 0, 0,
&in_proc_mux_ch0_dapm_enum),
/* R_CH1AIC PG 1 ADDR 0x07 */
SND_SOC_DAPM_MUX("Input Boost Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&in_bst_mux_ch1_dapm_enum),
SND_SOC_DAPM_MUX("ADC Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&adc_mux_ch1_dapm_enum),
SND_SOC_DAPM_MUX("Input Processor Channel 1 Mux", SND_SOC_NOPM, 0, 0,
&in_proc_mux_ch1_dapm_enum),
/* Virtual */
SND_SOC_DAPM_AIF_IN("DAI 3 In", "DAI 3 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("DAI 2 In", "DAI 2 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("DAI 1 In", "DAI 1 Playback", 0,
SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SUPPLY("PLLs", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("Sub Out"),
SND_SOC_DAPM_OUTPUT("Headphone Left"),
SND_SOC_DAPM_OUTPUT("Headphone Right"),
SND_SOC_DAPM_OUTPUT("Speaker Left"),
SND_SOC_DAPM_OUTPUT("Speaker Right"),
SND_SOC_DAPM_OUTPUT("Line Out Left"),
SND_SOC_DAPM_OUTPUT("Line Out Right"),
SND_SOC_DAPM_INPUT("D2S 2"),
SND_SOC_DAPM_INPUT("D2S 1"),
SND_SOC_DAPM_INPUT("Line In 1 Left"),
SND_SOC_DAPM_INPUT("Line In 1 Right"),
SND_SOC_DAPM_INPUT("Line In 2 Left"),
SND_SOC_DAPM_INPUT("Line In 2 Right"),
SND_SOC_DAPM_INPUT("Line In 3 Left"),
SND_SOC_DAPM_INPUT("Line In 3 Right"),
SND_SOC_DAPM_INPUT("DMic 1"),
SND_SOC_DAPM_INPUT("DMic 2"),
SND_SOC_DAPM_MUX("CH 0_1 Mux", SND_SOC_NOPM, 0, 0,
&ch_0_1_mux_dapm_enum),
SND_SOC_DAPM_MUX("CH 2_3 Mux", SND_SOC_NOPM, 0, 0,
&ch_2_3_mux_dapm_enum),
SND_SOC_DAPM_MUX("CH 4_5 Mux", SND_SOC_NOPM, 0, 0,
&ch_4_5_mux_dapm_enum),
};
static struct snd_soc_dapm_route const tscs454_intercon[] = {
/* PLLs */
{"PLLs", NULL, "PLL 1 Power", pll_connected},
{"PLLs", NULL, "PLL 2 Power", pll_connected},
/* Inputs */
{"DAI 3 In", NULL, "DAI 3 In Power"},
{"DAI 2 In", NULL, "DAI 2 In Power"},
{"DAI 1 In", NULL, "DAI 1 In Power"},
/* Outputs */
{"DAI 3 Out", NULL, "DAI 3 Out Power"},
{"DAI 2 Out", NULL, "DAI 2 Out Power"},
{"DAI 1 Out", NULL, "DAI 1 Out Power"},
/* Ch Muxing */
{"CH 0_1 Mux", "DAI 1", "DAI 1 In"},
{"CH 0_1 Mux", "TDM 0_1", "DAI 1 In"},
{"CH 2_3 Mux", "DAI 2", "DAI 2 In"},
{"CH 2_3 Mux", "TDM 2_3", "DAI 1 In"},
{"CH 4_5 Mux", "DAI 3", "DAI 2 In"},
{"CH 4_5 Mux", "TDM 4_5", "DAI 1 In"},
/* In/Out Muxing */
{"DAI 1 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 1 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 1 Out Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAI 2 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 2 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 2 Out Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAI 3 Out Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAI 3 Out Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAI 3 Out Mux", "CH 4_5", "CH 4_5 Mux"},
/******************
* Playback Paths *
******************/
/* DAC Path */
{"DAC Mux", "CH 4_5", "CH 4_5 Mux"},
{"DAC Mux", "CH 2_3", "CH 2_3 Mux"},
{"DAC Mux", "CH 0_1", "CH 0_1 Mux"},
{"DAC Left", NULL, "DAC Mux"},
{"DAC Right", NULL, "DAC Mux"},
{"DAC Left", NULL, "PLLs"},
{"DAC Right", NULL, "PLLs"},
{"Headphone Left", NULL, "Headphone Left Power"},
{"Headphone Right", NULL, "Headphone Right Power"},
{"Headphone Left", NULL, "DAC Left"},
{"Headphone Right", NULL, "DAC Right"},
/* Line Out */
{"Line Out Left", NULL, "Line Out Left Power"},
{"Line Out Right", NULL, "Line Out Right Power"},
{"Line Out Left", NULL, "DAC Left"},
{"Line Out Right", NULL, "DAC Right"},
/* ClassD Path */
{"Speaker Mux", "CH 4_5", "CH 4_5 Mux"},
{"Speaker Mux", "CH 2_3", "CH 2_3 Mux"},
{"Speaker Mux", "CH 0_1", "CH 0_1 Mux"},
{"ClassD Left", NULL, "Speaker Mux"},
{"ClassD Right", NULL, "Speaker Mux"},
{"ClassD Left", NULL, "PLLs"},
{"ClassD Right", NULL, "PLLs"},
{"Speaker Left", NULL, "Speaker Left Power"},
{"Speaker Right", NULL, "Speaker Right Power"},
{"Speaker Left", NULL, "ClassD Left"},
{"Speaker Right", NULL, "ClassD Right"},
/* Sub Path */
{"Sub Mux", "CH 4", "CH 4_5 Mux"},
{"Sub Mux", "CH 5", "CH 4_5 Mux"},
{"Sub Mux", "CH 4 + 5", "CH 4_5 Mux"},
{"Sub Mux", "CH 2", "CH 2_3 Mux"},
{"Sub Mux", "CH 3", "CH 2_3 Mux"},
{"Sub Mux", "CH 2 + 3", "CH 2_3 Mux"},
{"Sub Mux", "CH 0", "CH 0_1 Mux"},
{"Sub Mux", "CH 1", "CH 0_1 Mux"},
{"Sub Mux", "CH 0 + 1", "CH 0_1 Mux"},
{"Sub Mux", "ADC/DMic 1 Left", "Input Processor Channel 0"},
{"Sub Mux", "ADC/DMic 1 Right", "Input Processor Channel 1"},
{"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 0"},
{"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 1"},
{"Sub Mux", "DMic 2 Left", "DMic 2"},
{"Sub Mux", "DMic 2 Right", "DMic 2"},
{"Sub Mux", "DMic 2 Left Plus Right", "DMic 2"},
{"Sub Mux", "ClassD Left", "ClassD Left"},
{"Sub Mux", "ClassD Right", "ClassD Right"},
{"Sub Mux", "ClassD Left Plus Right", "ClassD Left"},
{"Sub Mux", "ClassD Left Plus Right", "ClassD Right"},
{"Sub", NULL, "Sub Mux"},
{"Sub", NULL, "PLLs"},
{"Sub Out", NULL, "Sub Power"},
{"Sub Out", NULL, "Sub"},
/*****************
* Capture Paths *
*****************/
{"Input Boost Channel 0 Mux", "Input 3", "Line In 3 Left"},
{"Input Boost Channel 0 Mux", "Input 2", "Line In 2 Left"},
{"Input Boost Channel 0 Mux", "Input 1", "Line In 1 Left"},
{"Input Boost Channel 0 Mux", "D2S", "D2S 1"},
{"Input Boost Channel 1 Mux", "Input 3", "Line In 3 Right"},
{"Input Boost Channel 1 Mux", "Input 2", "Line In 2 Right"},
{"Input Boost Channel 1 Mux", "Input 1", "Line In 1 Right"},
{"Input Boost Channel 1 Mux", "D2S", "D2S 2"},
{"ADC Channel 0 Mux", "Input 3 Boost Bypass", "Line In 3 Left"},
{"ADC Channel 0 Mux", "Input 2 Boost Bypass", "Line In 2 Left"},
{"ADC Channel 0 Mux", "Input 1 Boost Bypass", "Line In 1 Left"},
{"ADC Channel 0 Mux", "Input Boost", "Input Boost Channel 0 Mux"},
{"ADC Channel 1 Mux", "Input 3 Boost Bypass", "Line In 3 Right"},
{"ADC Channel 1 Mux", "Input 2 Boost Bypass", "Line In 2 Right"},
{"ADC Channel 1 Mux", "Input 1 Boost Bypass", "Line In 1 Right"},
{"ADC Channel 1 Mux", "Input Boost", "Input Boost Channel 1 Mux"},
{"Input Processor Channel 0 Mux", "ADC", "ADC Channel 0 Mux"},
{"Input Processor Channel 0 Mux", "DMic", "DMic 1"},
{"Input Processor Channel 0", NULL, "PLLs"},
{"Input Processor Channel 0", NULL, "Input Processor Channel 0 Mux"},
{"Input Processor Channel 1 Mux", "ADC", "ADC Channel 1 Mux"},
{"Input Processor Channel 1 Mux", "DMic", "DMic 1"},
{"Input Processor Channel 1", NULL, "PLLs"},
{"Input Processor Channel 1", NULL, "Input Processor Channel 1 Mux"},
{"Input Processor Channel 2", NULL, "PLLs"},
{"Input Processor Channel 2", NULL, "DMic 2"},
{"Input Processor Channel 3", NULL, "PLLs"},
{"Input Processor Channel 3", NULL, "DMic 2"},
{"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"},
{"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"},
{"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 2"},
{"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 3"},
{"DAI 1 Out", NULL, "DAI 1 Out Mux"},
{"DAI 2 Out", NULL, "DAI 2 Out Mux"},
{"DAI 3 Out", NULL, "DAI 3 Out Mux"},
};
/* This is used when BCLK is sourcing the PLLs */
static int tscs454_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int bclk_dai;
dev_dbg(component->dev, "%s(): freq = %u\n", __func__, freq);
val = snd_soc_component_read(component, R_PLLCTL);
bclk_dai = (val & FM_PLLCTL_BCLKSEL) >> FB_PLLCTL_BCLKSEL;
if (bclk_dai != dai->id)
return 0;
tscs454->bclk_freq = freq;
return set_sysclk(component);
}
static int tscs454_set_bclk_ratio(struct snd_soc_dai *dai,
unsigned int ratio)
{
unsigned int mask;
int ret;
struct snd_soc_component *component = dai->component;
unsigned int val;
int shift;
dev_dbg(component->dev, "set_bclk_ratio() id = %d ratio = %u\n",
dai->id, ratio);
switch (dai->id) {
case TSCS454_DAI1_ID:
mask = FM_I2SCMC_BCMP1;
shift = FB_I2SCMC_BCMP1;
break;
case TSCS454_DAI2_ID:
mask = FM_I2SCMC_BCMP2;
shift = FB_I2SCMC_BCMP2;
break;
case TSCS454_DAI3_ID:
mask = FM_I2SCMC_BCMP3;
shift = FB_I2SCMC_BCMP3;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unknown audio interface (%d)\n", ret);
return ret;
}
switch (ratio) {
case 32:
val = I2SCMC_BCMP_32X;
break;
case 40:
val = I2SCMC_BCMP_40X;
break;
case 64:
val = I2SCMC_BCMP_64X;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported bclk ratio (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
R_I2SCMC, mask, val << shift);
if (ret < 0) {
dev_err(component->dev,
"Failed to set DAI BCLK ratio (%d)\n", ret);
return ret;
}
return 0;
}
static inline int set_aif_provider_from_fmt(struct snd_soc_component *component,
struct aif *aif, unsigned int fmt)
{
int ret;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
aif->provider = true;
break;
case SND_SOC_DAIFMT_CBC_CFC:
aif->provider = false;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported format (%d)\n", ret);
return ret;
}
return 0;
}
static inline int set_aif_tdm_delay(struct snd_soc_component *component,
unsigned int dai_id, bool delay)
{
unsigned int reg;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_TDMCTL0;
break;
case TSCS454_DAI2_ID:
reg = R_PCMP2CTL0;
break;
case TSCS454_DAI3_ID:
reg = R_PCMP3CTL0;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_TDMCTL0_BDELAY, delay);
if (ret < 0) {
dev_err(component->dev, "Failed to setup tdm format (%d)\n",
ret);
return ret;
}
return 0;
}
static inline int set_aif_format_from_fmt(struct snd_soc_component *component,
unsigned int dai_id, unsigned int fmt)
{
unsigned int reg;
unsigned int val;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_RIGHT_J:
val = FV_FORMAT_RIGHT;
break;
case SND_SOC_DAIFMT_LEFT_J:
val = FV_FORMAT_LEFT;
break;
case SND_SOC_DAIFMT_I2S:
val = FV_FORMAT_I2S;
break;
case SND_SOC_DAIFMT_DSP_A:
ret = set_aif_tdm_delay(component, dai_id, true);
if (ret < 0)
return ret;
val = FV_FORMAT_TDM;
break;
case SND_SOC_DAIFMT_DSP_B:
ret = set_aif_tdm_delay(component, dai_id, false);
if (ret < 0)
return ret;
val = FV_FORMAT_TDM;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Format unsupported (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_I2SPCTL_FORMAT, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set DAI %d format (%d)\n",
dai_id + 1, ret);
return ret;
}
return 0;
}
static inline int
set_aif_clock_format_from_fmt(struct snd_soc_component *component,
unsigned int dai_id, unsigned int fmt)
{
unsigned int reg;
unsigned int val;
int ret;
switch (dai_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev,
"DAI %d unknown (%d)\n", dai_id + 1, ret);
return ret;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_NOT_INVERTED;
break;
case SND_SOC_DAIFMT_NB_IF:
val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_INVERTED;
break;
case SND_SOC_DAIFMT_IB_NF:
val = FV_BCLKP_INVERTED | FV_LRCLKP_NOT_INVERTED;
break;
case SND_SOC_DAIFMT_IB_IF:
val = FV_BCLKP_INVERTED | FV_LRCLKP_INVERTED;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Format unknown (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, reg,
FM_I2SPCTL_BCLKP | FM_I2SPCTL_LRCLKP, val);
if (ret < 0) {
dev_err(component->dev,
"Failed to set clock polarity for DAI%d (%d)\n",
dai_id + 1, ret);
return ret;
}
return 0;
}
static int tscs454_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
int ret;
ret = set_aif_provider_from_fmt(component, aif, fmt);
if (ret < 0)
return ret;
ret = set_aif_format_from_fmt(component, dai->id, fmt);
if (ret < 0)
return ret;
ret = set_aif_clock_format_from_fmt(component, dai->id, fmt);
if (ret < 0)
return ret;
return 0;
}
static int tscs454_dai1_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots,
int slot_width)
{
struct snd_soc_component *component = dai->component;
unsigned int val;
int ret;
if (!slots)
return 0;
if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) {
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret);
return ret;
}
switch (slots) {
case 2:
val = FV_TDMSO_2 | FV_TDMSI_2;
break;
case 4:
val = FV_TDMSO_4 | FV_TDMSI_4;
break;
case 6:
val = FV_TDMSO_6 | FV_TDMSI_6;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid number of slots (%d)\n", ret);
return ret;
}
switch (slot_width) {
case 16:
val = val | FV_TDMDSS_16;
break;
case 24:
val = val | FV_TDMDSS_24;
break;
case 32:
val = val | FV_TDMDSS_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret);
return ret;
}
ret = snd_soc_component_write(component, R_TDMCTL1, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set slots (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs454_dai23_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots,
int slot_width)
{
struct snd_soc_component *component = dai->component;
unsigned int reg;
unsigned int val;
int ret;
if (!slots)
return 0;
if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) {
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret);
return ret;
}
switch (dai->id) {
case TSCS454_DAI2_ID:
reg = R_PCMP2CTL1;
break;
case TSCS454_DAI3_ID:
reg = R_PCMP3CTL1;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unrecognized interface %d (%d)\n",
dai->id, ret);
return ret;
}
switch (slots) {
case 1:
val = FV_PCMSOP_1 | FV_PCMSIP_1;
break;
case 2:
val = FV_PCMSOP_2 | FV_PCMSIP_2;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid number of slots (%d)\n", ret);
return ret;
}
switch (slot_width) {
case 16:
val = val | FV_PCMDSSP_16;
break;
case 24:
val = val | FV_PCMDSSP_24;
break;
case 32:
val = val | FV_PCMDSSP_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret);
return ret;
}
ret = snd_soc_component_write(component, reg, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set slots (%d)\n", ret);
return ret;
}
return 0;
}
static int set_aif_fs(struct snd_soc_component *component,
unsigned int id,
unsigned int rate)
{
unsigned int reg;
unsigned int br;
unsigned int bm;
int ret;
switch (rate) {
case 8000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_0PT25;
break;
case 16000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_0PT5;
break;
case 24000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_0PT5;
break;
case 32000:
br = FV_I2SMBR_32;
bm = FV_I2SMBM_1;
break;
case 48000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_1;
break;
case 96000:
br = FV_I2SMBR_48;
bm = FV_I2SMBM_2;
break;
case 11025:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_0PT25;
break;
case 22050:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_0PT5;
break;
case 44100:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_1;
break;
case 88200:
br = FV_I2SMBR_44PT1;
bm = FV_I2SMBM_2;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported sample rate (%d)\n", ret);
return ret;
}
switch (id) {
case TSCS454_DAI1_ID:
reg = R_I2S1MRATE;
break;
case TSCS454_DAI2_ID:
reg = R_I2S2MRATE;
break;
case TSCS454_DAI3_ID:
reg = R_I2S3MRATE;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "DAI ID not recognized (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, reg,
FM_I2SMRATE_I2SMBR | FM_I2SMRATE_I2SMBM, br|bm);
if (ret < 0) {
dev_err(component->dev,
"Failed to update register (%d)\n", ret);
return ret;
}
return 0;
}
static int set_aif_sample_format(struct snd_soc_component *component,
snd_pcm_format_t format,
int aif_id)
{
unsigned int reg;
unsigned int width;
int ret;
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
width = FV_WL_16;
break;
case SNDRV_PCM_FORMAT_S20_3LE:
width = FV_WL_20;
break;
case SNDRV_PCM_FORMAT_S24_3LE:
width = FV_WL_24;
break;
case SNDRV_PCM_FORMAT_S24_LE:
case SNDRV_PCM_FORMAT_S32_LE:
width = FV_WL_32;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Unsupported format width (%d)\n", ret);
return ret;
}
switch (aif_id) {
case TSCS454_DAI1_ID:
reg = R_I2SP1CTL;
break;
case TSCS454_DAI2_ID:
reg = R_I2SP2CTL;
break;
case TSCS454_DAI3_ID:
reg = R_I2SP3CTL;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "AIF ID not recognized (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component,
reg, FM_I2SPCTL_WL, width);
if (ret < 0) {
dev_err(component->dev,
"Failed to set sample width (%d)\n", ret);
return ret;
}
return 0;
}
static int tscs454_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int fs = params_rate(params);
struct aif *aif = &tscs454->aifs[dai->id];
unsigned int val;
int ret;
mutex_lock(&tscs454->aifs_status_lock);
dev_dbg(component->dev, "%s(): aif %d fs = %u\n", __func__,
aif->id, fs);
if (!aif_active(&tscs454->aifs_status, aif->id)) {
if (PLL_44_1K_RATE % fs)
aif->pll = &tscs454->pll1;
else
aif->pll = &tscs454->pll2;
dev_dbg(component->dev, "Reserving pll %d for aif %d\n",
aif->pll->id, aif->id);
reserve_pll(aif->pll);
}
if (!aifs_active(&tscs454->aifs_status)) { /* First active aif */
val = snd_soc_component_read(component, R_ISRC);
if ((val & FM_ISRC_IBR) == FV_IBR_48)
tscs454->internal_rate.pll = &tscs454->pll1;
else
tscs454->internal_rate.pll = &tscs454->pll2;
dev_dbg(component->dev, "Reserving pll %d for ir\n",
tscs454->internal_rate.pll->id);
reserve_pll(tscs454->internal_rate.pll);
}
ret = set_aif_fs(component, aif->id, fs);
if (ret < 0) {
dev_err(component->dev, "Failed to set aif fs (%d)\n", ret);
goto exit;
}
ret = set_aif_sample_format(component, params_format(params), aif->id);
if (ret < 0) {
dev_err(component->dev,
"Failed to set aif sample format (%d)\n", ret);
goto exit;
}
set_aif_status_active(&tscs454->aifs_status, aif->id,
substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
dev_dbg(component->dev, "Set aif %d active. Streams status is 0x%x\n",
aif->id, tscs454->aifs_status.streams);
ret = 0;
exit:
mutex_unlock(&tscs454->aifs_status_lock);
return ret;
}
static int tscs454_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
return aif_free(component, aif,
substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
}
static int tscs454_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
int ret;
struct snd_soc_component *component = dai->component;
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
struct aif *aif = &tscs454->aifs[dai->id];
ret = aif_prepare(component, aif);
if (ret < 0)
return ret;
return 0;
}
static struct snd_soc_dai_ops const tscs454_dai1_ops = {
.set_sysclk = tscs454_set_sysclk,
.set_bclk_ratio = tscs454_set_bclk_ratio,
.set_fmt = tscs454_set_dai_fmt,
.set_tdm_slot = tscs454_dai1_set_tdm_slot,
.hw_params = tscs454_hw_params,
.hw_free = tscs454_hw_free,
.prepare = tscs454_prepare,
};
static struct snd_soc_dai_ops const tscs454_dai23_ops = {
.set_sysclk = tscs454_set_sysclk,
.set_bclk_ratio = tscs454_set_bclk_ratio,
.set_fmt = tscs454_set_dai_fmt,
.set_tdm_slot = tscs454_dai23_set_tdm_slot,
.hw_params = tscs454_hw_params,
.hw_free = tscs454_hw_free,
.prepare = tscs454_prepare,
};
static int tscs454_probe(struct snd_soc_component *component)
{
struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component);
unsigned int val;
int ret = 0;
switch (tscs454->sysclk_src_id) {
case PLL_INPUT_XTAL:
val = FV_PLLISEL_XTAL;
break;
case PLL_INPUT_MCLK1:
val = FV_PLLISEL_MCLK1;
break;
case PLL_INPUT_MCLK2:
val = FV_PLLISEL_MCLK2;
break;
case PLL_INPUT_BCLK:
val = FV_PLLISEL_BCLK;
break;
default:
ret = -EINVAL;
dev_err(component->dev, "Invalid sysclk src id (%d)\n", ret);
return ret;
}
ret = snd_soc_component_update_bits(component, R_PLLCTL,
FM_PLLCTL_PLLISEL, val);
if (ret < 0) {
dev_err(component->dev, "Failed to set PLL input (%d)\n", ret);
return ret;
}
if (tscs454->sysclk_src_id < PLL_INPUT_BCLK)
ret = set_sysclk(component);
return ret;
}
static const struct snd_soc_component_driver soc_component_dev_tscs454 = {
.probe = tscs454_probe,
.dapm_widgets = tscs454_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(tscs454_dapm_widgets),
.dapm_routes = tscs454_intercon,
.num_dapm_routes = ARRAY_SIZE(tscs454_intercon),
.controls = tscs454_snd_controls,
.num_controls = ARRAY_SIZE(tscs454_snd_controls),
};
#define TSCS454_RATES SNDRV_PCM_RATE_8000_96000
#define TSCS454_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE \
| SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver tscs454_dais[] = {
{
.name = "tscs454-dai1",
.id = TSCS454_DAI1_ID,
.playback = {
.stream_name = "DAI 1 Playback",
.channels_min = 1,
.channels_max = 6,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 1 Capture",
.channels_min = 1,
.channels_max = 6,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai1_ops,
.symmetric_rate = 1,
.symmetric_channels = 1,
.symmetric_sample_bits = 1,
},
{
.name = "tscs454-dai2",
.id = TSCS454_DAI2_ID,
.playback = {
.stream_name = "DAI 2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai23_ops,
.symmetric_rate = 1,
.symmetric_channels = 1,
.symmetric_sample_bits = 1,
},
{
.name = "tscs454-dai3",
.id = TSCS454_DAI3_ID,
.playback = {
.stream_name = "DAI 3 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.capture = {
.stream_name = "DAI 3 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = TSCS454_RATES,
.formats = TSCS454_FORMATS,},
.ops = &tscs454_dai23_ops,
.symmetric_rate = 1,
.symmetric_channels = 1,
.symmetric_sample_bits = 1,
},
};
static char const * const src_names[] = {
"xtal", "mclk1", "mclk2", "bclk"};
static int tscs454_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct tscs454 *tscs454;
int src;
int ret;
tscs454 = devm_kzalloc(&i2c->dev, sizeof(*tscs454), GFP_KERNEL);
if (!tscs454)
return -ENOMEM;
ret = tscs454_data_init(tscs454, i2c);
if (ret < 0)
return ret;
i2c_set_clientdata(i2c, tscs454);
for (src = PLL_INPUT_XTAL; src < PLL_INPUT_BCLK; src++) {
tscs454->sysclk = devm_clk_get(&i2c->dev, src_names[src]);
if (!IS_ERR(tscs454->sysclk)) {
break;
} else if (PTR_ERR(tscs454->sysclk) != -ENOENT) {
ret = PTR_ERR(tscs454->sysclk);
dev_err(&i2c->dev, "Failed to get sysclk (%d)\n", ret);
return ret;
}
}
dev_dbg(&i2c->dev, "PLL input is %s\n", src_names[src]);
tscs454->sysclk_src_id = src;
ret = regmap_write(tscs454->regmap,
R_RESET, FV_RESET_PWR_ON_DEFAULTS);
if (ret < 0) {
dev_err(&i2c->dev, "Failed to reset the component (%d)\n", ret);
return ret;
}
regcache_mark_dirty(tscs454->regmap);
ret = regmap_register_patch(tscs454->regmap, tscs454_patch,
ARRAY_SIZE(tscs454_patch));
if (ret < 0) {
dev_err(&i2c->dev, "Failed to apply patch (%d)\n", ret);
return ret;
}
/* Sync pg sel reg with cache */
regmap_write(tscs454->regmap, R_PAGESEL, 0x00);
ret = devm_snd_soc_register_component(&i2c->dev, &soc_component_dev_tscs454,
tscs454_dais, ARRAY_SIZE(tscs454_dais));
if (ret) {
dev_err(&i2c->dev, "Failed to register component (%d)\n", ret);
return ret;
}
return 0;
}
static const struct i2c_device_id tscs454_i2c_id[] = {
{ "tscs454", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tscs454_i2c_id);
static const struct of_device_id tscs454_of_match[] = {
{ .compatible = "tempo,tscs454", },
{ }
};
MODULE_DEVICE_TABLE(of, tscs454_of_match);
static struct i2c_driver tscs454_i2c_driver = {
.driver = {
.name = "tscs454",
.of_match_table = tscs454_of_match,
},
.probe = tscs454_i2c_probe,
.id_table = tscs454_i2c_id,
};
module_i2c_driver(tscs454_i2c_driver);
MODULE_AUTHOR("Tempo Semiconductor <steven.eckhoff.opensource@gmail.com");
MODULE_DESCRIPTION("ASoC TSCS454 driver");
MODULE_LICENSE("GPL v2");