IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Bugs have been reported on 8 sockets x86 machines in which the TSC was
wrongly disabled when the system is under heavy workload.
[ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns
[ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped!
[ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns
[ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped!
[ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable
[ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog
[ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.
[ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998)
[ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564.
[ 821.067990] clocksource: Switched to clocksource hpet
This can be reproduced by running memory intensive 'stream' tests,
or some of the stress-ng subcases such as 'ioport'.
The reason for these issues is the when system is under heavy load, the
read latency of the clocksources can be very high. Even lightweight TSC
reads can show high latencies, and latencies are much worse for external
clocksources such as HPET or the APIC PM timer. These latencies can
result in false-positive clocksource-unstable determinations.
These issues were initially reported by a customer running on a production
system, and this problem was reproduced on several generations of Xeon
servers, especially when running the stress-ng test. These Xeon servers
were not production systems, but they did have the latest steppings
and firmware.
Given that the clocksource watchdog is a continual diagnostic check with
frequency of twice a second, there is no need to rush it when the system
is under heavy load. Therefore, when high clocksource read latencies
are detected, suspend the watchdog timer for 5 minutes.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>