Tomi Valkeinen b7328e1459 OMAPDSS: add THIS_MODULE owner to DSS outputs
Setup the owner field for DSS output's omap_dss_device so that module
refcounting works.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
2013-06-17 14:00:53 +03:00

1181 lines
25 KiB
C

/*
* hdmi.c
*
* HDMI interface DSS driver setting for TI's OMAP4 family of processor.
* Copyright (C) 2010-2011 Texas Instruments Incorporated - http://www.ti.com/
* Authors: Yong Zhi
* Mythri pk <mythripk@ti.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "HDMI"
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <video/omapdss.h>
#include "ti_hdmi.h"
#include "dss.h"
#include "dss_features.h"
#define HDMI_WP 0x0
#define HDMI_CORE_SYS 0x400
#define HDMI_CORE_AV 0x900
#define HDMI_PLLCTRL 0x200
#define HDMI_PHY 0x300
/* HDMI EDID Length move this */
#define HDMI_EDID_MAX_LENGTH 256
#define EDID_TIMING_DESCRIPTOR_SIZE 0x12
#define EDID_DESCRIPTOR_BLOCK0_ADDRESS 0x36
#define EDID_DESCRIPTOR_BLOCK1_ADDRESS 0x80
#define EDID_SIZE_BLOCK0_TIMING_DESCRIPTOR 4
#define EDID_SIZE_BLOCK1_TIMING_DESCRIPTOR 4
#define HDMI_DEFAULT_REGN 16
#define HDMI_DEFAULT_REGM2 1
static struct {
struct mutex lock;
struct platform_device *pdev;
struct hdmi_ip_data ip_data;
struct clk *sys_clk;
struct regulator *vdda_hdmi_dac_reg;
int ct_cp_hpd_gpio;
int ls_oe_gpio;
int hpd_gpio;
struct omap_dss_device output;
} hdmi;
/*
* Logic for the below structure :
* user enters the CEA or VESA timings by specifying the HDMI/DVI code.
* There is a correspondence between CEA/VESA timing and code, please
* refer to section 6.3 in HDMI 1.3 specification for timing code.
*
* In the below structure, cea_vesa_timings corresponds to all OMAP4
* supported CEA and VESA timing values.code_cea corresponds to the CEA
* code, It is used to get the timing from cea_vesa_timing array.Similarly
* with code_vesa. Code_index is used for back mapping, that is once EDID
* is read from the TV, EDID is parsed to find the timing values and then
* map it to corresponding CEA or VESA index.
*/
static const struct hdmi_config cea_timings[] = {
{
{ 640, 480, 25200, 96, 16, 48, 2, 10, 33,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 1, HDMI_HDMI },
},
{
{ 720, 480, 27027, 62, 16, 60, 6, 9, 30,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 2, HDMI_HDMI },
},
{
{ 1280, 720, 74250, 40, 110, 220, 5, 5, 20,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 4, HDMI_HDMI },
},
{
{ 1920, 540, 74250, 44, 88, 148, 5, 2, 15,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
true, },
{ 5, HDMI_HDMI },
},
{
{ 1440, 240, 27027, 124, 38, 114, 3, 4, 15,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
true, },
{ 6, HDMI_HDMI },
},
{
{ 1920, 1080, 148500, 44, 88, 148, 5, 4, 36,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 16, HDMI_HDMI },
},
{
{ 720, 576, 27000, 64, 12, 68, 5, 5, 39,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 17, HDMI_HDMI },
},
{
{ 1280, 720, 74250, 40, 440, 220, 5, 5, 20,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 19, HDMI_HDMI },
},
{
{ 1920, 540, 74250, 44, 528, 148, 5, 2, 15,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
true, },
{ 20, HDMI_HDMI },
},
{
{ 1440, 288, 27000, 126, 24, 138, 3, 2, 19,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
true, },
{ 21, HDMI_HDMI },
},
{
{ 1440, 576, 54000, 128, 24, 136, 5, 5, 39,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 29, HDMI_HDMI },
},
{
{ 1920, 1080, 148500, 44, 528, 148, 5, 4, 36,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 31, HDMI_HDMI },
},
{
{ 1920, 1080, 74250, 44, 638, 148, 5, 4, 36,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 32, HDMI_HDMI },
},
{
{ 2880, 480, 108108, 248, 64, 240, 6, 9, 30,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 35, HDMI_HDMI },
},
{
{ 2880, 576, 108000, 256, 48, 272, 5, 5, 39,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 37, HDMI_HDMI },
},
};
static const struct hdmi_config vesa_timings[] = {
/* VESA From Here */
{
{ 640, 480, 25175, 96, 16, 48, 2, 11, 31,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 4, HDMI_DVI },
},
{
{ 800, 600, 40000, 128, 40, 88, 4, 1, 23,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 9, HDMI_DVI },
},
{
{ 848, 480, 33750, 112, 16, 112, 8, 6, 23,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0xE, HDMI_DVI },
},
{
{ 1280, 768, 79500, 128, 64, 192, 7, 3, 20,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x17, HDMI_DVI },
},
{
{ 1280, 800, 83500, 128, 72, 200, 6, 3, 22,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x1C, HDMI_DVI },
},
{
{ 1360, 768, 85500, 112, 64, 256, 6, 3, 18,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x27, HDMI_DVI },
},
{
{ 1280, 960, 108000, 112, 96, 312, 3, 1, 36,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x20, HDMI_DVI },
},
{
{ 1280, 1024, 108000, 112, 48, 248, 3, 1, 38,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x23, HDMI_DVI },
},
{
{ 1024, 768, 65000, 136, 24, 160, 6, 3, 29,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x10, HDMI_DVI },
},
{
{ 1400, 1050, 121750, 144, 88, 232, 4, 3, 32,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x2A, HDMI_DVI },
},
{
{ 1440, 900, 106500, 152, 80, 232, 6, 3, 25,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x2F, HDMI_DVI },
},
{
{ 1680, 1050, 146250, 176 , 104, 280, 6, 3, 30,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_LOW,
false, },
{ 0x3A, HDMI_DVI },
},
{
{ 1366, 768, 85500, 143, 70, 213, 3, 3, 24,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x51, HDMI_DVI },
},
{
{ 1920, 1080, 148500, 44, 148, 80, 5, 4, 36,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x52, HDMI_DVI },
},
{
{ 1280, 768, 68250, 32, 48, 80, 7, 3, 12,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x16, HDMI_DVI },
},
{
{ 1400, 1050, 101000, 32, 48, 80, 4, 3, 23,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x29, HDMI_DVI },
},
{
{ 1680, 1050, 119000, 32, 48, 80, 6, 3, 21,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x39, HDMI_DVI },
},
{
{ 1280, 800, 79500, 32, 48, 80, 6, 3, 14,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x1B, HDMI_DVI },
},
{
{ 1280, 720, 74250, 40, 110, 220, 5, 5, 20,
OMAPDSS_SIG_ACTIVE_HIGH, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x55, HDMI_DVI },
},
{
{ 1920, 1200, 154000, 32, 48, 80, 6, 3, 26,
OMAPDSS_SIG_ACTIVE_LOW, OMAPDSS_SIG_ACTIVE_HIGH,
false, },
{ 0x44, HDMI_DVI },
},
};
static int hdmi_runtime_get(void)
{
int r;
DSSDBG("hdmi_runtime_get\n");
r = pm_runtime_get_sync(&hdmi.pdev->dev);
WARN_ON(r < 0);
if (r < 0)
return r;
return 0;
}
static void hdmi_runtime_put(void)
{
int r;
DSSDBG("hdmi_runtime_put\n");
r = pm_runtime_put_sync(&hdmi.pdev->dev);
WARN_ON(r < 0 && r != -ENOSYS);
}
static int hdmi_init_regulator(void)
{
struct regulator *reg;
if (hdmi.vdda_hdmi_dac_reg != NULL)
return 0;
reg = devm_regulator_get(&hdmi.pdev->dev, "vdda_hdmi_dac");
/* DT HACK: try VDAC to make omapdss work for o4 sdp/panda */
if (IS_ERR(reg))
reg = devm_regulator_get(&hdmi.pdev->dev, "VDAC");
if (IS_ERR(reg)) {
DSSERR("can't get VDDA_HDMI_DAC regulator\n");
return PTR_ERR(reg);
}
hdmi.vdda_hdmi_dac_reg = reg;
return 0;
}
static int hdmi_init_display(struct omap_dss_device *dssdev)
{
int r;
struct gpio gpios[] = {
{ hdmi.ct_cp_hpd_gpio, GPIOF_OUT_INIT_LOW, "hdmi_ct_cp_hpd" },
{ hdmi.ls_oe_gpio, GPIOF_OUT_INIT_LOW, "hdmi_ls_oe" },
{ hdmi.hpd_gpio, GPIOF_DIR_IN, "hdmi_hpd" },
};
DSSDBG("init_display\n");
dss_init_hdmi_ip_ops(&hdmi.ip_data, omapdss_get_version());
r = hdmi_init_regulator();
if (r)
return r;
r = gpio_request_array(gpios, ARRAY_SIZE(gpios));
if (r)
return r;
return 0;
}
static void hdmi_uninit_display(struct omap_dss_device *dssdev)
{
DSSDBG("uninit_display\n");
gpio_free(hdmi.ct_cp_hpd_gpio);
gpio_free(hdmi.ls_oe_gpio);
gpio_free(hdmi.hpd_gpio);
}
static const struct hdmi_config *hdmi_find_timing(
const struct hdmi_config *timings_arr,
int len)
{
int i;
for (i = 0; i < len; i++) {
if (timings_arr[i].cm.code == hdmi.ip_data.cfg.cm.code)
return &timings_arr[i];
}
return NULL;
}
static const struct hdmi_config *hdmi_get_timings(void)
{
const struct hdmi_config *arr;
int len;
if (hdmi.ip_data.cfg.cm.mode == HDMI_DVI) {
arr = vesa_timings;
len = ARRAY_SIZE(vesa_timings);
} else {
arr = cea_timings;
len = ARRAY_SIZE(cea_timings);
}
return hdmi_find_timing(arr, len);
}
static bool hdmi_timings_compare(struct omap_video_timings *timing1,
const struct omap_video_timings *timing2)
{
int timing1_vsync, timing1_hsync, timing2_vsync, timing2_hsync;
if ((DIV_ROUND_CLOSEST(timing2->pixel_clock, 1000) ==
DIV_ROUND_CLOSEST(timing1->pixel_clock, 1000)) &&
(timing2->x_res == timing1->x_res) &&
(timing2->y_res == timing1->y_res)) {
timing2_hsync = timing2->hfp + timing2->hsw + timing2->hbp;
timing1_hsync = timing1->hfp + timing1->hsw + timing1->hbp;
timing2_vsync = timing2->vfp + timing2->vsw + timing2->vbp;
timing1_vsync = timing2->vfp + timing2->vsw + timing2->vbp;
DSSDBG("timing1_hsync = %d timing1_vsync = %d"\
"timing2_hsync = %d timing2_vsync = %d\n",
timing1_hsync, timing1_vsync,
timing2_hsync, timing2_vsync);
if ((timing1_hsync == timing2_hsync) &&
(timing1_vsync == timing2_vsync)) {
return true;
}
}
return false;
}
static struct hdmi_cm hdmi_get_code(struct omap_video_timings *timing)
{
int i;
struct hdmi_cm cm = {-1};
DSSDBG("hdmi_get_code\n");
for (i = 0; i < ARRAY_SIZE(cea_timings); i++) {
if (hdmi_timings_compare(timing, &cea_timings[i].timings)) {
cm = cea_timings[i].cm;
goto end;
}
}
for (i = 0; i < ARRAY_SIZE(vesa_timings); i++) {
if (hdmi_timings_compare(timing, &vesa_timings[i].timings)) {
cm = vesa_timings[i].cm;
goto end;
}
}
end: return cm;
}
unsigned long hdmi_get_pixel_clock(void)
{
/* HDMI Pixel Clock in Mhz */
return hdmi.ip_data.cfg.timings.pixel_clock * 1000;
}
static void hdmi_compute_pll(struct omap_dss_device *dssdev, int phy,
struct hdmi_pll_info *pi)
{
unsigned long clkin, refclk;
u32 mf;
clkin = clk_get_rate(hdmi.sys_clk) / 10000;
/*
* Input clock is predivided by N + 1
* out put of which is reference clk
*/
pi->regn = HDMI_DEFAULT_REGN;
refclk = clkin / pi->regn;
pi->regm2 = HDMI_DEFAULT_REGM2;
/*
* multiplier is pixel_clk/ref_clk
* Multiplying by 100 to avoid fractional part removal
*/
pi->regm = phy * pi->regm2 / refclk;
/*
* fractional multiplier is remainder of the difference between
* multiplier and actual phy(required pixel clock thus should be
* multiplied by 2^18(262144) divided by the reference clock
*/
mf = (phy - pi->regm / pi->regm2 * refclk) * 262144;
pi->regmf = pi->regm2 * mf / refclk;
/*
* Dcofreq should be set to 1 if required pixel clock
* is greater than 1000MHz
*/
pi->dcofreq = phy > 1000 * 100;
pi->regsd = ((pi->regm * clkin / 10) / (pi->regn * 250) + 5) / 10;
/* Set the reference clock to sysclk reference */
pi->refsel = HDMI_REFSEL_SYSCLK;
DSSDBG("M = %d Mf = %d\n", pi->regm, pi->regmf);
DSSDBG("range = %d sd = %d\n", pi->dcofreq, pi->regsd);
}
static int hdmi_power_on_core(struct omap_dss_device *dssdev)
{
int r;
gpio_set_value(hdmi.ct_cp_hpd_gpio, 1);
gpio_set_value(hdmi.ls_oe_gpio, 1);
/* wait 300us after CT_CP_HPD for the 5V power output to reach 90% */
udelay(300);
r = regulator_enable(hdmi.vdda_hdmi_dac_reg);
if (r)
goto err_vdac_enable;
r = hdmi_runtime_get();
if (r)
goto err_runtime_get;
/* Make selection of HDMI in DSS */
dss_select_hdmi_venc_clk_source(DSS_HDMI_M_PCLK);
return 0;
err_runtime_get:
regulator_disable(hdmi.vdda_hdmi_dac_reg);
err_vdac_enable:
gpio_set_value(hdmi.ct_cp_hpd_gpio, 0);
gpio_set_value(hdmi.ls_oe_gpio, 0);
return r;
}
static void hdmi_power_off_core(struct omap_dss_device *dssdev)
{
hdmi_runtime_put();
regulator_disable(hdmi.vdda_hdmi_dac_reg);
gpio_set_value(hdmi.ct_cp_hpd_gpio, 0);
gpio_set_value(hdmi.ls_oe_gpio, 0);
}
static int hdmi_power_on_full(struct omap_dss_device *dssdev)
{
int r;
struct omap_video_timings *p;
struct omap_overlay_manager *mgr = hdmi.output.manager;
unsigned long phy;
r = hdmi_power_on_core(dssdev);
if (r)
return r;
dss_mgr_disable(mgr);
p = &hdmi.ip_data.cfg.timings;
DSSDBG("hdmi_power_on x_res= %d y_res = %d\n", p->x_res, p->y_res);
phy = p->pixel_clock;
hdmi_compute_pll(dssdev, phy, &hdmi.ip_data.pll_data);
hdmi.ip_data.ops->video_disable(&hdmi.ip_data);
/* config the PLL and PHY hdmi_set_pll_pwrfirst */
r = hdmi.ip_data.ops->pll_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to lock PLL\n");
goto err_pll_enable;
}
r = hdmi.ip_data.ops->phy_enable(&hdmi.ip_data);
if (r) {
DSSDBG("Failed to start PHY\n");
goto err_phy_enable;
}
hdmi.ip_data.ops->video_configure(&hdmi.ip_data);
/* bypass TV gamma table */
dispc_enable_gamma_table(0);
/* tv size */
dss_mgr_set_timings(mgr, p);
r = hdmi.ip_data.ops->video_enable(&hdmi.ip_data);
if (r)
goto err_vid_enable;
r = dss_mgr_enable(mgr);
if (r)
goto err_mgr_enable;
return 0;
err_mgr_enable:
hdmi.ip_data.ops->video_disable(&hdmi.ip_data);
err_vid_enable:
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
err_phy_enable:
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
err_pll_enable:
hdmi_power_off_core(dssdev);
return -EIO;
}
static void hdmi_power_off_full(struct omap_dss_device *dssdev)
{
struct omap_overlay_manager *mgr = hdmi.output.manager;
dss_mgr_disable(mgr);
hdmi.ip_data.ops->video_disable(&hdmi.ip_data);
hdmi.ip_data.ops->phy_disable(&hdmi.ip_data);
hdmi.ip_data.ops->pll_disable(&hdmi.ip_data);
hdmi_power_off_core(dssdev);
}
int omapdss_hdmi_display_check_timing(struct omap_dss_device *dssdev,
struct omap_video_timings *timings)
{
struct hdmi_cm cm;
cm = hdmi_get_code(timings);
if (cm.code == -1) {
return -EINVAL;
}
return 0;
}
void omapdss_hdmi_display_set_timing(struct omap_dss_device *dssdev,
struct omap_video_timings *timings)
{
struct hdmi_cm cm;
const struct hdmi_config *t;
mutex_lock(&hdmi.lock);
cm = hdmi_get_code(timings);
hdmi.ip_data.cfg.cm = cm;
t = hdmi_get_timings();
if (t != NULL)
hdmi.ip_data.cfg = *t;
mutex_unlock(&hdmi.lock);
}
static void hdmi_dump_regs(struct seq_file *s)
{
mutex_lock(&hdmi.lock);
if (hdmi_runtime_get()) {
mutex_unlock(&hdmi.lock);
return;
}
hdmi.ip_data.ops->dump_wrapper(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_pll(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_phy(&hdmi.ip_data, s);
hdmi.ip_data.ops->dump_core(&hdmi.ip_data, s);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
}
int omapdss_hdmi_read_edid(u8 *buf, int len)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->read_edid(&hdmi.ip_data, buf, len);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r;
}
bool omapdss_hdmi_detect(void)
{
int r;
mutex_lock(&hdmi.lock);
r = hdmi_runtime_get();
BUG_ON(r);
r = hdmi.ip_data.ops->detect(&hdmi.ip_data);
hdmi_runtime_put();
mutex_unlock(&hdmi.lock);
return r == 1;
}
int omapdss_hdmi_display_enable(struct omap_dss_device *dssdev)
{
struct omap_dss_device *out = &hdmi.output;
int r = 0;
DSSDBG("ENTER hdmi_display_enable\n");
mutex_lock(&hdmi.lock);
if (out == NULL || out->manager == NULL) {
DSSERR("failed to enable display: no output/manager\n");
r = -ENODEV;
goto err0;
}
hdmi.ip_data.hpd_gpio = hdmi.hpd_gpio;
r = hdmi_power_on_full(dssdev);
if (r) {
DSSERR("failed to power on device\n");
goto err0;
}
mutex_unlock(&hdmi.lock);
return 0;
err0:
mutex_unlock(&hdmi.lock);
return r;
}
void omapdss_hdmi_display_disable(struct omap_dss_device *dssdev)
{
DSSDBG("Enter hdmi_display_disable\n");
mutex_lock(&hdmi.lock);
hdmi_power_off_full(dssdev);
mutex_unlock(&hdmi.lock);
}
int omapdss_hdmi_core_enable(struct omap_dss_device *dssdev)
{
int r = 0;
DSSDBG("ENTER omapdss_hdmi_core_enable\n");
mutex_lock(&hdmi.lock);
hdmi.ip_data.hpd_gpio = hdmi.hpd_gpio;
r = hdmi_power_on_core(dssdev);
if (r) {
DSSERR("failed to power on device\n");
goto err0;
}
mutex_unlock(&hdmi.lock);
return 0;
err0:
mutex_unlock(&hdmi.lock);
return r;
}
void omapdss_hdmi_core_disable(struct omap_dss_device *dssdev)
{
DSSDBG("Enter omapdss_hdmi_core_disable\n");
mutex_lock(&hdmi.lock);
hdmi_power_off_core(dssdev);
mutex_unlock(&hdmi.lock);
}
static int hdmi_get_clocks(struct platform_device *pdev)
{
struct clk *clk;
clk = devm_clk_get(&pdev->dev, "sys_clk");
if (IS_ERR(clk)) {
DSSERR("can't get sys_clk\n");
return PTR_ERR(clk);
}
hdmi.sys_clk = clk;
return 0;
}
#if defined(CONFIG_OMAP4_DSS_HDMI_AUDIO)
int hdmi_compute_acr(u32 sample_freq, u32 *n, u32 *cts)
{
u32 deep_color;
bool deep_color_correct = false;
u32 pclk = hdmi.ip_data.cfg.timings.pixel_clock;
if (n == NULL || cts == NULL)
return -EINVAL;
/* TODO: When implemented, query deep color mode here. */
deep_color = 100;
/*
* When using deep color, the default N value (as in the HDMI
* specification) yields to an non-integer CTS. Hence, we
* modify it while keeping the restrictions described in
* section 7.2.1 of the HDMI 1.4a specification.
*/
switch (sample_freq) {
case 32000:
case 48000:
case 96000:
case 192000:
if (deep_color == 125)
if (pclk == 27027 || pclk == 74250)
deep_color_correct = true;
if (deep_color == 150)
if (pclk == 27027)
deep_color_correct = true;
break;
case 44100:
case 88200:
case 176400:
if (deep_color == 125)
if (pclk == 27027)
deep_color_correct = true;
break;
default:
return -EINVAL;
}
if (deep_color_correct) {
switch (sample_freq) {
case 32000:
*n = 8192;
break;
case 44100:
*n = 12544;
break;
case 48000:
*n = 8192;
break;
case 88200:
*n = 25088;
break;
case 96000:
*n = 16384;
break;
case 176400:
*n = 50176;
break;
case 192000:
*n = 32768;
break;
default:
return -EINVAL;
}
} else {
switch (sample_freq) {
case 32000:
*n = 4096;
break;
case 44100:
*n = 6272;
break;
case 48000:
*n = 6144;
break;
case 88200:
*n = 12544;
break;
case 96000:
*n = 12288;
break;
case 176400:
*n = 25088;
break;
case 192000:
*n = 24576;
break;
default:
return -EINVAL;
}
}
/* Calculate CTS. See HDMI 1.3a or 1.4a specifications */
*cts = pclk * (*n / 128) * deep_color / (sample_freq / 10);
return 0;
}
int hdmi_audio_enable(void)
{
DSSDBG("audio_enable\n");
return hdmi.ip_data.ops->audio_enable(&hdmi.ip_data);
}
void hdmi_audio_disable(void)
{
DSSDBG("audio_disable\n");
hdmi.ip_data.ops->audio_disable(&hdmi.ip_data);
}
int hdmi_audio_start(void)
{
DSSDBG("audio_start\n");
return hdmi.ip_data.ops->audio_start(&hdmi.ip_data);
}
void hdmi_audio_stop(void)
{
DSSDBG("audio_stop\n");
hdmi.ip_data.ops->audio_stop(&hdmi.ip_data);
}
bool hdmi_mode_has_audio(void)
{
if (hdmi.ip_data.cfg.cm.mode == HDMI_HDMI)
return true;
else
return false;
}
int hdmi_audio_config(struct omap_dss_audio *audio)
{
return hdmi.ip_data.ops->audio_config(&hdmi.ip_data, audio);
}
#endif
static struct omap_dss_device *hdmi_find_dssdev(struct platform_device *pdev)
{
struct omap_dss_board_info *pdata = pdev->dev.platform_data;
const char *def_disp_name = omapdss_get_default_display_name();
struct omap_dss_device *def_dssdev;
int i;
def_dssdev = NULL;
for (i = 0; i < pdata->num_devices; ++i) {
struct omap_dss_device *dssdev = pdata->devices[i];
if (dssdev->type != OMAP_DISPLAY_TYPE_HDMI)
continue;
if (def_dssdev == NULL)
def_dssdev = dssdev;
if (def_disp_name != NULL &&
strcmp(dssdev->name, def_disp_name) == 0) {
def_dssdev = dssdev;
break;
}
}
return def_dssdev;
}
static int hdmi_probe_pdata(struct platform_device *pdev)
{
struct omap_dss_device *plat_dssdev;
struct omap_dss_device *dssdev;
struct omap_dss_hdmi_data *priv;
int r;
plat_dssdev = hdmi_find_dssdev(pdev);
if (!plat_dssdev)
return 0;
dssdev = dss_alloc_and_init_device(&pdev->dev);
if (!dssdev)
return -ENOMEM;
dss_copy_device_pdata(dssdev, plat_dssdev);
priv = dssdev->data;
hdmi.ct_cp_hpd_gpio = priv->ct_cp_hpd_gpio;
hdmi.ls_oe_gpio = priv->ls_oe_gpio;
hdmi.hpd_gpio = priv->hpd_gpio;
r = hdmi_init_display(dssdev);
if (r) {
DSSERR("device %s init failed: %d\n", dssdev->name, r);
dss_put_device(dssdev);
return r;
}
r = omapdss_output_set_device(&hdmi.output, dssdev);
if (r) {
DSSERR("failed to connect output to new device: %s\n",
dssdev->name);
dss_put_device(dssdev);
return r;
}
r = dss_add_device(dssdev);
if (r) {
DSSERR("device %s register failed: %d\n", dssdev->name, r);
omapdss_output_unset_device(&hdmi.output);
hdmi_uninit_display(dssdev);
dss_put_device(dssdev);
return r;
}
return 0;
}
static void hdmi_init_output(struct platform_device *pdev)
{
struct omap_dss_device *out = &hdmi.output;
out->dev = &pdev->dev;
out->id = OMAP_DSS_OUTPUT_HDMI;
out->output_type = OMAP_DISPLAY_TYPE_HDMI;
out->name = "hdmi.0";
out->dispc_channel = OMAP_DSS_CHANNEL_DIGIT;
out->owner = THIS_MODULE;
dss_register_output(out);
}
static void __exit hdmi_uninit_output(struct platform_device *pdev)
{
struct omap_dss_device *out = &hdmi.output;
dss_unregister_output(out);
}
/* HDMI HW IP initialisation */
static int omapdss_hdmihw_probe(struct platform_device *pdev)
{
struct resource *res;
int r;
hdmi.pdev = pdev;
mutex_init(&hdmi.lock);
mutex_init(&hdmi.ip_data.lock);
res = platform_get_resource(hdmi.pdev, IORESOURCE_MEM, 0);
/* Base address taken from platform */
hdmi.ip_data.base_wp = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(hdmi.ip_data.base_wp))
return PTR_ERR(hdmi.ip_data.base_wp);
r = hdmi_get_clocks(pdev);
if (r) {
DSSERR("can't get clocks\n");
return r;
}
pm_runtime_enable(&pdev->dev);
hdmi.ip_data.core_sys_offset = HDMI_CORE_SYS;
hdmi.ip_data.core_av_offset = HDMI_CORE_AV;
hdmi.ip_data.pll_offset = HDMI_PLLCTRL;
hdmi.ip_data.phy_offset = HDMI_PHY;
hdmi_init_output(pdev);
r = hdmi_panel_init();
if (r) {
DSSERR("can't init panel\n");
return r;
}
dss_debugfs_create_file("hdmi", hdmi_dump_regs);
if (pdev->dev.platform_data) {
r = hdmi_probe_pdata(pdev);
if (r)
goto err_probe;
}
return 0;
err_probe:
hdmi_panel_exit();
hdmi_uninit_output(pdev);
pm_runtime_disable(&pdev->dev);
return r;
}
static int __exit hdmi_remove_child(struct device *dev, void *data)
{
struct omap_dss_device *dssdev = to_dss_device(dev);
hdmi_uninit_display(dssdev);
return 0;
}
static int __exit omapdss_hdmihw_remove(struct platform_device *pdev)
{
device_for_each_child(&pdev->dev, NULL, hdmi_remove_child);
dss_unregister_child_devices(&pdev->dev);
hdmi_panel_exit();
hdmi_uninit_output(pdev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static int hdmi_runtime_suspend(struct device *dev)
{
clk_disable_unprepare(hdmi.sys_clk);
dispc_runtime_put();
return 0;
}
static int hdmi_runtime_resume(struct device *dev)
{
int r;
r = dispc_runtime_get();
if (r < 0)
return r;
clk_prepare_enable(hdmi.sys_clk);
return 0;
}
static const struct dev_pm_ops hdmi_pm_ops = {
.runtime_suspend = hdmi_runtime_suspend,
.runtime_resume = hdmi_runtime_resume,
};
static struct platform_driver omapdss_hdmihw_driver = {
.probe = omapdss_hdmihw_probe,
.remove = __exit_p(omapdss_hdmihw_remove),
.driver = {
.name = "omapdss_hdmi",
.owner = THIS_MODULE,
.pm = &hdmi_pm_ops,
},
};
int __init hdmi_init_platform_driver(void)
{
return platform_driver_register(&omapdss_hdmihw_driver);
}
void __exit hdmi_uninit_platform_driver(void)
{
platform_driver_unregister(&omapdss_hdmihw_driver);
}