edfbba58e3
bch2_btree_and_journal_walk() walks the btree overlaying keys from the journal; it was introduced so that we could read in the alloc btree prior to journal replay being done, when journalling of updates to interior btree nodes was introduced. But it didn't have btree node prefetching, which introduced a severe regression with mount times, particularly on spinning rust. This patch implements btree node prefetching for the btree + journal walk, hopefully fixing that. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1080 lines
26 KiB
C
1080 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_buf.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_io.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "debug.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/prefetch.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
const char * const bch2_btree_ids[] = {
|
|
#define x(kwd, val, name) name,
|
|
BCH_BTREE_IDS()
|
|
#undef x
|
|
NULL
|
|
};
|
|
|
|
void bch2_recalc_btree_reserve(struct bch_fs *c)
|
|
{
|
|
unsigned i, reserve = 16;
|
|
|
|
if (!c->btree_roots[0].b)
|
|
reserve += 8;
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
if (c->btree_roots[i].b)
|
|
reserve += min_t(unsigned, 1,
|
|
c->btree_roots[i].b->c.level) * 8;
|
|
|
|
c->btree_cache.reserve = reserve;
|
|
}
|
|
|
|
static inline unsigned btree_cache_can_free(struct btree_cache *bc)
|
|
{
|
|
return max_t(int, 0, bc->used - bc->reserve);
|
|
}
|
|
|
|
static void __btree_node_data_free(struct bch_fs *c, struct btree *b)
|
|
{
|
|
EBUG_ON(btree_node_write_in_flight(b));
|
|
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
kvfree(b->aux_data);
|
|
b->aux_data = NULL;
|
|
}
|
|
|
|
static void btree_node_data_free(struct bch_fs *c, struct btree *b)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
__btree_node_data_free(c, b);
|
|
bc->used--;
|
|
list_move(&b->list, &bc->freed);
|
|
}
|
|
|
|
static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
|
|
const void *obj)
|
|
{
|
|
const struct btree *b = obj;
|
|
const u64 *v = arg->key;
|
|
|
|
return b->hash_val == *v ? 0 : 1;
|
|
}
|
|
|
|
static const struct rhashtable_params bch_btree_cache_params = {
|
|
.head_offset = offsetof(struct btree, hash),
|
|
.key_offset = offsetof(struct btree, hash_val),
|
|
.key_len = sizeof(u64),
|
|
.obj_cmpfn = bch2_btree_cache_cmp_fn,
|
|
};
|
|
|
|
static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
|
|
{
|
|
BUG_ON(b->data || b->aux_data);
|
|
|
|
b->data = kvpmalloc(btree_bytes(c), gfp);
|
|
if (!b->data)
|
|
return -ENOMEM;
|
|
|
|
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
|
|
if (!b->aux_data) {
|
|
kvpfree(b->data, btree_bytes(c));
|
|
b->data = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *__btree_node_mem_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree *b = kzalloc(sizeof(struct btree), GFP_KERNEL);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
bkey_btree_ptr_init(&b->key);
|
|
six_lock_init(&b->c.lock);
|
|
lockdep_set_novalidate_class(&b->c.lock);
|
|
INIT_LIST_HEAD(&b->list);
|
|
INIT_LIST_HEAD(&b->write_blocked);
|
|
b->byte_order = ilog2(btree_bytes(c));
|
|
return b;
|
|
}
|
|
|
|
static struct btree *btree_node_mem_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b = __btree_node_mem_alloc(c);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
|
|
kfree(b);
|
|
return NULL;
|
|
}
|
|
|
|
bc->used++;
|
|
list_add(&b->list, &bc->freeable);
|
|
return b;
|
|
}
|
|
|
|
/* Btree in memory cache - hash table */
|
|
|
|
void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
|
|
|
|
/* Cause future lookups for this node to fail: */
|
|
b->hash_val = 0;
|
|
|
|
six_lock_wakeup_all(&b->c.lock);
|
|
}
|
|
|
|
int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
|
|
{
|
|
BUG_ON(b->hash_val);
|
|
b->hash_val = btree_ptr_hash_val(&b->key);
|
|
|
|
return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
|
|
bch_btree_cache_params);
|
|
}
|
|
|
|
int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
|
|
unsigned level, enum btree_id id)
|
|
{
|
|
int ret;
|
|
|
|
b->c.level = level;
|
|
b->c.btree_id = id;
|
|
|
|
mutex_lock(&bc->lock);
|
|
ret = __bch2_btree_node_hash_insert(bc, b);
|
|
if (!ret)
|
|
list_add(&b->list, &bc->live);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
__flatten
|
|
static inline struct btree *btree_cache_find(struct btree_cache *bc,
|
|
const struct bkey_i *k)
|
|
{
|
|
u64 v = btree_ptr_hash_val(k);
|
|
|
|
return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
|
|
}
|
|
|
|
/*
|
|
* this version is for btree nodes that have already been freed (we're not
|
|
* reaping a real btree node)
|
|
*/
|
|
static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&bc->lock);
|
|
|
|
if (!six_trylock_intent(&b->c.lock))
|
|
return -ENOMEM;
|
|
|
|
if (!six_trylock_write(&b->c.lock))
|
|
goto out_unlock_intent;
|
|
|
|
if (btree_node_noevict(b))
|
|
goto out_unlock;
|
|
|
|
if (!btree_node_may_write(b))
|
|
goto out_unlock;
|
|
|
|
if (btree_node_dirty(b) &&
|
|
test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags))
|
|
goto out_unlock;
|
|
|
|
if (btree_node_dirty(b) ||
|
|
btree_node_write_in_flight(b) ||
|
|
btree_node_read_in_flight(b)) {
|
|
if (!flush)
|
|
goto out_unlock;
|
|
|
|
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
/*
|
|
* Using the underscore version because we don't want to compact
|
|
* bsets after the write, since this node is about to be evicted
|
|
* - unless btree verify mode is enabled, since it runs out of
|
|
* the post write cleanup:
|
|
*/
|
|
if (bch2_verify_btree_ondisk)
|
|
bch2_btree_node_write(c, b, SIX_LOCK_intent);
|
|
else
|
|
__bch2_btree_node_write(c, b, SIX_LOCK_read);
|
|
|
|
/* wait for any in flight btree write */
|
|
btree_node_wait_on_io(b);
|
|
}
|
|
out:
|
|
if (b->hash_val && !ret)
|
|
trace_btree_node_reap(c, b);
|
|
return ret;
|
|
out_unlock:
|
|
six_unlock_write(&b->c.lock);
|
|
out_unlock_intent:
|
|
six_unlock_intent(&b->c.lock);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, false);
|
|
}
|
|
|
|
static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
|
|
{
|
|
return __btree_node_reclaim(c, b, true);
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = container_of(shrink, struct bch_fs,
|
|
btree_cache.shrink);
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b, *t;
|
|
unsigned long nr = sc->nr_to_scan;
|
|
unsigned long can_free;
|
|
unsigned long touched = 0;
|
|
unsigned long freed = 0;
|
|
unsigned i, flags;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return SHRINK_STOP;
|
|
|
|
/* Return -1 if we can't do anything right now */
|
|
if (sc->gfp_mask & __GFP_FS)
|
|
mutex_lock(&bc->lock);
|
|
else if (!mutex_trylock(&bc->lock))
|
|
return -1;
|
|
|
|
flags = memalloc_nofs_save();
|
|
|
|
/*
|
|
* It's _really_ critical that we don't free too many btree nodes - we
|
|
* have to always leave ourselves a reserve. The reserve is how we
|
|
* guarantee that allocating memory for a new btree node can always
|
|
* succeed, so that inserting keys into the btree can always succeed and
|
|
* IO can always make forward progress:
|
|
*/
|
|
nr /= btree_pages(c);
|
|
can_free = btree_cache_can_free(bc);
|
|
nr = min_t(unsigned long, nr, can_free);
|
|
|
|
i = 0;
|
|
list_for_each_entry_safe(b, t, &bc->freeable, list) {
|
|
touched++;
|
|
|
|
if (freed >= nr)
|
|
break;
|
|
|
|
if (++i > 3 &&
|
|
!btree_node_reclaim(c, b)) {
|
|
btree_node_data_free(c, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
freed++;
|
|
}
|
|
}
|
|
restart:
|
|
list_for_each_entry_safe(b, t, &bc->live, list) {
|
|
touched++;
|
|
|
|
if (freed >= nr) {
|
|
/* Save position */
|
|
if (&t->list != &bc->live)
|
|
list_move_tail(&bc->live, &t->list);
|
|
break;
|
|
}
|
|
|
|
if (!btree_node_accessed(b) &&
|
|
!btree_node_reclaim(c, b)) {
|
|
/* can't call bch2_btree_node_hash_remove under lock */
|
|
freed++;
|
|
if (&t->list != &bc->live)
|
|
list_move_tail(&bc->live, &t->list);
|
|
|
|
btree_node_data_free(c, b);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
|
|
if (freed >= nr)
|
|
goto out;
|
|
|
|
if (sc->gfp_mask & __GFP_FS)
|
|
mutex_lock(&bc->lock);
|
|
else if (!mutex_trylock(&bc->lock))
|
|
goto out;
|
|
goto restart;
|
|
} else
|
|
clear_btree_node_accessed(b);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
out:
|
|
memalloc_nofs_restore(flags);
|
|
return (unsigned long) freed * btree_pages(c);
|
|
}
|
|
|
|
static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct bch_fs *c = container_of(shrink, struct bch_fs,
|
|
btree_cache.shrink);
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bch2_btree_shrinker_disabled)
|
|
return 0;
|
|
|
|
return btree_cache_can_free(bc) * btree_pages(c);
|
|
}
|
|
|
|
void bch2_fs_btree_cache_exit(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
unsigned i, flags;
|
|
|
|
if (bc->shrink.list.next)
|
|
unregister_shrinker(&bc->shrink);
|
|
|
|
/* vfree() can allocate memory: */
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
if (c->verify_data)
|
|
list_move(&c->verify_data->list, &bc->live);
|
|
|
|
kvpfree(c->verify_ondisk, btree_bytes(c));
|
|
#endif
|
|
|
|
for (i = 0; i < BTREE_ID_NR; i++)
|
|
if (c->btree_roots[i].b)
|
|
list_add(&c->btree_roots[i].b->list, &bc->live);
|
|
|
|
list_splice(&bc->freeable, &bc->live);
|
|
|
|
while (!list_empty(&bc->live)) {
|
|
b = list_first_entry(&bc->live, struct btree, list);
|
|
|
|
BUG_ON(btree_node_read_in_flight(b) ||
|
|
btree_node_write_in_flight(b));
|
|
|
|
if (btree_node_dirty(b))
|
|
bch2_btree_complete_write(c, b, btree_current_write(b));
|
|
clear_btree_node_dirty(c, b);
|
|
|
|
btree_node_data_free(c, b);
|
|
}
|
|
|
|
BUG_ON(atomic_read(&c->btree_cache.dirty));
|
|
|
|
while (!list_empty(&bc->freed)) {
|
|
b = list_first_entry(&bc->freed, struct btree, list);
|
|
list_del(&b->list);
|
|
kfree(b);
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
|
|
if (bc->table_init_done)
|
|
rhashtable_destroy(&bc->table);
|
|
}
|
|
|
|
int bch2_fs_btree_cache_init(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
pr_verbose_init(c->opts, "");
|
|
|
|
ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
|
|
if (ret)
|
|
goto out;
|
|
|
|
bc->table_init_done = true;
|
|
|
|
bch2_recalc_btree_reserve(c);
|
|
|
|
for (i = 0; i < bc->reserve; i++)
|
|
if (!btree_node_mem_alloc(c)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_splice_init(&bc->live, &bc->freeable);
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
mutex_init(&c->verify_lock);
|
|
|
|
c->verify_ondisk = kvpmalloc(btree_bytes(c), GFP_KERNEL);
|
|
if (!c->verify_ondisk) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
c->verify_data = btree_node_mem_alloc(c);
|
|
if (!c->verify_data) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
list_del_init(&c->verify_data->list);
|
|
#endif
|
|
|
|
bc->shrink.count_objects = bch2_btree_cache_count;
|
|
bc->shrink.scan_objects = bch2_btree_cache_scan;
|
|
bc->shrink.seeks = 4;
|
|
bc->shrink.batch = btree_pages(c) * 2;
|
|
ret = register_shrinker(&bc->shrink, "%s/btree_cache", c->name);
|
|
out:
|
|
pr_verbose_init(c->opts, "ret %i", ret);
|
|
return ret;
|
|
}
|
|
|
|
void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
|
|
{
|
|
mutex_init(&bc->lock);
|
|
INIT_LIST_HEAD(&bc->live);
|
|
INIT_LIST_HEAD(&bc->freeable);
|
|
INIT_LIST_HEAD(&bc->freed);
|
|
}
|
|
|
|
/*
|
|
* We can only have one thread cannibalizing other cached btree nodes at a time,
|
|
* or we'll deadlock. We use an open coded mutex to ensure that, which a
|
|
* cannibalize_bucket() will take. This means every time we unlock the root of
|
|
* the btree, we need to release this lock if we have it held.
|
|
*/
|
|
void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
|
|
if (bc->alloc_lock == current) {
|
|
trace_btree_node_cannibalize_unlock(c);
|
|
bc->alloc_lock = NULL;
|
|
closure_wake_up(&bc->alloc_wait);
|
|
}
|
|
}
|
|
|
|
int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct task_struct *old;
|
|
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current)
|
|
goto success;
|
|
|
|
if (!cl) {
|
|
trace_btree_node_cannibalize_lock_fail(c);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
closure_wait(&bc->alloc_wait, cl);
|
|
|
|
/* Try again, after adding ourselves to waitlist */
|
|
old = cmpxchg(&bc->alloc_lock, NULL, current);
|
|
if (old == NULL || old == current) {
|
|
/* We raced */
|
|
closure_wake_up(&bc->alloc_wait);
|
|
goto success;
|
|
}
|
|
|
|
trace_btree_node_cannibalize_lock_fail(c);
|
|
return -EAGAIN;
|
|
|
|
success:
|
|
trace_btree_node_cannibalize_lock(c);
|
|
return 0;
|
|
}
|
|
|
|
static struct btree *btree_node_cannibalize(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_reclaim(c, b))
|
|
return b;
|
|
|
|
while (1) {
|
|
list_for_each_entry_reverse(b, &bc->live, list)
|
|
if (!btree_node_write_and_reclaim(c, b))
|
|
return b;
|
|
|
|
/*
|
|
* Rare case: all nodes were intent-locked.
|
|
* Just busy-wait.
|
|
*/
|
|
WARN_ONCE(1, "btree cache cannibalize failed\n");
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
struct btree *bch2_btree_node_mem_alloc(struct bch_fs *c)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
u64 start_time = local_clock();
|
|
unsigned flags;
|
|
|
|
flags = memalloc_nofs_save();
|
|
mutex_lock(&bc->lock);
|
|
|
|
/*
|
|
* btree_free() doesn't free memory; it sticks the node on the end of
|
|
* the list. Check if there's any freed nodes there:
|
|
*/
|
|
list_for_each_entry(b, &bc->freeable, list)
|
|
if (!btree_node_reclaim(c, b))
|
|
goto got_node;
|
|
|
|
/*
|
|
* We never free struct btree itself, just the memory that holds the on
|
|
* disk node. Check the freed list before allocating a new one:
|
|
*/
|
|
list_for_each_entry(b, &bc->freed, list)
|
|
if (!btree_node_reclaim(c, b))
|
|
goto got_node;
|
|
|
|
b = NULL;
|
|
got_node:
|
|
if (b)
|
|
list_del_init(&b->list);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
if (!b) {
|
|
b = __btree_node_mem_alloc(c);
|
|
if (!b)
|
|
goto err;
|
|
|
|
BUG_ON(!six_trylock_intent(&b->c.lock));
|
|
BUG_ON(!six_trylock_write(&b->c.lock));
|
|
}
|
|
|
|
if (!b->data) {
|
|
if (btree_node_data_alloc(c, b, __GFP_NOWARN|GFP_KERNEL))
|
|
goto err;
|
|
|
|
mutex_lock(&bc->lock);
|
|
bc->used++;
|
|
mutex_unlock(&bc->lock);
|
|
}
|
|
|
|
BUG_ON(btree_node_hashed(b));
|
|
BUG_ON(btree_node_write_in_flight(b));
|
|
out:
|
|
b->flags = 0;
|
|
b->written = 0;
|
|
b->nsets = 0;
|
|
b->sib_u64s[0] = 0;
|
|
b->sib_u64s[1] = 0;
|
|
b->whiteout_u64s = 0;
|
|
bch2_btree_keys_init(b);
|
|
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
|
|
start_time);
|
|
|
|
memalloc_nofs_restore(flags);
|
|
return b;
|
|
err:
|
|
mutex_lock(&bc->lock);
|
|
|
|
if (b) {
|
|
list_add(&b->list, &bc->freed);
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
}
|
|
|
|
/* Try to cannibalize another cached btree node: */
|
|
if (bc->alloc_lock == current) {
|
|
b = btree_node_cannibalize(c);
|
|
list_del_init(&b->list);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
bch2_btree_node_hash_remove(bc, b);
|
|
|
|
trace_btree_node_cannibalize(c);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&bc->lock);
|
|
memalloc_nofs_restore(flags);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/* Slowpath, don't want it inlined into btree_iter_traverse() */
|
|
static noinline struct btree *bch2_btree_node_fill(struct bch_fs *c,
|
|
struct btree_iter *iter,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level,
|
|
enum six_lock_type lock_type,
|
|
bool sync)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
|
|
/*
|
|
* Parent node must be locked, else we could read in a btree node that's
|
|
* been freed:
|
|
*/
|
|
if (iter && !bch2_btree_node_relock(iter, level + 1))
|
|
return ERR_PTR(-EINTR);
|
|
|
|
b = bch2_btree_node_mem_alloc(c);
|
|
if (IS_ERR(b))
|
|
return b;
|
|
|
|
bkey_copy(&b->key, k);
|
|
if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
|
|
/* raced with another fill: */
|
|
|
|
/* mark as unhashed... */
|
|
b->hash_val = 0;
|
|
|
|
mutex_lock(&bc->lock);
|
|
list_add(&b->list, &bc->freeable);
|
|
mutex_unlock(&bc->lock);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
six_unlock_intent(&b->c.lock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Unlock before doing IO:
|
|
*
|
|
* XXX: ideally should be dropping all btree node locks here
|
|
*/
|
|
if (iter && btree_node_read_locked(iter, level + 1))
|
|
btree_node_unlock(iter, level + 1);
|
|
|
|
bch2_btree_node_read(c, b, sync);
|
|
|
|
six_unlock_write(&b->c.lock);
|
|
|
|
if (!sync) {
|
|
six_unlock_intent(&b->c.lock);
|
|
return NULL;
|
|
}
|
|
|
|
if (lock_type == SIX_LOCK_read)
|
|
six_lock_downgrade(&b->c.lock);
|
|
|
|
return b;
|
|
}
|
|
|
|
static int lock_node_check_fn(struct six_lock *lock, void *p)
|
|
{
|
|
struct btree *b = container_of(lock, struct btree, c.lock);
|
|
const struct bkey_i *k = p;
|
|
|
|
return b->hash_val == btree_ptr_hash_val(k) ? 0 : -1;
|
|
}
|
|
|
|
/**
|
|
* bch_btree_node_get - find a btree node in the cache and lock it, reading it
|
|
* in from disk if necessary.
|
|
*
|
|
* If IO is necessary and running under generic_make_request, returns -EAGAIN.
|
|
*
|
|
* The btree node will have either a read or a write lock held, depending on
|
|
* the @write parameter.
|
|
*/
|
|
struct btree *bch2_btree_node_get(struct bch_fs *c, struct btree_iter *iter,
|
|
const struct bkey_i *k, unsigned level,
|
|
enum six_lock_type lock_type,
|
|
unsigned long trace_ip)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_node_mem_ptr(k);
|
|
if (b)
|
|
goto lock_node;
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
/*
|
|
* We must have the parent locked to call bch2_btree_node_fill(),
|
|
* else we could read in a btree node from disk that's been
|
|
* freed:
|
|
*/
|
|
b = bch2_btree_node_fill(c, iter, k, iter->btree_id,
|
|
level, lock_type, true);
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
} else {
|
|
lock_node:
|
|
/*
|
|
* There's a potential deadlock with splits and insertions into
|
|
* interior nodes we have to avoid:
|
|
*
|
|
* The other thread might be holding an intent lock on the node
|
|
* we want, and they want to update its parent node so they're
|
|
* going to upgrade their intent lock on the parent node to a
|
|
* write lock.
|
|
*
|
|
* But if we're holding a read lock on the parent, and we're
|
|
* trying to get the intent lock they're holding, we deadlock.
|
|
*
|
|
* So to avoid this we drop the read locks on parent nodes when
|
|
* we're starting to take intent locks - and handle the race.
|
|
*
|
|
* The race is that they might be about to free the node we
|
|
* want, and dropping our read lock on the parent node lets them
|
|
* update the parent marking the node we want as freed, and then
|
|
* free it:
|
|
*
|
|
* To guard against this, btree nodes are evicted from the cache
|
|
* when they're freed - and b->hash_val is zeroed out, which we
|
|
* check for after we lock the node.
|
|
*
|
|
* Then, bch2_btree_node_relock() on the parent will fail - because
|
|
* the parent was modified, when the pointer to the node we want
|
|
* was removed - and we'll bail out:
|
|
*/
|
|
if (btree_node_read_locked(iter, level + 1))
|
|
btree_node_unlock(iter, level + 1);
|
|
|
|
if (!btree_node_lock(b, k->k.p, level, iter, lock_type,
|
|
lock_node_check_fn, (void *) k, trace_ip)) {
|
|
if (b->hash_val != btree_ptr_hash_val(k))
|
|
goto retry;
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.level != level ||
|
|
race_fault())) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
if (bch2_btree_node_relock(iter, level + 1))
|
|
goto retry;
|
|
|
|
trace_trans_restart_btree_node_reused(iter->trans->ip);
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
}
|
|
|
|
/* XXX: waiting on IO with btree locks held: */
|
|
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_type(&b->c.lock, lock_type);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != iter->btree_id ||
|
|
BTREE_NODE_LEVEL(b->data) != level ||
|
|
bkey_cmp(b->data->max_key, k->k.p));
|
|
|
|
return b;
|
|
}
|
|
|
|
struct btree *bch2_btree_node_get_noiter(struct bch_fs *c,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id,
|
|
unsigned level)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
struct bset_tree *t;
|
|
int ret;
|
|
|
|
EBUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_node_mem_ptr(k);
|
|
if (b)
|
|
goto lock_node;
|
|
retry:
|
|
b = btree_cache_find(bc, k);
|
|
if (unlikely(!b)) {
|
|
b = bch2_btree_node_fill(c, NULL, k, btree_id,
|
|
level, SIX_LOCK_read, true);
|
|
|
|
/* We raced and found the btree node in the cache */
|
|
if (!b)
|
|
goto retry;
|
|
|
|
if (IS_ERR(b))
|
|
return b;
|
|
} else {
|
|
lock_node:
|
|
ret = six_lock_read(&b->c.lock, lock_node_check_fn, (void *) k);
|
|
if (ret)
|
|
goto retry;
|
|
|
|
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
|
|
b->c.btree_id != btree_id ||
|
|
b->c.level != level)) {
|
|
six_unlock_read(&b->c.lock);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* XXX: waiting on IO with btree locks held: */
|
|
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
prefetch(b->aux_data);
|
|
|
|
for_each_bset(b, t) {
|
|
void *p = (u64 *) b->aux_data + t->aux_data_offset;
|
|
|
|
prefetch(p + L1_CACHE_BYTES * 0);
|
|
prefetch(p + L1_CACHE_BYTES * 1);
|
|
prefetch(p + L1_CACHE_BYTES * 2);
|
|
}
|
|
|
|
/* avoid atomic set bit if it's not needed: */
|
|
if (!btree_node_accessed(b))
|
|
set_btree_node_accessed(b);
|
|
|
|
if (unlikely(btree_node_read_error(b))) {
|
|
six_unlock_read(&b->c.lock);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
EBUG_ON(b->c.btree_id != btree_id ||
|
|
BTREE_NODE_LEVEL(b->data) != level ||
|
|
bkey_cmp(b->data->max_key, k->k.p));
|
|
|
|
return b;
|
|
}
|
|
|
|
struct btree *bch2_btree_node_get_sibling(struct bch_fs *c,
|
|
struct btree_iter *iter,
|
|
struct btree *b,
|
|
enum btree_node_sibling sib)
|
|
{
|
|
struct btree_trans *trans = iter->trans;
|
|
struct btree *parent;
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_packed *k;
|
|
struct bkey_buf tmp;
|
|
struct btree *ret = NULL;
|
|
unsigned level = b->c.level;
|
|
|
|
bch2_bkey_buf_init(&tmp);
|
|
|
|
parent = btree_iter_node(iter, level + 1);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
/*
|
|
* There's a corner case where a btree_iter might have a node locked
|
|
* that is just outside its current pos - when
|
|
* bch2_btree_iter_set_pos_same_leaf() gets to the end of the node.
|
|
*
|
|
* But the lock ordering checks in __bch2_btree_node_lock() go off of
|
|
* iter->pos, not the node's key: so if the iterator is marked as
|
|
* needing to be traversed, we risk deadlock if we don't bail out here:
|
|
*/
|
|
if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE)
|
|
return ERR_PTR(-EINTR);
|
|
|
|
if (!bch2_btree_node_relock(iter, level + 1)) {
|
|
ret = ERR_PTR(-EINTR);
|
|
goto out;
|
|
}
|
|
|
|
node_iter = iter->l[parent->c.level].iter;
|
|
|
|
k = bch2_btree_node_iter_peek_all(&node_iter, parent);
|
|
BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p));
|
|
|
|
k = sib == btree_prev_sib
|
|
? bch2_btree_node_iter_prev(&node_iter, parent)
|
|
: (bch2_btree_node_iter_advance(&node_iter, parent),
|
|
bch2_btree_node_iter_peek(&node_iter, parent));
|
|
if (!k)
|
|
goto out;
|
|
|
|
bch2_bkey_buf_unpack(&tmp, c, parent, k);
|
|
|
|
ret = bch2_btree_node_get(c, iter, tmp.k, level,
|
|
SIX_LOCK_intent, _THIS_IP_);
|
|
|
|
if (PTR_ERR_OR_ZERO(ret) == -EINTR && !trans->nounlock) {
|
|
struct btree_iter *linked;
|
|
|
|
if (!bch2_btree_node_relock(iter, level + 1))
|
|
goto out;
|
|
|
|
/*
|
|
* We might have got -EINTR because trylock failed, and we're
|
|
* holding other locks that would cause us to deadlock:
|
|
*/
|
|
trans_for_each_iter(trans, linked)
|
|
if (btree_iter_lock_cmp(iter, linked) < 0)
|
|
__bch2_btree_iter_unlock(linked);
|
|
|
|
if (sib == btree_prev_sib)
|
|
btree_node_unlock(iter, level);
|
|
|
|
ret = bch2_btree_node_get(c, iter, tmp.k, level,
|
|
SIX_LOCK_intent, _THIS_IP_);
|
|
|
|
/*
|
|
* before btree_iter_relock() calls btree_iter_verify_locks():
|
|
*/
|
|
if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED)
|
|
btree_node_unlock(iter, level + 1);
|
|
|
|
if (!bch2_btree_node_relock(iter, level)) {
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK);
|
|
|
|
if (!IS_ERR(ret)) {
|
|
six_unlock_intent(&ret->c.lock);
|
|
ret = ERR_PTR(-EINTR);
|
|
}
|
|
}
|
|
|
|
bch2_trans_relock(trans);
|
|
}
|
|
out:
|
|
if (btree_lock_want(iter, level + 1) == BTREE_NODE_UNLOCKED)
|
|
btree_node_unlock(iter, level + 1);
|
|
|
|
if (PTR_ERR_OR_ZERO(ret) == -EINTR)
|
|
bch2_btree_iter_upgrade(iter, level + 2);
|
|
|
|
BUG_ON(!IS_ERR(ret) && !btree_node_locked(iter, level));
|
|
|
|
if (!IS_ERR_OR_NULL(ret)) {
|
|
struct btree *n1 = ret, *n2 = b;
|
|
|
|
if (sib != btree_prev_sib)
|
|
swap(n1, n2);
|
|
|
|
BUG_ON(bkey_cmp(bkey_successor(n1->key.k.p),
|
|
n2->data->min_key));
|
|
}
|
|
|
|
bch2_btree_trans_verify_locks(trans);
|
|
|
|
bch2_bkey_buf_exit(&tmp, c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void bch2_btree_node_prefetch(struct bch_fs *c, struct btree_iter *iter,
|
|
const struct bkey_i *k,
|
|
enum btree_id btree_id, unsigned level)
|
|
{
|
|
struct btree_cache *bc = &c->btree_cache;
|
|
struct btree *b;
|
|
|
|
BUG_ON(iter && !btree_node_locked(iter, level + 1));
|
|
BUG_ON(level >= BTREE_MAX_DEPTH);
|
|
|
|
b = btree_cache_find(bc, k);
|
|
if (b)
|
|
return;
|
|
|
|
bch2_btree_node_fill(c, iter, k, btree_id, level, SIX_LOCK_read, false);
|
|
}
|
|
|
|
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c,
|
|
struct btree *b)
|
|
{
|
|
const struct bkey_format *f = &b->format;
|
|
struct bset_stats stats;
|
|
|
|
memset(&stats, 0, sizeof(stats));
|
|
|
|
bch2_btree_keys_stats(b, &stats);
|
|
|
|
pr_buf(out,
|
|
"l %u %llu:%llu - %llu:%llu:\n"
|
|
" ptrs: ",
|
|
b->c.level,
|
|
b->data->min_key.inode,
|
|
b->data->min_key.offset,
|
|
b->data->max_key.inode,
|
|
b->data->max_key.offset);
|
|
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
|
|
pr_buf(out, "\n"
|
|
" format: u64s %u fields %u %u %u %u %u\n"
|
|
" unpack fn len: %u\n"
|
|
" bytes used %zu/%zu (%zu%% full)\n"
|
|
" sib u64s: %u, %u (merge threshold %zu)\n"
|
|
" nr packed keys %u\n"
|
|
" nr unpacked keys %u\n"
|
|
" floats %zu\n"
|
|
" failed unpacked %zu\n",
|
|
f->key_u64s,
|
|
f->bits_per_field[0],
|
|
f->bits_per_field[1],
|
|
f->bits_per_field[2],
|
|
f->bits_per_field[3],
|
|
f->bits_per_field[4],
|
|
b->unpack_fn_len,
|
|
b->nr.live_u64s * sizeof(u64),
|
|
btree_bytes(c) - sizeof(struct btree_node),
|
|
b->nr.live_u64s * 100 / btree_max_u64s(c),
|
|
b->sib_u64s[0],
|
|
b->sib_u64s[1],
|
|
BTREE_FOREGROUND_MERGE_THRESHOLD(c),
|
|
b->nr.packed_keys,
|
|
b->nr.unpacked_keys,
|
|
stats.floats,
|
|
stats.failed);
|
|
}
|
|
|
|
void bch2_btree_cache_to_text(struct printbuf *out, struct bch_fs *c)
|
|
{
|
|
pr_buf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
|
|
pr_buf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
|
|
pr_buf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
|
|
}
|