Patch series "Memory allocation profiling", v6. Overview: Low overhead [1] per-callsite memory allocation profiling. Not just for debug kernels, overhead low enough to be deployed in production. Example output: root@moria-kvm:~# sort -rn /proc/allocinfo 127664128 31168 mm/page_ext.c:270 func:alloc_page_ext 56373248 4737 mm/slub.c:2259 func:alloc_slab_page 14880768 3633 mm/readahead.c:247 func:page_cache_ra_unbounded 14417920 3520 mm/mm_init.c:2530 func:alloc_large_system_hash 13377536 234 block/blk-mq.c:3421 func:blk_mq_alloc_rqs 11718656 2861 mm/filemap.c:1919 func:__filemap_get_folio 9192960 2800 kernel/fork.c:307 func:alloc_thread_stack_node 4206592 4 net/netfilter/nf_conntrack_core.c:2567 func:nf_ct_alloc_hashtable 4136960 1010 drivers/staging/ctagmod/ctagmod.c:20 [ctagmod] func:ctagmod_start 3940352 962 mm/memory.c:4214 func:alloc_anon_folio 2894464 22613 fs/kernfs/dir.c:615 func:__kernfs_new_node ... Usage: kconfig options: - CONFIG_MEM_ALLOC_PROFILING - CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT - CONFIG_MEM_ALLOC_PROFILING_DEBUG adds warnings for allocations that weren't accounted because of a missing annotation sysctl: /proc/sys/vm/mem_profiling Runtime info: /proc/allocinfo Notes: [1]: Overhead To measure the overhead we are comparing the following configurations: (1) Baseline with CONFIG_MEMCG_KMEM=n (2) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) (3) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) (4) Enabled at runtime (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n && /proc/sys/vm/mem_profiling=1) (5) Baseline with CONFIG_MEMCG_KMEM=y && allocating with __GFP_ACCOUNT (6) Disabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=n) && CONFIG_MEMCG_KMEM=y (7) Enabled by default (CONFIG_MEM_ALLOC_PROFILING=y && CONFIG_MEM_ALLOC_PROFILING_BY_DEFAULT=y) && CONFIG_MEMCG_KMEM=y Performance overhead: To evaluate performance we implemented an in-kernel test executing multiple get_free_page/free_page and kmalloc/kfree calls with allocation sizes growing from 8 to 240 bytes with CPU frequency set to max and CPU affinity set to a specific CPU to minimize the noise. Below are results from running the test on Ubuntu 22.04.2 LTS with 6.8.0-rc1 kernel on 56 core Intel Xeon: kmalloc pgalloc (1 baseline) 6.764s 16.902s (2 default disabled) 6.793s (+0.43%) 17.007s (+0.62%) (3 default enabled) 7.197s (+6.40%) 23.666s (+40.02%) (4 runtime enabled) 7.405s (+9.48%) 23.901s (+41.41%) (5 memcg) 13.388s (+97.94%) 48.460s (+186.71%) (6 def disabled+memcg) 13.332s (+97.10%) 48.105s (+184.61%) (7 def enabled+memcg) 13.446s (+98.78%) 54.963s (+225.18%) Memory overhead: Kernel size: text data bss dec diff (1) 26515311 18890222 17018880 62424413 (2) 26524728 19423818 16740352 62688898 264485 (3) 26524724 19423818 16740352 62688894 264481 (4) 26524728 19423818 16740352 62688898 264485 (5) 26541782 18964374 16957440 62463596 39183 Memory consumption on a 56 core Intel CPU with 125GB of memory: Code tags: 192 kB PageExts: 262144 kB (256MB) SlabExts: 9876 kB (9.6MB) PcpuExts: 512 kB (0.5MB) Total overhead is 0.2% of total memory. Benchmarks: Hackbench tests run 100 times: hackbench -s 512 -l 200 -g 15 -f 25 -P baseline disabled profiling enabled profiling avg 0.3543 0.3559 (+0.0016) 0.3566 (+0.0023) stdev 0.0137 0.0188 0.0077 hackbench -l 10000 baseline disabled profiling enabled profiling avg 6.4218 6.4306 (+0.0088) 6.5077 (+0.0859) stdev 0.0933 0.0286 0.0489 stress-ng tests: stress-ng --class memory --seq 4 -t 60 stress-ng --class cpu --seq 4 -t 60 Results posted at: https://evilpiepirate.org/~kent/memalloc_prof_v4_stress-ng/ [2] https://lore.kernel.org/all/20240306182440.2003814-1-surenb@google.com/ This patch (of 37): The next patch drops vmalloc.h from a system header in order to fix a circular dependency; this adds it to all the files that were pulling it in implicitly. [kent.overstreet@linux.dev: fix arch/alpha/lib/memcpy.c] Link: https://lkml.kernel.org/r/20240327002152.3339937-1-kent.overstreet@linux.dev [surenb@google.com: fix arch/x86/mm/numa_32.c] Link: https://lkml.kernel.org/r/20240402180933.1663992-1-surenb@google.com [kent.overstreet@linux.dev: a few places were depending on sizes.h] Link: https://lkml.kernel.org/r/20240404034744.1664840-1-kent.overstreet@linux.dev [arnd@arndb.de: fix mm/kasan/hw_tags.c] Link: https://lkml.kernel.org/r/20240404124435.3121534-1-arnd@kernel.org [surenb@google.com: fix arc build] Link: https://lkml.kernel.org/r/20240405225115.431056-1-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-1-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-2-surenb@google.com Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
553 lines
15 KiB
C
553 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2020-2023 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <drm/drm_cache.h>
|
|
|
|
#include "ivpu_drv.h"
|
|
#include "ivpu_hw.h"
|
|
#include "ivpu_mmu.h"
|
|
#include "ivpu_mmu_context.h"
|
|
|
|
#define IVPU_MMU_VPU_ADDRESS_MASK GENMASK(47, 12)
|
|
#define IVPU_MMU_PGD_INDEX_MASK GENMASK(47, 39)
|
|
#define IVPU_MMU_PUD_INDEX_MASK GENMASK(38, 30)
|
|
#define IVPU_MMU_PMD_INDEX_MASK GENMASK(29, 21)
|
|
#define IVPU_MMU_PTE_INDEX_MASK GENMASK(20, 12)
|
|
#define IVPU_MMU_ENTRY_FLAGS_MASK (BIT(52) | GENMASK(11, 0))
|
|
#define IVPU_MMU_ENTRY_FLAG_CONT BIT(52)
|
|
#define IVPU_MMU_ENTRY_FLAG_NG BIT(11)
|
|
#define IVPU_MMU_ENTRY_FLAG_AF BIT(10)
|
|
#define IVPU_MMU_ENTRY_FLAG_USER BIT(6)
|
|
#define IVPU_MMU_ENTRY_FLAG_LLC_COHERENT BIT(2)
|
|
#define IVPU_MMU_ENTRY_FLAG_TYPE_PAGE BIT(1)
|
|
#define IVPU_MMU_ENTRY_FLAG_VALID BIT(0)
|
|
|
|
#define IVPU_MMU_PAGE_SIZE SZ_4K
|
|
#define IVPU_MMU_CONT_PAGES_SIZE (IVPU_MMU_PAGE_SIZE * 16)
|
|
#define IVPU_MMU_PTE_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PAGE_SIZE)
|
|
#define IVPU_MMU_PMD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PTE_MAP_SIZE)
|
|
#define IVPU_MMU_PUD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PMD_MAP_SIZE)
|
|
#define IVPU_MMU_PGD_MAP_SIZE (IVPU_MMU_PGTABLE_ENTRIES * IVPU_MMU_PUD_MAP_SIZE)
|
|
#define IVPU_MMU_PGTABLE_SIZE (IVPU_MMU_PGTABLE_ENTRIES * sizeof(u64))
|
|
|
|
#define IVPU_MMU_DUMMY_ADDRESS 0xdeadb000
|
|
#define IVPU_MMU_ENTRY_VALID (IVPU_MMU_ENTRY_FLAG_TYPE_PAGE | IVPU_MMU_ENTRY_FLAG_VALID)
|
|
#define IVPU_MMU_ENTRY_INVALID (IVPU_MMU_DUMMY_ADDRESS & ~IVPU_MMU_ENTRY_FLAGS_MASK)
|
|
#define IVPU_MMU_ENTRY_MAPPED (IVPU_MMU_ENTRY_FLAG_AF | IVPU_MMU_ENTRY_FLAG_USER | \
|
|
IVPU_MMU_ENTRY_FLAG_NG | IVPU_MMU_ENTRY_VALID)
|
|
|
|
static void *ivpu_pgtable_alloc_page(struct ivpu_device *vdev, dma_addr_t *dma)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
struct page *page;
|
|
void *cpu;
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
set_pages_array_wc(&page, 1);
|
|
|
|
dma_addr = dma_map_page(vdev->drm.dev, page, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(vdev->drm.dev, dma_addr))
|
|
goto err_free_page;
|
|
|
|
cpu = vmap(&page, 1, VM_MAP, pgprot_writecombine(PAGE_KERNEL));
|
|
if (!cpu)
|
|
goto err_dma_unmap_page;
|
|
|
|
|
|
*dma = dma_addr;
|
|
return cpu;
|
|
|
|
err_dma_unmap_page:
|
|
dma_unmap_page(vdev->drm.dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
|
|
err_free_page:
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
|
|
static void ivpu_pgtable_free_page(struct ivpu_device *vdev, u64 *cpu_addr, dma_addr_t dma_addr)
|
|
{
|
|
struct page *page;
|
|
|
|
if (cpu_addr) {
|
|
page = vmalloc_to_page(cpu_addr);
|
|
vunmap(cpu_addr);
|
|
dma_unmap_page(vdev->drm.dev, dma_addr & ~IVPU_MMU_ENTRY_FLAGS_MASK, PAGE_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
set_pages_array_wb(&page, 1);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
static int ivpu_mmu_pgtable_init(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable)
|
|
{
|
|
dma_addr_t pgd_dma;
|
|
|
|
pgtable->pgd_dma_ptr = ivpu_pgtable_alloc_page(vdev, &pgd_dma);
|
|
if (!pgtable->pgd_dma_ptr)
|
|
return -ENOMEM;
|
|
|
|
pgtable->pgd_dma = pgd_dma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ivpu_mmu_pgtables_free(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable)
|
|
{
|
|
int pgd_idx, pud_idx, pmd_idx;
|
|
dma_addr_t pud_dma, pmd_dma, pte_dma;
|
|
u64 *pud_dma_ptr, *pmd_dma_ptr, *pte_dma_ptr;
|
|
|
|
for (pgd_idx = 0; pgd_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pgd_idx) {
|
|
pud_dma_ptr = pgtable->pud_ptrs[pgd_idx];
|
|
pud_dma = pgtable->pgd_dma_ptr[pgd_idx];
|
|
|
|
if (!pud_dma_ptr)
|
|
continue;
|
|
|
|
for (pud_idx = 0; pud_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pud_idx) {
|
|
pmd_dma_ptr = pgtable->pmd_ptrs[pgd_idx][pud_idx];
|
|
pmd_dma = pgtable->pud_ptrs[pgd_idx][pud_idx];
|
|
|
|
if (!pmd_dma_ptr)
|
|
continue;
|
|
|
|
for (pmd_idx = 0; pmd_idx < IVPU_MMU_PGTABLE_ENTRIES; ++pmd_idx) {
|
|
pte_dma_ptr = pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx];
|
|
pte_dma = pgtable->pmd_ptrs[pgd_idx][pud_idx][pmd_idx];
|
|
|
|
ivpu_pgtable_free_page(vdev, pte_dma_ptr, pte_dma);
|
|
}
|
|
|
|
kfree(pgtable->pte_ptrs[pgd_idx][pud_idx]);
|
|
ivpu_pgtable_free_page(vdev, pmd_dma_ptr, pmd_dma);
|
|
}
|
|
|
|
kfree(pgtable->pmd_ptrs[pgd_idx]);
|
|
kfree(pgtable->pte_ptrs[pgd_idx]);
|
|
ivpu_pgtable_free_page(vdev, pud_dma_ptr, pud_dma);
|
|
}
|
|
|
|
ivpu_pgtable_free_page(vdev, pgtable->pgd_dma_ptr, pgtable->pgd_dma);
|
|
}
|
|
|
|
static u64*
|
|
ivpu_mmu_ensure_pud(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, int pgd_idx)
|
|
{
|
|
u64 *pud_dma_ptr = pgtable->pud_ptrs[pgd_idx];
|
|
dma_addr_t pud_dma;
|
|
|
|
if (pud_dma_ptr)
|
|
return pud_dma_ptr;
|
|
|
|
pud_dma_ptr = ivpu_pgtable_alloc_page(vdev, &pud_dma);
|
|
if (!pud_dma_ptr)
|
|
return NULL;
|
|
|
|
drm_WARN_ON(&vdev->drm, pgtable->pmd_ptrs[pgd_idx]);
|
|
pgtable->pmd_ptrs[pgd_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL);
|
|
if (!pgtable->pmd_ptrs[pgd_idx])
|
|
goto err_free_pud_dma_ptr;
|
|
|
|
drm_WARN_ON(&vdev->drm, pgtable->pte_ptrs[pgd_idx]);
|
|
pgtable->pte_ptrs[pgd_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL);
|
|
if (!pgtable->pte_ptrs[pgd_idx])
|
|
goto err_free_pmd_ptrs;
|
|
|
|
pgtable->pud_ptrs[pgd_idx] = pud_dma_ptr;
|
|
pgtable->pgd_dma_ptr[pgd_idx] = pud_dma | IVPU_MMU_ENTRY_VALID;
|
|
|
|
return pud_dma_ptr;
|
|
|
|
err_free_pmd_ptrs:
|
|
kfree(pgtable->pmd_ptrs[pgd_idx]);
|
|
|
|
err_free_pud_dma_ptr:
|
|
ivpu_pgtable_free_page(vdev, pud_dma_ptr, pud_dma);
|
|
return NULL;
|
|
}
|
|
|
|
static u64*
|
|
ivpu_mmu_ensure_pmd(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable, int pgd_idx,
|
|
int pud_idx)
|
|
{
|
|
u64 *pmd_dma_ptr = pgtable->pmd_ptrs[pgd_idx][pud_idx];
|
|
dma_addr_t pmd_dma;
|
|
|
|
if (pmd_dma_ptr)
|
|
return pmd_dma_ptr;
|
|
|
|
pmd_dma_ptr = ivpu_pgtable_alloc_page(vdev, &pmd_dma);
|
|
if (!pmd_dma_ptr)
|
|
return NULL;
|
|
|
|
drm_WARN_ON(&vdev->drm, pgtable->pte_ptrs[pgd_idx][pud_idx]);
|
|
pgtable->pte_ptrs[pgd_idx][pud_idx] = kzalloc(IVPU_MMU_PGTABLE_SIZE, GFP_KERNEL);
|
|
if (!pgtable->pte_ptrs[pgd_idx][pud_idx])
|
|
goto err_free_pmd_dma_ptr;
|
|
|
|
pgtable->pmd_ptrs[pgd_idx][pud_idx] = pmd_dma_ptr;
|
|
pgtable->pud_ptrs[pgd_idx][pud_idx] = pmd_dma | IVPU_MMU_ENTRY_VALID;
|
|
|
|
return pmd_dma_ptr;
|
|
|
|
err_free_pmd_dma_ptr:
|
|
ivpu_pgtable_free_page(vdev, pmd_dma_ptr, pmd_dma);
|
|
return NULL;
|
|
}
|
|
|
|
static u64*
|
|
ivpu_mmu_ensure_pte(struct ivpu_device *vdev, struct ivpu_mmu_pgtable *pgtable,
|
|
int pgd_idx, int pud_idx, int pmd_idx)
|
|
{
|
|
u64 *pte_dma_ptr = pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx];
|
|
dma_addr_t pte_dma;
|
|
|
|
if (pte_dma_ptr)
|
|
return pte_dma_ptr;
|
|
|
|
pte_dma_ptr = ivpu_pgtable_alloc_page(vdev, &pte_dma);
|
|
if (!pte_dma_ptr)
|
|
return NULL;
|
|
|
|
pgtable->pte_ptrs[pgd_idx][pud_idx][pmd_idx] = pte_dma_ptr;
|
|
pgtable->pmd_ptrs[pgd_idx][pud_idx][pmd_idx] = pte_dma | IVPU_MMU_ENTRY_VALID;
|
|
|
|
return pte_dma_ptr;
|
|
}
|
|
|
|
static int
|
|
ivpu_mmu_context_map_page(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
|
|
u64 vpu_addr, dma_addr_t dma_addr, u64 prot)
|
|
{
|
|
u64 *pte;
|
|
int pgd_idx = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr);
|
|
int pud_idx = FIELD_GET(IVPU_MMU_PUD_INDEX_MASK, vpu_addr);
|
|
int pmd_idx = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr);
|
|
int pte_idx = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr);
|
|
|
|
/* Allocate PUD - second level page table if needed */
|
|
if (!ivpu_mmu_ensure_pud(vdev, &ctx->pgtable, pgd_idx))
|
|
return -ENOMEM;
|
|
|
|
/* Allocate PMD - third level page table if needed */
|
|
if (!ivpu_mmu_ensure_pmd(vdev, &ctx->pgtable, pgd_idx, pud_idx))
|
|
return -ENOMEM;
|
|
|
|
/* Allocate PTE - fourth level page table if needed */
|
|
pte = ivpu_mmu_ensure_pte(vdev, &ctx->pgtable, pgd_idx, pud_idx, pmd_idx);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/* Update PTE */
|
|
pte[pte_idx] = dma_addr | prot;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ivpu_mmu_context_map_cont_64k(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u64 vpu_addr,
|
|
dma_addr_t dma_addr, u64 prot)
|
|
{
|
|
size_t size = IVPU_MMU_CONT_PAGES_SIZE;
|
|
|
|
drm_WARN_ON(&vdev->drm, !IS_ALIGNED(vpu_addr, size));
|
|
drm_WARN_ON(&vdev->drm, !IS_ALIGNED(dma_addr, size));
|
|
|
|
prot |= IVPU_MMU_ENTRY_FLAG_CONT;
|
|
|
|
while (size) {
|
|
int ret = ivpu_mmu_context_map_page(vdev, ctx, vpu_addr, dma_addr, prot);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
size -= IVPU_MMU_PAGE_SIZE;
|
|
vpu_addr += IVPU_MMU_PAGE_SIZE;
|
|
dma_addr += IVPU_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ivpu_mmu_context_unmap_page(struct ivpu_mmu_context *ctx, u64 vpu_addr)
|
|
{
|
|
int pgd_idx = FIELD_GET(IVPU_MMU_PGD_INDEX_MASK, vpu_addr);
|
|
int pud_idx = FIELD_GET(IVPU_MMU_PUD_INDEX_MASK, vpu_addr);
|
|
int pmd_idx = FIELD_GET(IVPU_MMU_PMD_INDEX_MASK, vpu_addr);
|
|
int pte_idx = FIELD_GET(IVPU_MMU_PTE_INDEX_MASK, vpu_addr);
|
|
|
|
/* Update PTE with dummy physical address and clear flags */
|
|
ctx->pgtable.pte_ptrs[pgd_idx][pud_idx][pmd_idx][pte_idx] = IVPU_MMU_ENTRY_INVALID;
|
|
}
|
|
|
|
static int
|
|
ivpu_mmu_context_map_pages(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
|
|
u64 vpu_addr, dma_addr_t dma_addr, size_t size, u64 prot)
|
|
{
|
|
int map_size;
|
|
int ret;
|
|
|
|
while (size) {
|
|
if (!ivpu_disable_mmu_cont_pages && size >= IVPU_MMU_CONT_PAGES_SIZE &&
|
|
IS_ALIGNED(vpu_addr | dma_addr, IVPU_MMU_CONT_PAGES_SIZE)) {
|
|
ret = ivpu_mmu_context_map_cont_64k(vdev, ctx, vpu_addr, dma_addr, prot);
|
|
map_size = IVPU_MMU_CONT_PAGES_SIZE;
|
|
} else {
|
|
ret = ivpu_mmu_context_map_page(vdev, ctx, vpu_addr, dma_addr, prot);
|
|
map_size = IVPU_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
vpu_addr += map_size;
|
|
dma_addr += map_size;
|
|
size -= map_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ivpu_mmu_context_unmap_pages(struct ivpu_mmu_context *ctx, u64 vpu_addr, size_t size)
|
|
{
|
|
while (size) {
|
|
ivpu_mmu_context_unmap_page(ctx, vpu_addr);
|
|
vpu_addr += IVPU_MMU_PAGE_SIZE;
|
|
size -= IVPU_MMU_PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
int
|
|
ivpu_mmu_context_map_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
|
|
u64 vpu_addr, struct sg_table *sgt, bool llc_coherent)
|
|
{
|
|
struct scatterlist *sg;
|
|
int ret;
|
|
u64 prot;
|
|
u64 i;
|
|
|
|
if (drm_WARN_ON(&vdev->drm, !ctx))
|
|
return -EINVAL;
|
|
|
|
if (!IS_ALIGNED(vpu_addr, IVPU_MMU_PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (vpu_addr & ~IVPU_MMU_VPU_ADDRESS_MASK)
|
|
return -EINVAL;
|
|
|
|
prot = IVPU_MMU_ENTRY_MAPPED;
|
|
if (llc_coherent)
|
|
prot |= IVPU_MMU_ENTRY_FLAG_LLC_COHERENT;
|
|
|
|
mutex_lock(&ctx->lock);
|
|
|
|
for_each_sgtable_dma_sg(sgt, sg, i) {
|
|
dma_addr_t dma_addr = sg_dma_address(sg) - sg->offset;
|
|
size_t size = sg_dma_len(sg) + sg->offset;
|
|
|
|
ivpu_dbg(vdev, MMU_MAP, "Map ctx: %u dma_addr: 0x%llx vpu_addr: 0x%llx size: %lu\n",
|
|
ctx->id, dma_addr, vpu_addr, size);
|
|
|
|
ret = ivpu_mmu_context_map_pages(vdev, ctx, vpu_addr, dma_addr, size, prot);
|
|
if (ret) {
|
|
ivpu_err(vdev, "Failed to map context pages\n");
|
|
mutex_unlock(&ctx->lock);
|
|
return ret;
|
|
}
|
|
vpu_addr += size;
|
|
}
|
|
|
|
/* Ensure page table modifications are flushed from wc buffers to memory */
|
|
wmb();
|
|
|
|
mutex_unlock(&ctx->lock);
|
|
|
|
ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id);
|
|
if (ret)
|
|
ivpu_err(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
ivpu_mmu_context_unmap_sgt(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx,
|
|
u64 vpu_addr, struct sg_table *sgt)
|
|
{
|
|
struct scatterlist *sg;
|
|
int ret;
|
|
u64 i;
|
|
|
|
if (drm_WARN_ON(&vdev->drm, !ctx))
|
|
return;
|
|
|
|
mutex_lock(&ctx->lock);
|
|
|
|
for_each_sgtable_dma_sg(sgt, sg, i) {
|
|
dma_addr_t dma_addr = sg_dma_address(sg) - sg->offset;
|
|
size_t size = sg_dma_len(sg) + sg->offset;
|
|
|
|
ivpu_dbg(vdev, MMU_MAP, "Unmap ctx: %u dma_addr: 0x%llx vpu_addr: 0x%llx size: %lu\n",
|
|
ctx->id, dma_addr, vpu_addr, size);
|
|
|
|
ivpu_mmu_context_unmap_pages(ctx, vpu_addr, size);
|
|
vpu_addr += size;
|
|
}
|
|
|
|
/* Ensure page table modifications are flushed from wc buffers to memory */
|
|
wmb();
|
|
|
|
mutex_unlock(&ctx->lock);
|
|
|
|
ret = ivpu_mmu_invalidate_tlb(vdev, ctx->id);
|
|
if (ret)
|
|
ivpu_warn(vdev, "Failed to invalidate TLB for ctx %u: %d\n", ctx->id, ret);
|
|
}
|
|
|
|
int
|
|
ivpu_mmu_context_insert_node(struct ivpu_mmu_context *ctx, const struct ivpu_addr_range *range,
|
|
u64 size, struct drm_mm_node *node)
|
|
{
|
|
int ret;
|
|
|
|
WARN_ON(!range);
|
|
|
|
mutex_lock(&ctx->lock);
|
|
if (!ivpu_disable_mmu_cont_pages && size >= IVPU_MMU_CONT_PAGES_SIZE) {
|
|
ret = drm_mm_insert_node_in_range(&ctx->mm, node, size, IVPU_MMU_CONT_PAGES_SIZE, 0,
|
|
range->start, range->end, DRM_MM_INSERT_BEST);
|
|
if (!ret)
|
|
goto unlock;
|
|
}
|
|
|
|
ret = drm_mm_insert_node_in_range(&ctx->mm, node, size, IVPU_MMU_PAGE_SIZE, 0,
|
|
range->start, range->end, DRM_MM_INSERT_BEST);
|
|
unlock:
|
|
mutex_unlock(&ctx->lock);
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
ivpu_mmu_context_remove_node(struct ivpu_mmu_context *ctx, struct drm_mm_node *node)
|
|
{
|
|
mutex_lock(&ctx->lock);
|
|
drm_mm_remove_node(node);
|
|
mutex_unlock(&ctx->lock);
|
|
}
|
|
|
|
static int
|
|
ivpu_mmu_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 context_id)
|
|
{
|
|
u64 start, end;
|
|
int ret;
|
|
|
|
mutex_init(&ctx->lock);
|
|
|
|
ret = ivpu_mmu_pgtable_init(vdev, &ctx->pgtable);
|
|
if (ret) {
|
|
ivpu_err(vdev, "Failed to initialize pgtable for ctx %u: %d\n", context_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (!context_id) {
|
|
start = vdev->hw->ranges.global.start;
|
|
end = vdev->hw->ranges.shave.end;
|
|
} else {
|
|
start = vdev->hw->ranges.user.start;
|
|
end = vdev->hw->ranges.dma.end;
|
|
}
|
|
|
|
drm_mm_init(&ctx->mm, start, end - start);
|
|
ctx->id = context_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ivpu_mmu_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx)
|
|
{
|
|
if (drm_WARN_ON(&vdev->drm, !ctx->pgtable.pgd_dma_ptr))
|
|
return;
|
|
|
|
mutex_destroy(&ctx->lock);
|
|
ivpu_mmu_pgtables_free(vdev, &ctx->pgtable);
|
|
drm_mm_takedown(&ctx->mm);
|
|
|
|
ctx->pgtable.pgd_dma_ptr = NULL;
|
|
ctx->pgtable.pgd_dma = 0;
|
|
}
|
|
|
|
int ivpu_mmu_global_context_init(struct ivpu_device *vdev)
|
|
{
|
|
return ivpu_mmu_context_init(vdev, &vdev->gctx, IVPU_GLOBAL_CONTEXT_MMU_SSID);
|
|
}
|
|
|
|
void ivpu_mmu_global_context_fini(struct ivpu_device *vdev)
|
|
{
|
|
return ivpu_mmu_context_fini(vdev, &vdev->gctx);
|
|
}
|
|
|
|
int ivpu_mmu_reserved_context_init(struct ivpu_device *vdev)
|
|
{
|
|
return ivpu_mmu_user_context_init(vdev, &vdev->rctx, IVPU_RESERVED_CONTEXT_MMU_SSID);
|
|
}
|
|
|
|
void ivpu_mmu_reserved_context_fini(struct ivpu_device *vdev)
|
|
{
|
|
return ivpu_mmu_user_context_fini(vdev, &vdev->rctx);
|
|
}
|
|
|
|
void ivpu_mmu_user_context_mark_invalid(struct ivpu_device *vdev, u32 ssid)
|
|
{
|
|
struct ivpu_file_priv *file_priv;
|
|
|
|
xa_lock(&vdev->context_xa);
|
|
|
|
file_priv = xa_load(&vdev->context_xa, ssid);
|
|
if (file_priv)
|
|
file_priv->has_mmu_faults = true;
|
|
|
|
xa_unlock(&vdev->context_xa);
|
|
}
|
|
|
|
int ivpu_mmu_user_context_init(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx, u32 ctx_id)
|
|
{
|
|
int ret;
|
|
|
|
drm_WARN_ON(&vdev->drm, !ctx_id);
|
|
|
|
ret = ivpu_mmu_context_init(vdev, ctx, ctx_id);
|
|
if (ret) {
|
|
ivpu_err(vdev, "Failed to initialize context %u: %d\n", ctx_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = ivpu_mmu_set_pgtable(vdev, ctx_id, &ctx->pgtable);
|
|
if (ret) {
|
|
ivpu_err(vdev, "Failed to set page table for context %u: %d\n", ctx_id, ret);
|
|
goto err_context_fini;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_context_fini:
|
|
ivpu_mmu_context_fini(vdev, ctx);
|
|
return ret;
|
|
}
|
|
|
|
void ivpu_mmu_user_context_fini(struct ivpu_device *vdev, struct ivpu_mmu_context *ctx)
|
|
{
|
|
drm_WARN_ON(&vdev->drm, !ctx->id);
|
|
|
|
ivpu_mmu_clear_pgtable(vdev, ctx->id);
|
|
ivpu_mmu_context_fini(vdev, ctx);
|
|
}
|