b7ee49db8b
Added 82571 fiber to WOL fix for dual port adapters. Added support for 82546GB (Quad Copper). Added PCIe typedef for x2, igp cable length 115, and extended TX CTRL registers. Added parity error detection and PCIe CTRL registers. Added EEPROM config registers. Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com> Signed-off-by: John Ronciak <john.ronciak@intel.com> Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
1895 lines
55 KiB
C
1895 lines
55 KiB
C
/*******************************************************************************
|
|
|
|
|
|
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
any later version.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc., 59
|
|
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
The full GNU General Public License is included in this distribution in the
|
|
file called LICENSE.
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
/* ethtool support for e1000 */
|
|
|
|
#include "e1000.h"
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
extern char e1000_driver_name[];
|
|
extern char e1000_driver_version[];
|
|
|
|
extern int e1000_up(struct e1000_adapter *adapter);
|
|
extern void e1000_down(struct e1000_adapter *adapter);
|
|
extern void e1000_reset(struct e1000_adapter *adapter);
|
|
extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
|
|
extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
|
|
extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
|
|
extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
|
|
extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
|
|
extern void e1000_update_stats(struct e1000_adapter *adapter);
|
|
|
|
struct e1000_stats {
|
|
char stat_string[ETH_GSTRING_LEN];
|
|
int sizeof_stat;
|
|
int stat_offset;
|
|
};
|
|
|
|
#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
|
|
offsetof(struct e1000_adapter, m)
|
|
static const struct e1000_stats e1000_gstrings_stats[] = {
|
|
{ "rx_packets", E1000_STAT(net_stats.rx_packets) },
|
|
{ "tx_packets", E1000_STAT(net_stats.tx_packets) },
|
|
{ "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
|
|
{ "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
|
|
{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
|
|
{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
|
|
{ "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
|
|
{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
|
|
{ "multicast", E1000_STAT(net_stats.multicast) },
|
|
{ "collisions", E1000_STAT(net_stats.collisions) },
|
|
{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
|
|
{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
|
|
{ "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
|
|
{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
|
|
{ "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
|
|
{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
|
|
{ "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
|
|
{ "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
|
|
{ "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
|
|
{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
|
|
{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
|
|
{ "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
|
|
{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
|
|
{ "tx_deferred_ok", E1000_STAT(stats.dc) },
|
|
{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
|
|
{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
|
|
{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
|
|
{ "rx_long_length_errors", E1000_STAT(stats.roc) },
|
|
{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
|
|
{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
|
|
{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
|
|
{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
|
|
{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
|
|
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
|
|
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
|
|
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
|
|
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
|
|
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
|
|
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
|
|
{ "rx_header_split", E1000_STAT(rx_hdr_split) },
|
|
{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
|
|
};
|
|
|
|
#ifdef CONFIG_E1000_MQ
|
|
#define E1000_QUEUE_STATS_LEN \
|
|
(((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
|
|
((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
|
|
* (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
|
|
#else
|
|
#define E1000_QUEUE_STATS_LEN 0
|
|
#endif
|
|
#define E1000_GLOBAL_STATS_LEN \
|
|
sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
|
|
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
|
|
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
|
|
"Register test (offline)", "Eeprom test (offline)",
|
|
"Interrupt test (offline)", "Loopback test (offline)",
|
|
"Link test (on/offline)"
|
|
};
|
|
#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
|
|
|
|
static int
|
|
e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
if(hw->media_type == e1000_media_type_copper) {
|
|
|
|
ecmd->supported = (SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full |
|
|
SUPPORTED_1000baseT_Full|
|
|
SUPPORTED_Autoneg |
|
|
SUPPORTED_TP);
|
|
|
|
ecmd->advertising = ADVERTISED_TP;
|
|
|
|
if(hw->autoneg == 1) {
|
|
ecmd->advertising |= ADVERTISED_Autoneg;
|
|
|
|
/* the e1000 autoneg seems to match ethtool nicely */
|
|
|
|
ecmd->advertising |= hw->autoneg_advertised;
|
|
}
|
|
|
|
ecmd->port = PORT_TP;
|
|
ecmd->phy_address = hw->phy_addr;
|
|
|
|
if(hw->mac_type == e1000_82543)
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
else
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
} else {
|
|
ecmd->supported = (SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_FIBRE |
|
|
SUPPORTED_Autoneg);
|
|
|
|
ecmd->advertising = (ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_FIBRE |
|
|
ADVERTISED_Autoneg);
|
|
|
|
ecmd->port = PORT_FIBRE;
|
|
|
|
if(hw->mac_type >= e1000_82545)
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
else
|
|
ecmd->transceiver = XCVR_EXTERNAL;
|
|
}
|
|
|
|
if(netif_carrier_ok(adapter->netdev)) {
|
|
|
|
e1000_get_speed_and_duplex(hw, &adapter->link_speed,
|
|
&adapter->link_duplex);
|
|
ecmd->speed = adapter->link_speed;
|
|
|
|
/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
|
|
* and HALF_DUPLEX != DUPLEX_HALF */
|
|
|
|
if(adapter->link_duplex == FULL_DUPLEX)
|
|
ecmd->duplex = DUPLEX_FULL;
|
|
else
|
|
ecmd->duplex = DUPLEX_HALF;
|
|
} else {
|
|
ecmd->speed = -1;
|
|
ecmd->duplex = -1;
|
|
}
|
|
|
|
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
|
|
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
/* When SoL/IDER sessions are active, autoneg/speed/duplex
|
|
* cannot be changed */
|
|
if (e1000_check_phy_reset_block(hw)) {
|
|
DPRINTK(DRV, ERR, "Cannot change link characteristics "
|
|
"when SoL/IDER is active.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
hw->autoneg = 1;
|
|
if(hw->media_type == e1000_media_type_fiber)
|
|
hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_FIBRE |
|
|
ADVERTISED_Autoneg;
|
|
else
|
|
hw->autoneg_advertised = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full |
|
|
ADVERTISED_1000baseT_Full|
|
|
ADVERTISED_Autoneg |
|
|
ADVERTISED_TP;
|
|
ecmd->advertising = hw->autoneg_advertised;
|
|
} else
|
|
if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
|
|
return -EINVAL;
|
|
|
|
/* reset the link */
|
|
|
|
if(netif_running(adapter->netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_reset(adapter);
|
|
e1000_up(adapter);
|
|
} else
|
|
e1000_reset(adapter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
e1000_get_pauseparam(struct net_device *netdev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
pause->autoneg =
|
|
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
|
|
|
|
if(hw->fc == e1000_fc_rx_pause)
|
|
pause->rx_pause = 1;
|
|
else if(hw->fc == e1000_fc_tx_pause)
|
|
pause->tx_pause = 1;
|
|
else if(hw->fc == e1000_fc_full) {
|
|
pause->rx_pause = 1;
|
|
pause->tx_pause = 1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
e1000_set_pauseparam(struct net_device *netdev,
|
|
struct ethtool_pauseparam *pause)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
adapter->fc_autoneg = pause->autoneg;
|
|
|
|
if(pause->rx_pause && pause->tx_pause)
|
|
hw->fc = e1000_fc_full;
|
|
else if(pause->rx_pause && !pause->tx_pause)
|
|
hw->fc = e1000_fc_rx_pause;
|
|
else if(!pause->rx_pause && pause->tx_pause)
|
|
hw->fc = e1000_fc_tx_pause;
|
|
else if(!pause->rx_pause && !pause->tx_pause)
|
|
hw->fc = e1000_fc_none;
|
|
|
|
hw->original_fc = hw->fc;
|
|
|
|
if(adapter->fc_autoneg == AUTONEG_ENABLE) {
|
|
if(netif_running(adapter->netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
} else
|
|
e1000_reset(adapter);
|
|
}
|
|
else
|
|
return ((hw->media_type == e1000_media_type_fiber) ?
|
|
e1000_setup_link(hw) : e1000_force_mac_fc(hw));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
e1000_get_rx_csum(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->rx_csum;
|
|
}
|
|
|
|
static int
|
|
e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
adapter->rx_csum = data;
|
|
|
|
if(netif_running(netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
} else
|
|
e1000_reset(adapter);
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
e1000_get_tx_csum(struct net_device *netdev)
|
|
{
|
|
return (netdev->features & NETIF_F_HW_CSUM) != 0;
|
|
}
|
|
|
|
static int
|
|
e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if(adapter->hw.mac_type < e1000_82543) {
|
|
if (!data)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
if (data)
|
|
netdev->features |= NETIF_F_HW_CSUM;
|
|
else
|
|
netdev->features &= ~NETIF_F_HW_CSUM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef NETIF_F_TSO
|
|
static int
|
|
e1000_set_tso(struct net_device *netdev, uint32_t data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
if((adapter->hw.mac_type < e1000_82544) ||
|
|
(adapter->hw.mac_type == e1000_82547))
|
|
return data ? -EINVAL : 0;
|
|
|
|
if (data)
|
|
netdev->features |= NETIF_F_TSO;
|
|
else
|
|
netdev->features &= ~NETIF_F_TSO;
|
|
return 0;
|
|
}
|
|
#endif /* NETIF_F_TSO */
|
|
|
|
static uint32_t
|
|
e1000_get_msglevel(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->msg_enable;
|
|
}
|
|
|
|
static void
|
|
e1000_set_msglevel(struct net_device *netdev, uint32_t data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
adapter->msg_enable = data;
|
|
}
|
|
|
|
static int
|
|
e1000_get_regs_len(struct net_device *netdev)
|
|
{
|
|
#define E1000_REGS_LEN 32
|
|
return E1000_REGS_LEN * sizeof(uint32_t);
|
|
}
|
|
|
|
static void
|
|
e1000_get_regs(struct net_device *netdev,
|
|
struct ethtool_regs *regs, void *p)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t *regs_buff = p;
|
|
uint16_t phy_data;
|
|
|
|
memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
|
|
|
|
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
|
|
|
|
regs_buff[0] = E1000_READ_REG(hw, CTRL);
|
|
regs_buff[1] = E1000_READ_REG(hw, STATUS);
|
|
|
|
regs_buff[2] = E1000_READ_REG(hw, RCTL);
|
|
regs_buff[3] = E1000_READ_REG(hw, RDLEN);
|
|
regs_buff[4] = E1000_READ_REG(hw, RDH);
|
|
regs_buff[5] = E1000_READ_REG(hw, RDT);
|
|
regs_buff[6] = E1000_READ_REG(hw, RDTR);
|
|
|
|
regs_buff[7] = E1000_READ_REG(hw, TCTL);
|
|
regs_buff[8] = E1000_READ_REG(hw, TDLEN);
|
|
regs_buff[9] = E1000_READ_REG(hw, TDH);
|
|
regs_buff[10] = E1000_READ_REG(hw, TDT);
|
|
regs_buff[11] = E1000_READ_REG(hw, TIDV);
|
|
|
|
regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
|
|
if(hw->phy_type == e1000_phy_igp) {
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
IGP01E1000_PHY_AGC_A);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[13] = (uint32_t)phy_data; /* cable length */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
IGP01E1000_PHY_AGC_B);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[14] = (uint32_t)phy_data; /* cable length */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
IGP01E1000_PHY_AGC_C);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[15] = (uint32_t)phy_data; /* cable length */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
IGP01E1000_PHY_AGC_D);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[16] = (uint32_t)phy_data; /* cable length */
|
|
regs_buff[17] = 0; /* extended 10bt distance (not needed) */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
|
|
IGP01E1000_PHY_PCS_INIT_REG);
|
|
e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
|
|
IGP01E1000_PHY_PAGE_SELECT, &phy_data);
|
|
regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
|
|
regs_buff[20] = 0; /* polarity correction enabled (always) */
|
|
regs_buff[22] = 0; /* phy receive errors (unavailable) */
|
|
regs_buff[23] = regs_buff[18]; /* mdix mode */
|
|
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
|
|
} else {
|
|
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
|
|
regs_buff[13] = (uint32_t)phy_data; /* cable length */
|
|
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
|
|
regs_buff[18] = regs_buff[13]; /* cable polarity */
|
|
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
|
|
regs_buff[20] = regs_buff[17]; /* polarity correction */
|
|
/* phy receive errors */
|
|
regs_buff[22] = adapter->phy_stats.receive_errors;
|
|
regs_buff[23] = regs_buff[13]; /* mdix mode */
|
|
}
|
|
regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
|
|
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
|
|
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
|
|
if(hw->mac_type >= e1000_82540 &&
|
|
hw->media_type == e1000_media_type_copper) {
|
|
regs_buff[26] = E1000_READ_REG(hw, MANC);
|
|
}
|
|
}
|
|
|
|
static int
|
|
e1000_get_eeprom_len(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
return adapter->hw.eeprom.word_size * 2;
|
|
}
|
|
|
|
static int
|
|
e1000_get_eeprom(struct net_device *netdev,
|
|
struct ethtool_eeprom *eeprom, uint8_t *bytes)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint16_t *eeprom_buff;
|
|
int first_word, last_word;
|
|
int ret_val = 0;
|
|
uint16_t i;
|
|
|
|
if(eeprom->len == 0)
|
|
return -EINVAL;
|
|
|
|
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
|
|
eeprom_buff = kmalloc(sizeof(uint16_t) *
|
|
(last_word - first_word + 1), GFP_KERNEL);
|
|
if(!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
if(hw->eeprom.type == e1000_eeprom_spi)
|
|
ret_val = e1000_read_eeprom(hw, first_word,
|
|
last_word - first_word + 1,
|
|
eeprom_buff);
|
|
else {
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
|
|
&eeprom_buff[i])))
|
|
break;
|
|
}
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
|
|
eeprom->len);
|
|
kfree(eeprom_buff);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static int
|
|
e1000_set_eeprom(struct net_device *netdev,
|
|
struct ethtool_eeprom *eeprom, uint8_t *bytes)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint16_t *eeprom_buff;
|
|
void *ptr;
|
|
int max_len, first_word, last_word, ret_val = 0;
|
|
uint16_t i;
|
|
|
|
if(eeprom->len == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
|
|
return -EFAULT;
|
|
|
|
max_len = hw->eeprom.word_size * 2;
|
|
|
|
first_word = eeprom->offset >> 1;
|
|
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
|
|
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
|
|
if(!eeprom_buff)
|
|
return -ENOMEM;
|
|
|
|
ptr = (void *)eeprom_buff;
|
|
|
|
if(eeprom->offset & 1) {
|
|
/* need read/modify/write of first changed EEPROM word */
|
|
/* only the second byte of the word is being modified */
|
|
ret_val = e1000_read_eeprom(hw, first_word, 1,
|
|
&eeprom_buff[0]);
|
|
ptr++;
|
|
}
|
|
if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
|
|
/* need read/modify/write of last changed EEPROM word */
|
|
/* only the first byte of the word is being modified */
|
|
ret_val = e1000_read_eeprom(hw, last_word, 1,
|
|
&eeprom_buff[last_word - first_word]);
|
|
}
|
|
|
|
/* Device's eeprom is always little-endian, word addressable */
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
le16_to_cpus(&eeprom_buff[i]);
|
|
|
|
memcpy(ptr, bytes, eeprom->len);
|
|
|
|
for (i = 0; i < last_word - first_word + 1; i++)
|
|
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
|
|
|
|
ret_val = e1000_write_eeprom(hw, first_word,
|
|
last_word - first_word + 1, eeprom_buff);
|
|
|
|
/* Update the checksum over the first part of the EEPROM if needed
|
|
* and flush shadow RAM for 82573 conrollers */
|
|
if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
|
|
(hw->mac_type == e1000_82573)))
|
|
e1000_update_eeprom_checksum(hw);
|
|
|
|
kfree(eeprom_buff);
|
|
return ret_val;
|
|
}
|
|
|
|
static void
|
|
e1000_get_drvinfo(struct net_device *netdev,
|
|
struct ethtool_drvinfo *drvinfo)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
strncpy(drvinfo->driver, e1000_driver_name, 32);
|
|
strncpy(drvinfo->version, e1000_driver_version, 32);
|
|
strncpy(drvinfo->fw_version, "N/A", 32);
|
|
strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
|
|
drvinfo->n_stats = E1000_STATS_LEN;
|
|
drvinfo->testinfo_len = E1000_TEST_LEN;
|
|
drvinfo->regdump_len = e1000_get_regs_len(netdev);
|
|
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
|
|
}
|
|
|
|
static void
|
|
e1000_get_ringparam(struct net_device *netdev,
|
|
struct ethtool_ringparam *ring)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
e1000_mac_type mac_type = adapter->hw.mac_type;
|
|
struct e1000_tx_ring *txdr = adapter->tx_ring;
|
|
struct e1000_rx_ring *rxdr = adapter->rx_ring;
|
|
|
|
ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
|
|
E1000_MAX_82544_RXD;
|
|
ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
|
|
E1000_MAX_82544_TXD;
|
|
ring->rx_mini_max_pending = 0;
|
|
ring->rx_jumbo_max_pending = 0;
|
|
ring->rx_pending = rxdr->count;
|
|
ring->tx_pending = txdr->count;
|
|
ring->rx_mini_pending = 0;
|
|
ring->rx_jumbo_pending = 0;
|
|
}
|
|
|
|
static int
|
|
e1000_set_ringparam(struct net_device *netdev,
|
|
struct ethtool_ringparam *ring)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
e1000_mac_type mac_type = adapter->hw.mac_type;
|
|
struct e1000_tx_ring *txdr, *tx_old, *tx_new;
|
|
struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
|
|
int i, err, tx_ring_size, rx_ring_size;
|
|
|
|
tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
|
|
rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
|
|
|
|
if (netif_running(adapter->netdev))
|
|
e1000_down(adapter);
|
|
|
|
tx_old = adapter->tx_ring;
|
|
rx_old = adapter->rx_ring;
|
|
|
|
adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
|
|
if (!adapter->tx_ring) {
|
|
err = -ENOMEM;
|
|
goto err_setup_rx;
|
|
}
|
|
memset(adapter->tx_ring, 0, tx_ring_size);
|
|
|
|
adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
|
|
if (!adapter->rx_ring) {
|
|
kfree(adapter->tx_ring);
|
|
err = -ENOMEM;
|
|
goto err_setup_rx;
|
|
}
|
|
memset(adapter->rx_ring, 0, rx_ring_size);
|
|
|
|
txdr = adapter->tx_ring;
|
|
rxdr = adapter->rx_ring;
|
|
|
|
if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
|
return -EINVAL;
|
|
|
|
rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
|
|
rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
|
|
E1000_MAX_RXD : E1000_MAX_82544_RXD));
|
|
E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
|
|
|
|
txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
|
|
txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
|
|
E1000_MAX_TXD : E1000_MAX_82544_TXD));
|
|
E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
|
|
|
|
for (i = 0; i < adapter->num_tx_queues; i++)
|
|
txdr[i].count = txdr->count;
|
|
for (i = 0; i < adapter->num_rx_queues; i++)
|
|
rxdr[i].count = rxdr->count;
|
|
|
|
if(netif_running(adapter->netdev)) {
|
|
/* Try to get new resources before deleting old */
|
|
if ((err = e1000_setup_all_rx_resources(adapter)))
|
|
goto err_setup_rx;
|
|
if ((err = e1000_setup_all_tx_resources(adapter)))
|
|
goto err_setup_tx;
|
|
|
|
/* save the new, restore the old in order to free it,
|
|
* then restore the new back again */
|
|
|
|
rx_new = adapter->rx_ring;
|
|
tx_new = adapter->tx_ring;
|
|
adapter->rx_ring = rx_old;
|
|
adapter->tx_ring = tx_old;
|
|
e1000_free_all_rx_resources(adapter);
|
|
e1000_free_all_tx_resources(adapter);
|
|
kfree(tx_old);
|
|
kfree(rx_old);
|
|
adapter->rx_ring = rx_new;
|
|
adapter->tx_ring = tx_new;
|
|
if((err = e1000_up(adapter)))
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
err_setup_tx:
|
|
e1000_free_all_rx_resources(adapter);
|
|
err_setup_rx:
|
|
adapter->rx_ring = rx_old;
|
|
adapter->tx_ring = tx_old;
|
|
e1000_up(adapter);
|
|
return err;
|
|
}
|
|
|
|
#define REG_PATTERN_TEST(R, M, W) \
|
|
{ \
|
|
uint32_t pat, value; \
|
|
uint32_t test[] = \
|
|
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
|
|
for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
|
|
E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
|
|
value = E1000_READ_REG(&adapter->hw, R); \
|
|
if(value != (test[pat] & W & M)) { \
|
|
DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
|
|
"0x%08X expected 0x%08X\n", \
|
|
E1000_##R, value, (test[pat] & W & M)); \
|
|
*data = (adapter->hw.mac_type < e1000_82543) ? \
|
|
E1000_82542_##R : E1000_##R; \
|
|
return 1; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
#define REG_SET_AND_CHECK(R, M, W) \
|
|
{ \
|
|
uint32_t value; \
|
|
E1000_WRITE_REG(&adapter->hw, R, W & M); \
|
|
value = E1000_READ_REG(&adapter->hw, R); \
|
|
if((W & M) != (value & M)) { \
|
|
DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
|
|
"expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
|
|
*data = (adapter->hw.mac_type < e1000_82543) ? \
|
|
E1000_82542_##R : E1000_##R; \
|
|
return 1; \
|
|
} \
|
|
}
|
|
|
|
static int
|
|
e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
{
|
|
uint32_t value, before, after;
|
|
uint32_t i, toggle;
|
|
|
|
/* The status register is Read Only, so a write should fail.
|
|
* Some bits that get toggled are ignored.
|
|
*/
|
|
switch (adapter->hw.mac_type) {
|
|
/* there are several bits on newer hardware that are r/w */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
toggle = 0x7FFFF3FF;
|
|
break;
|
|
case e1000_82573:
|
|
toggle = 0x7FFFF033;
|
|
break;
|
|
default:
|
|
toggle = 0xFFFFF833;
|
|
break;
|
|
}
|
|
|
|
before = E1000_READ_REG(&adapter->hw, STATUS);
|
|
value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
|
|
E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
|
|
after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
|
|
if(value != after) {
|
|
DPRINTK(DRV, ERR, "failed STATUS register test got: "
|
|
"0x%08X expected: 0x%08X\n", after, value);
|
|
*data = 1;
|
|
return 1;
|
|
}
|
|
/* restore previous status */
|
|
E1000_WRITE_REG(&adapter->hw, STATUS, before);
|
|
|
|
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
|
|
REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
|
|
REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
|
|
REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
|
|
REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
|
|
REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
|
|
REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
|
|
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
|
|
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
|
|
|
|
if(adapter->hw.mac_type >= e1000_82543) {
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
|
|
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
|
|
|
|
for(i = 0; i < E1000_RAR_ENTRIES; i++) {
|
|
REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
|
|
0xFFFFFFFF);
|
|
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
|
|
0xFFFFFFFF);
|
|
}
|
|
|
|
} else {
|
|
|
|
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
|
|
REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
|
|
REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
|
|
|
|
}
|
|
|
|
for(i = 0; i < E1000_MC_TBL_SIZE; i++)
|
|
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
|
|
|
|
*data = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
{
|
|
uint16_t temp;
|
|
uint16_t checksum = 0;
|
|
uint16_t i;
|
|
|
|
*data = 0;
|
|
/* Read and add up the contents of the EEPROM */
|
|
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
|
if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
|
|
*data = 1;
|
|
break;
|
|
}
|
|
checksum += temp;
|
|
}
|
|
|
|
/* If Checksum is not Correct return error else test passed */
|
|
if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
|
|
*data = 2;
|
|
|
|
return *data;
|
|
}
|
|
|
|
static irqreturn_t
|
|
e1000_test_intr(int irq,
|
|
void *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct net_device *netdev = (struct net_device *) data;
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int
|
|
e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
uint32_t mask, i=0, shared_int = TRUE;
|
|
uint32_t irq = adapter->pdev->irq;
|
|
|
|
*data = 0;
|
|
|
|
/* Hook up test interrupt handler just for this test */
|
|
if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
|
|
shared_int = FALSE;
|
|
} else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
|
|
netdev->name, netdev)){
|
|
*data = 1;
|
|
return -1;
|
|
}
|
|
|
|
/* Disable all the interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
|
|
msec_delay(10);
|
|
|
|
/* Test each interrupt */
|
|
for(; i < 10; i++) {
|
|
|
|
/* Interrupt to test */
|
|
mask = 1 << i;
|
|
|
|
if(!shared_int) {
|
|
/* Disable the interrupt to be reported in
|
|
* the cause register and then force the same
|
|
* interrupt and see if one gets posted. If
|
|
* an interrupt was posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
E1000_WRITE_REG(&adapter->hw, IMC, mask);
|
|
E1000_WRITE_REG(&adapter->hw, ICS, mask);
|
|
msec_delay(10);
|
|
|
|
if(adapter->test_icr & mask) {
|
|
*data = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Enable the interrupt to be reported in
|
|
* the cause register and then force the same
|
|
* interrupt and see if one gets posted. If
|
|
* an interrupt was not posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
E1000_WRITE_REG(&adapter->hw, IMS, mask);
|
|
E1000_WRITE_REG(&adapter->hw, ICS, mask);
|
|
msec_delay(10);
|
|
|
|
if(!(adapter->test_icr & mask)) {
|
|
*data = 4;
|
|
break;
|
|
}
|
|
|
|
if(!shared_int) {
|
|
/* Disable the other interrupts to be reported in
|
|
* the cause register and then force the other
|
|
* interrupts and see if any get posted. If
|
|
* an interrupt was posted to the bus, the
|
|
* test failed.
|
|
*/
|
|
adapter->test_icr = 0;
|
|
E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
|
|
E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
|
|
msec_delay(10);
|
|
|
|
if(adapter->test_icr) {
|
|
*data = 5;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Disable all the interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
|
|
msec_delay(10);
|
|
|
|
/* Unhook test interrupt handler */
|
|
free_irq(irq, netdev);
|
|
|
|
return *data;
|
|
}
|
|
|
|
static void
|
|
e1000_free_desc_rings(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i;
|
|
|
|
if(txdr->desc && txdr->buffer_info) {
|
|
for(i = 0; i < txdr->count; i++) {
|
|
if(txdr->buffer_info[i].dma)
|
|
pci_unmap_single(pdev, txdr->buffer_info[i].dma,
|
|
txdr->buffer_info[i].length,
|
|
PCI_DMA_TODEVICE);
|
|
if(txdr->buffer_info[i].skb)
|
|
dev_kfree_skb(txdr->buffer_info[i].skb);
|
|
}
|
|
}
|
|
|
|
if(rxdr->desc && rxdr->buffer_info) {
|
|
for(i = 0; i < rxdr->count; i++) {
|
|
if(rxdr->buffer_info[i].dma)
|
|
pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
|
|
rxdr->buffer_info[i].length,
|
|
PCI_DMA_FROMDEVICE);
|
|
if(rxdr->buffer_info[i].skb)
|
|
dev_kfree_skb(rxdr->buffer_info[i].skb);
|
|
}
|
|
}
|
|
|
|
if (txdr->desc) {
|
|
pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
|
|
txdr->desc = NULL;
|
|
}
|
|
if (rxdr->desc) {
|
|
pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
|
|
rxdr->desc = NULL;
|
|
}
|
|
|
|
kfree(txdr->buffer_info);
|
|
txdr->buffer_info = NULL;
|
|
kfree(rxdr->buffer_info);
|
|
rxdr->buffer_info = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
e1000_setup_desc_rings(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
uint32_t rctl;
|
|
int size, i, ret_val;
|
|
|
|
/* Setup Tx descriptor ring and Tx buffers */
|
|
|
|
if(!txdr->count)
|
|
txdr->count = E1000_DEFAULT_TXD;
|
|
|
|
size = txdr->count * sizeof(struct e1000_buffer);
|
|
if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
|
|
ret_val = 1;
|
|
goto err_nomem;
|
|
}
|
|
memset(txdr->buffer_info, 0, size);
|
|
|
|
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
|
|
E1000_ROUNDUP(txdr->size, 4096);
|
|
if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
|
|
ret_val = 2;
|
|
goto err_nomem;
|
|
}
|
|
memset(txdr->desc, 0, txdr->size);
|
|
txdr->next_to_use = txdr->next_to_clean = 0;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, TDBAL,
|
|
((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
|
|
E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, TDLEN,
|
|
txdr->count * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(&adapter->hw, TDH, 0);
|
|
E1000_WRITE_REG(&adapter->hw, TDT, 0);
|
|
E1000_WRITE_REG(&adapter->hw, TCTL,
|
|
E1000_TCTL_PSP | E1000_TCTL_EN |
|
|
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
|
|
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
|
|
|
for(i = 0; i < txdr->count; i++) {
|
|
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
|
|
struct sk_buff *skb;
|
|
unsigned int size = 1024;
|
|
|
|
if(!(skb = alloc_skb(size, GFP_KERNEL))) {
|
|
ret_val = 3;
|
|
goto err_nomem;
|
|
}
|
|
skb_put(skb, size);
|
|
txdr->buffer_info[i].skb = skb;
|
|
txdr->buffer_info[i].length = skb->len;
|
|
txdr->buffer_info[i].dma =
|
|
pci_map_single(pdev, skb->data, skb->len,
|
|
PCI_DMA_TODEVICE);
|
|
tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
|
|
tx_desc->lower.data = cpu_to_le32(skb->len);
|
|
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
|
|
E1000_TXD_CMD_IFCS |
|
|
E1000_TXD_CMD_RPS);
|
|
tx_desc->upper.data = 0;
|
|
}
|
|
|
|
/* Setup Rx descriptor ring and Rx buffers */
|
|
|
|
if(!rxdr->count)
|
|
rxdr->count = E1000_DEFAULT_RXD;
|
|
|
|
size = rxdr->count * sizeof(struct e1000_buffer);
|
|
if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
|
|
ret_val = 4;
|
|
goto err_nomem;
|
|
}
|
|
memset(rxdr->buffer_info, 0, size);
|
|
|
|
rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
|
|
if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
|
|
ret_val = 5;
|
|
goto err_nomem;
|
|
}
|
|
memset(rxdr->desc, 0, rxdr->size);
|
|
rxdr->next_to_use = rxdr->next_to_clean = 0;
|
|
|
|
rctl = E1000_READ_REG(&adapter->hw, RCTL);
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
|
|
E1000_WRITE_REG(&adapter->hw, RDBAL,
|
|
((uint64_t) rxdr->dma & 0xFFFFFFFF));
|
|
E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
|
|
E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
|
|
E1000_WRITE_REG(&adapter->hw, RDH, 0);
|
|
E1000_WRITE_REG(&adapter->hw, RDT, 0);
|
|
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
|
|
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
|
|
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
|
|
|
|
for(i = 0; i < rxdr->count; i++) {
|
|
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
|
|
struct sk_buff *skb;
|
|
|
|
if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
|
|
GFP_KERNEL))) {
|
|
ret_val = 6;
|
|
goto err_nomem;
|
|
}
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
rxdr->buffer_info[i].skb = skb;
|
|
rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
|
|
rxdr->buffer_info[i].dma =
|
|
pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
|
|
PCI_DMA_FROMDEVICE);
|
|
rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
|
|
memset(skb->data, 0x00, skb->len);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_nomem:
|
|
e1000_free_desc_rings(adapter);
|
|
return ret_val;
|
|
}
|
|
|
|
static void
|
|
e1000_phy_disable_receiver(struct e1000_adapter *adapter)
|
|
{
|
|
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
|
|
e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
|
|
e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
|
|
e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
|
|
}
|
|
|
|
static void
|
|
e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
|
|
{
|
|
uint16_t phy_reg;
|
|
|
|
/* Because we reset the PHY above, we need to re-force TX_CLK in the
|
|
* Extended PHY Specific Control Register to 25MHz clock. This
|
|
* value defaults back to a 2.5MHz clock when the PHY is reset.
|
|
*/
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
phy_reg |= M88E1000_EPSCR_TX_CLK_25;
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
|
|
|
|
/* In addition, because of the s/w reset above, we need to enable
|
|
* CRS on TX. This must be set for both full and half duplex
|
|
* operation.
|
|
*/
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
}
|
|
|
|
static int
|
|
e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t ctrl_reg;
|
|
uint16_t phy_reg;
|
|
|
|
/* Setup the Device Control Register for PHY loopback test. */
|
|
|
|
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
|
|
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
|
|
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
|
|
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
|
|
|
|
/* Read the PHY Specific Control Register (0x10) */
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
|
|
|
|
/* Clear Auto-Crossover bits in PHY Specific Control Register
|
|
* (bits 6:5).
|
|
*/
|
|
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
|
|
|
|
/* Perform software reset on the PHY */
|
|
e1000_phy_reset(&adapter->hw);
|
|
|
|
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
|
|
|
|
/* Wait for reset to complete. */
|
|
udelay(500);
|
|
|
|
/* Have to setup TX_CLK and TX_CRS after software reset */
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
|
|
e1000_phy_disable_receiver(adapter);
|
|
|
|
/* Set the loopback bit in the PHY control register. */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
phy_reg |= MII_CR_LOOPBACK;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
|
|
|
|
/* Setup TX_CLK and TX_CRS one more time. */
|
|
e1000_phy_reset_clk_and_crs(adapter);
|
|
|
|
/* Check Phy Configuration */
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
if(phy_reg != 0x4100)
|
|
return 9;
|
|
|
|
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
|
|
if(phy_reg != 0x0070)
|
|
return 10;
|
|
|
|
e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
|
|
if(phy_reg != 0x001A)
|
|
return 11;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
|
|
{
|
|
uint32_t ctrl_reg = 0;
|
|
uint32_t stat_reg = 0;
|
|
|
|
adapter->hw.autoneg = FALSE;
|
|
|
|
if(adapter->hw.phy_type == e1000_phy_m88) {
|
|
/* Auto-MDI/MDIX Off */
|
|
e1000_write_phy_reg(&adapter->hw,
|
|
M88E1000_PHY_SPEC_CTRL, 0x0808);
|
|
/* reset to update Auto-MDI/MDIX */
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
|
|
/* autoneg off */
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
|
|
}
|
|
/* force 1000, set loopback */
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
|
|
|
|
/* Now set up the MAC to the same speed/duplex as the PHY. */
|
|
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
|
|
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
|
|
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
|
|
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
|
|
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
|
|
E1000_CTRL_FD); /* Force Duplex to FULL */
|
|
|
|
if(adapter->hw.media_type == e1000_media_type_copper &&
|
|
adapter->hw.phy_type == e1000_phy_m88) {
|
|
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
|
|
} else {
|
|
/* Set the ILOS bit on the fiber Nic is half
|
|
* duplex link is detected. */
|
|
stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
|
|
if((stat_reg & E1000_STATUS_FD) == 0)
|
|
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
|
|
}
|
|
|
|
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
|
|
|
|
/* Disable the receiver on the PHY so when a cable is plugged in, the
|
|
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
|
|
*/
|
|
if(adapter->hw.phy_type == e1000_phy_m88)
|
|
e1000_phy_disable_receiver(adapter);
|
|
|
|
udelay(500);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_set_phy_loopback(struct e1000_adapter *adapter)
|
|
{
|
|
uint16_t phy_reg = 0;
|
|
uint16_t count = 0;
|
|
|
|
switch (adapter->hw.mac_type) {
|
|
case e1000_82543:
|
|
if(adapter->hw.media_type == e1000_media_type_copper) {
|
|
/* Attempt to setup Loopback mode on Non-integrated PHY.
|
|
* Some PHY registers get corrupted at random, so
|
|
* attempt this 10 times.
|
|
*/
|
|
while(e1000_nonintegrated_phy_loopback(adapter) &&
|
|
count++ < 10);
|
|
if(count < 11)
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case e1000_82544:
|
|
case e1000_82540:
|
|
case e1000_82545:
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
case e1000_82541:
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2:
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_82573:
|
|
return e1000_integrated_phy_loopback(adapter);
|
|
break;
|
|
|
|
default:
|
|
/* Default PHY loopback work is to read the MII
|
|
* control register and assert bit 14 (loopback mode).
|
|
*/
|
|
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
|
|
phy_reg |= MII_CR_LOOPBACK;
|
|
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
return 8;
|
|
}
|
|
|
|
static int
|
|
e1000_setup_loopback_test(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t rctl;
|
|
|
|
if (hw->media_type == e1000_media_type_fiber ||
|
|
hw->media_type == e1000_media_type_internal_serdes) {
|
|
switch (hw->mac_type) {
|
|
case e1000_82545:
|
|
case e1000_82546:
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546_rev_3:
|
|
return e1000_set_phy_loopback(adapter);
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
#define E1000_SERDES_LB_ON 0x410
|
|
e1000_set_phy_loopback(adapter);
|
|
E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
|
|
msec_delay(10);
|
|
return 0;
|
|
break;
|
|
default:
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
rctl |= E1000_RCTL_LBM_TCVR;
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
return 0;
|
|
}
|
|
} else if (hw->media_type == e1000_media_type_copper)
|
|
return e1000_set_phy_loopback(adapter);
|
|
|
|
return 7;
|
|
}
|
|
|
|
static void
|
|
e1000_loopback_cleanup(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
uint32_t rctl;
|
|
uint16_t phy_reg;
|
|
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
if (hw->media_type == e1000_media_type_fiber ||
|
|
hw->media_type == e1000_media_type_internal_serdes) {
|
|
#define E1000_SERDES_LB_OFF 0x400
|
|
E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
|
|
msec_delay(10);
|
|
break;
|
|
}
|
|
/* Fall Through */
|
|
case e1000_82545:
|
|
case e1000_82546:
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546_rev_3:
|
|
default:
|
|
hw->autoneg = TRUE;
|
|
e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
|
|
if (phy_reg & MII_CR_LOOPBACK) {
|
|
phy_reg &= ~MII_CR_LOOPBACK;
|
|
e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
|
|
e1000_phy_reset(hw);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
|
|
{
|
|
memset(skb->data, 0xFF, frame_size);
|
|
frame_size &= ~1;
|
|
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
|
|
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
|
|
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
|
|
}
|
|
|
|
static int
|
|
e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
|
|
{
|
|
frame_size &= ~1;
|
|
if(*(skb->data + 3) == 0xFF) {
|
|
if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
|
|
(*(skb->data + frame_size / 2 + 12) == 0xAF)) {
|
|
return 0;
|
|
}
|
|
}
|
|
return 13;
|
|
}
|
|
|
|
static int
|
|
e1000_run_loopback_test(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
|
|
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int i, j, k, l, lc, good_cnt, ret_val=0;
|
|
unsigned long time;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
|
|
|
|
/* Calculate the loop count based on the largest descriptor ring
|
|
* The idea is to wrap the largest ring a number of times using 64
|
|
* send/receive pairs during each loop
|
|
*/
|
|
|
|
if(rxdr->count <= txdr->count)
|
|
lc = ((txdr->count / 64) * 2) + 1;
|
|
else
|
|
lc = ((rxdr->count / 64) * 2) + 1;
|
|
|
|
k = l = 0;
|
|
for(j = 0; j <= lc; j++) { /* loop count loop */
|
|
for(i = 0; i < 64; i++) { /* send the packets */
|
|
e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
|
|
1024);
|
|
pci_dma_sync_single_for_device(pdev,
|
|
txdr->buffer_info[k].dma,
|
|
txdr->buffer_info[k].length,
|
|
PCI_DMA_TODEVICE);
|
|
if(unlikely(++k == txdr->count)) k = 0;
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, TDT, k);
|
|
msec_delay(200);
|
|
time = jiffies; /* set the start time for the receive */
|
|
good_cnt = 0;
|
|
do { /* receive the sent packets */
|
|
pci_dma_sync_single_for_cpu(pdev,
|
|
rxdr->buffer_info[l].dma,
|
|
rxdr->buffer_info[l].length,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ret_val = e1000_check_lbtest_frame(
|
|
rxdr->buffer_info[l].skb,
|
|
1024);
|
|
if(!ret_val)
|
|
good_cnt++;
|
|
if(unlikely(++l == rxdr->count)) l = 0;
|
|
/* time + 20 msecs (200 msecs on 2.4) is more than
|
|
* enough time to complete the receives, if it's
|
|
* exceeded, break and error off
|
|
*/
|
|
} while (good_cnt < 64 && jiffies < (time + 20));
|
|
if(good_cnt != 64) {
|
|
ret_val = 13; /* ret_val is the same as mis-compare */
|
|
break;
|
|
}
|
|
if(jiffies >= (time + 2)) {
|
|
ret_val = 14; /* error code for time out error */
|
|
break;
|
|
}
|
|
} /* end loop count loop */
|
|
return ret_val;
|
|
}
|
|
|
|
static int
|
|
e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
{
|
|
/* PHY loopback cannot be performed if SoL/IDER
|
|
* sessions are active */
|
|
if (e1000_check_phy_reset_block(&adapter->hw)) {
|
|
DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
|
|
"when SoL/IDER is active.\n");
|
|
*data = 0;
|
|
goto out;
|
|
}
|
|
|
|
if ((*data = e1000_setup_desc_rings(adapter)))
|
|
goto out;
|
|
if ((*data = e1000_setup_loopback_test(adapter)))
|
|
goto err_loopback;
|
|
*data = e1000_run_loopback_test(adapter);
|
|
e1000_loopback_cleanup(adapter);
|
|
|
|
err_loopback:
|
|
e1000_free_desc_rings(adapter);
|
|
out:
|
|
return *data;
|
|
}
|
|
|
|
static int
|
|
e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
|
|
{
|
|
*data = 0;
|
|
if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
|
|
int i = 0;
|
|
adapter->hw.serdes_link_down = TRUE;
|
|
|
|
/* On some blade server designs, link establishment
|
|
* could take as long as 2-3 minutes */
|
|
do {
|
|
e1000_check_for_link(&adapter->hw);
|
|
if (adapter->hw.serdes_link_down == FALSE)
|
|
return *data;
|
|
msec_delay(20);
|
|
} while (i++ < 3750);
|
|
|
|
*data = 1;
|
|
} else {
|
|
e1000_check_for_link(&adapter->hw);
|
|
if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
|
|
msec_delay(4000);
|
|
|
|
if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
|
|
*data = 1;
|
|
}
|
|
}
|
|
return *data;
|
|
}
|
|
|
|
static int
|
|
e1000_diag_test_count(struct net_device *netdev)
|
|
{
|
|
return E1000_TEST_LEN;
|
|
}
|
|
|
|
static void
|
|
e1000_diag_test(struct net_device *netdev,
|
|
struct ethtool_test *eth_test, uint64_t *data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
boolean_t if_running = netif_running(netdev);
|
|
|
|
if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
|
|
/* Offline tests */
|
|
|
|
/* save speed, duplex, autoneg settings */
|
|
uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
|
|
uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
|
|
uint8_t autoneg = adapter->hw.autoneg;
|
|
|
|
/* Link test performed before hardware reset so autoneg doesn't
|
|
* interfere with test result */
|
|
if(e1000_link_test(adapter, &data[4]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
if(if_running)
|
|
e1000_down(adapter);
|
|
else
|
|
e1000_reset(adapter);
|
|
|
|
if(e1000_reg_test(adapter, &data[0]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
e1000_reset(adapter);
|
|
if(e1000_eeprom_test(adapter, &data[1]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
e1000_reset(adapter);
|
|
if(e1000_intr_test(adapter, &data[2]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
e1000_reset(adapter);
|
|
if(e1000_loopback_test(adapter, &data[3]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
/* restore speed, duplex, autoneg settings */
|
|
adapter->hw.autoneg_advertised = autoneg_advertised;
|
|
adapter->hw.forced_speed_duplex = forced_speed_duplex;
|
|
adapter->hw.autoneg = autoneg;
|
|
|
|
e1000_reset(adapter);
|
|
if(if_running)
|
|
e1000_up(adapter);
|
|
} else {
|
|
/* Online tests */
|
|
if(e1000_link_test(adapter, &data[4]))
|
|
eth_test->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
/* Offline tests aren't run; pass by default */
|
|
data[0] = 0;
|
|
data[1] = 0;
|
|
data[2] = 0;
|
|
data[3] = 0;
|
|
}
|
|
msleep_interruptible(4 * 1000);
|
|
}
|
|
|
|
static void
|
|
e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
switch(adapter->hw.device_id) {
|
|
case E1000_DEV_ID_82542:
|
|
case E1000_DEV_ID_82543GC_FIBER:
|
|
case E1000_DEV_ID_82543GC_COPPER:
|
|
case E1000_DEV_ID_82544EI_FIBER:
|
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82545EM_FIBER:
|
|
case E1000_DEV_ID_82545EM_COPPER:
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
return;
|
|
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber */
|
|
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
return;
|
|
}
|
|
/* Fall Through */
|
|
|
|
default:
|
|
wol->supported = WAKE_UCAST | WAKE_MCAST |
|
|
WAKE_BCAST | WAKE_MAGIC;
|
|
|
|
wol->wolopts = 0;
|
|
if(adapter->wol & E1000_WUFC_EX)
|
|
wol->wolopts |= WAKE_UCAST;
|
|
if(adapter->wol & E1000_WUFC_MC)
|
|
wol->wolopts |= WAKE_MCAST;
|
|
if(adapter->wol & E1000_WUFC_BC)
|
|
wol->wolopts |= WAKE_BCAST;
|
|
if(adapter->wol & E1000_WUFC_MAG)
|
|
wol->wolopts |= WAKE_MAGIC;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int
|
|
e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
|
|
switch(adapter->hw.device_id) {
|
|
case E1000_DEV_ID_82542:
|
|
case E1000_DEV_ID_82543GC_FIBER:
|
|
case E1000_DEV_ID_82543GC_COPPER:
|
|
case E1000_DEV_ID_82544EI_FIBER:
|
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82545EM_FIBER:
|
|
case E1000_DEV_ID_82545EM_COPPER:
|
|
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
/* Wake events only supported on port A for dual fiber */
|
|
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
|
|
return wol->wolopts ? -EOPNOTSUPP : 0;
|
|
/* Fall Through */
|
|
|
|
default:
|
|
if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
|
|
return -EOPNOTSUPP;
|
|
|
|
adapter->wol = 0;
|
|
|
|
if(wol->wolopts & WAKE_UCAST)
|
|
adapter->wol |= E1000_WUFC_EX;
|
|
if(wol->wolopts & WAKE_MCAST)
|
|
adapter->wol |= E1000_WUFC_MC;
|
|
if(wol->wolopts & WAKE_BCAST)
|
|
adapter->wol |= E1000_WUFC_BC;
|
|
if(wol->wolopts & WAKE_MAGIC)
|
|
adapter->wol |= E1000_WUFC_MAG;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* toggle LED 4 times per second = 2 "blinks" per second */
|
|
#define E1000_ID_INTERVAL (HZ/4)
|
|
|
|
/* bit defines for adapter->led_status */
|
|
#define E1000_LED_ON 0
|
|
|
|
static void
|
|
e1000_led_blink_callback(unsigned long data)
|
|
{
|
|
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
|
|
|
|
if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
|
|
e1000_led_off(&adapter->hw);
|
|
else
|
|
e1000_led_on(&adapter->hw);
|
|
|
|
mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
|
|
}
|
|
|
|
static int
|
|
e1000_phys_id(struct net_device *netdev, uint32_t data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
|
|
if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
|
|
data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
|
|
|
|
if(adapter->hw.mac_type < e1000_82571) {
|
|
if(!adapter->blink_timer.function) {
|
|
init_timer(&adapter->blink_timer);
|
|
adapter->blink_timer.function = e1000_led_blink_callback;
|
|
adapter->blink_timer.data = (unsigned long) adapter;
|
|
}
|
|
e1000_setup_led(&adapter->hw);
|
|
mod_timer(&adapter->blink_timer, jiffies);
|
|
msleep_interruptible(data * 1000);
|
|
del_timer_sync(&adapter->blink_timer);
|
|
} else if (adapter->hw.mac_type < e1000_82573) {
|
|
E1000_WRITE_REG(&adapter->hw, LEDCTL,
|
|
(E1000_LEDCTL_LED2_BLINK_RATE |
|
|
E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
|
|
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
|
|
(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
|
|
(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
|
|
msleep_interruptible(data * 1000);
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, LEDCTL,
|
|
(E1000_LEDCTL_LED2_BLINK_RATE |
|
|
E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
|
|
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
|
|
(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
|
|
(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
|
|
msleep_interruptible(data * 1000);
|
|
}
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
clear_bit(E1000_LED_ON, &adapter->led_status);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_nway_reset(struct net_device *netdev)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
if(netif_running(netdev)) {
|
|
e1000_down(adapter);
|
|
e1000_up(adapter);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
e1000_get_stats_count(struct net_device *netdev)
|
|
{
|
|
return E1000_STATS_LEN;
|
|
}
|
|
|
|
static void
|
|
e1000_get_ethtool_stats(struct net_device *netdev,
|
|
struct ethtool_stats *stats, uint64_t *data)
|
|
{
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
#ifdef CONFIG_E1000_MQ
|
|
uint64_t *queue_stat;
|
|
int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
|
|
int j, k;
|
|
#endif
|
|
int i;
|
|
|
|
e1000_update_stats(adapter);
|
|
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
|
|
char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
|
|
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
|
|
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
|
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
|
for (j = 0; j < adapter->num_tx_queues; j++) {
|
|
queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
|
|
for (k = 0; k < stat_count; k++)
|
|
data[i + k] = queue_stat[k];
|
|
i += k;
|
|
}
|
|
for (j = 0; j < adapter->num_rx_queues; j++) {
|
|
queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
|
|
for (k = 0; k < stat_count; k++)
|
|
data[i + k] = queue_stat[k];
|
|
i += k;
|
|
}
|
|
#endif
|
|
/* BUG_ON(i != E1000_STATS_LEN); */
|
|
}
|
|
|
|
static void
|
|
e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
|
|
{
|
|
#ifdef CONFIG_E1000_MQ
|
|
struct e1000_adapter *adapter = netdev_priv(netdev);
|
|
#endif
|
|
uint8_t *p = data;
|
|
int i;
|
|
|
|
switch(stringset) {
|
|
case ETH_SS_TEST:
|
|
memcpy(data, *e1000_gstrings_test,
|
|
E1000_TEST_LEN*ETH_GSTRING_LEN);
|
|
break;
|
|
case ETH_SS_STATS:
|
|
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
|
|
memcpy(p, e1000_gstrings_stats[i].stat_string,
|
|
ETH_GSTRING_LEN);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
#ifdef CONFIG_E1000_MQ
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
sprintf(p, "tx_queue_%u_packets", i);
|
|
p += ETH_GSTRING_LEN;
|
|
sprintf(p, "tx_queue_%u_bytes", i);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
sprintf(p, "rx_queue_%u_packets", i);
|
|
p += ETH_GSTRING_LEN;
|
|
sprintf(p, "rx_queue_%u_bytes", i);
|
|
p += ETH_GSTRING_LEN;
|
|
}
|
|
#endif
|
|
/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct ethtool_ops e1000_ethtool_ops = {
|
|
.get_settings = e1000_get_settings,
|
|
.set_settings = e1000_set_settings,
|
|
.get_drvinfo = e1000_get_drvinfo,
|
|
.get_regs_len = e1000_get_regs_len,
|
|
.get_regs = e1000_get_regs,
|
|
.get_wol = e1000_get_wol,
|
|
.set_wol = e1000_set_wol,
|
|
.get_msglevel = e1000_get_msglevel,
|
|
.set_msglevel = e1000_set_msglevel,
|
|
.nway_reset = e1000_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_eeprom_len = e1000_get_eeprom_len,
|
|
.get_eeprom = e1000_get_eeprom,
|
|
.set_eeprom = e1000_set_eeprom,
|
|
.get_ringparam = e1000_get_ringparam,
|
|
.set_ringparam = e1000_set_ringparam,
|
|
.get_pauseparam = e1000_get_pauseparam,
|
|
.set_pauseparam = e1000_set_pauseparam,
|
|
.get_rx_csum = e1000_get_rx_csum,
|
|
.set_rx_csum = e1000_set_rx_csum,
|
|
.get_tx_csum = e1000_get_tx_csum,
|
|
.set_tx_csum = e1000_set_tx_csum,
|
|
.get_sg = ethtool_op_get_sg,
|
|
.set_sg = ethtool_op_set_sg,
|
|
#ifdef NETIF_F_TSO
|
|
.get_tso = ethtool_op_get_tso,
|
|
.set_tso = e1000_set_tso,
|
|
#endif
|
|
.self_test_count = e1000_diag_test_count,
|
|
.self_test = e1000_diag_test,
|
|
.get_strings = e1000_get_strings,
|
|
.phys_id = e1000_phys_id,
|
|
.get_stats_count = e1000_get_stats_count,
|
|
.get_ethtool_stats = e1000_get_ethtool_stats,
|
|
.get_perm_addr = ethtool_op_get_perm_addr,
|
|
};
|
|
|
|
void e1000_set_ethtool_ops(struct net_device *netdev)
|
|
{
|
|
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
|
|
}
|