linux/net/mac80211/mlme.c
Johannes Berg b82730bf57 wifi: cfg80211/mac80211: move puncturing into chandef
Aloka originally suggested that puncturing should be part of
the chandef, so that it's treated correctly. At the time, I
disagreed and it ended up not part of the chandef, but I've
now realized that this was wrong. Even for clients, the RX,
and perhaps more importantly, CCA configuration needs to take
puncturing into account.

Move puncturing into the chandef, and adjust all the code
accordingly. Also add a few tests for puncturing in chandef
compatibility checking.

Link: https://lore.kernel.org/linux-wireless/20220214223051.3610-1-quic_alokad@quicinc.com/
Suggested-by: Aloka Dixit <quic_alokad@quicinc.com>
Link: https://msgid.link/20240129194108.307183a5d2e5.I4d7fe2f126b2366c1312010e2900dfb2abffa0f6@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2024-02-08 15:00:39 +01:00

8705 lines
248 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* BSS client mode implementation
* Copyright 2003-2008, Jouni Malinen <j@w1.fi>
* Copyright 2004, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007, Michael Wu <flamingice@sourmilk.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright (C) 2015 - 2017 Intel Deutschland GmbH
* Copyright (C) 2018 - 2024 Intel Corporation
*/
#include <linux/delay.h>
#include <linux/fips.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/moduleparam.h>
#include <linux/rtnetlink.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "rate.h"
#include "led.h"
#include "fils_aead.h"
#define IEEE80211_AUTH_TIMEOUT (HZ / 5)
#define IEEE80211_AUTH_TIMEOUT_LONG (HZ / 2)
#define IEEE80211_AUTH_TIMEOUT_SHORT (HZ / 10)
#define IEEE80211_AUTH_TIMEOUT_SAE (HZ * 2)
#define IEEE80211_AUTH_MAX_TRIES 3
#define IEEE80211_AUTH_WAIT_ASSOC (HZ * 5)
#define IEEE80211_AUTH_WAIT_SAE_RETRY (HZ * 2)
#define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
#define IEEE80211_ASSOC_TIMEOUT_LONG (HZ / 2)
#define IEEE80211_ASSOC_TIMEOUT_SHORT (HZ / 10)
#define IEEE80211_ASSOC_MAX_TRIES 3
#define IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS msecs_to_jiffies(100)
#define IEEE80211_ADV_TTLM_ST_UNDERFLOW 0xff00
#define IEEE80211_NEG_TTLM_REQ_TIMEOUT (HZ / 5)
static int max_nullfunc_tries = 2;
module_param(max_nullfunc_tries, int, 0644);
MODULE_PARM_DESC(max_nullfunc_tries,
"Maximum nullfunc tx tries before disconnecting (reason 4).");
static int max_probe_tries = 5;
module_param(max_probe_tries, int, 0644);
MODULE_PARM_DESC(max_probe_tries,
"Maximum probe tries before disconnecting (reason 4).");
/*
* Beacon loss timeout is calculated as N frames times the
* advertised beacon interval. This may need to be somewhat
* higher than what hardware might detect to account for
* delays in the host processing frames. But since we also
* probe on beacon miss before declaring the connection lost
* default to what we want.
*/
static int beacon_loss_count = 7;
module_param(beacon_loss_count, int, 0644);
MODULE_PARM_DESC(beacon_loss_count,
"Number of beacon intervals before we decide beacon was lost.");
/*
* Time the connection can be idle before we probe
* it to see if we can still talk to the AP.
*/
#define IEEE80211_CONNECTION_IDLE_TIME (30 * HZ)
/*
* Time we wait for a probe response after sending
* a probe request because of beacon loss or for
* checking the connection still works.
*/
static int probe_wait_ms = 500;
module_param(probe_wait_ms, int, 0644);
MODULE_PARM_DESC(probe_wait_ms,
"Maximum time(ms) to wait for probe response"
" before disconnecting (reason 4).");
/*
* How many Beacon frames need to have been used in average signal strength
* before starting to indicate signal change events.
*/
#define IEEE80211_SIGNAL_AVE_MIN_COUNT 4
/*
* We can have multiple work items (and connection probing)
* scheduling this timer, but we need to take care to only
* reschedule it when it should fire _earlier_ than it was
* asked for before, or if it's not pending right now. This
* function ensures that. Note that it then is required to
* run this function for all timeouts after the first one
* has happened -- the work that runs from this timer will
* do that.
*/
static void run_again(struct ieee80211_sub_if_data *sdata,
unsigned long timeout)
{
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (!timer_pending(&sdata->u.mgd.timer) ||
time_before(timeout, sdata->u.mgd.timer.expires))
mod_timer(&sdata->u.mgd.timer, timeout);
}
void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)
return;
if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR))
return;
mod_timer(&sdata->u.mgd.bcn_mon_timer,
round_jiffies_up(jiffies + sdata->u.mgd.beacon_timeout));
}
void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
if (unlikely(!ifmgd->associated))
return;
if (ifmgd->probe_send_count)
ifmgd->probe_send_count = 0;
if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR))
return;
mod_timer(&ifmgd->conn_mon_timer,
round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME));
}
static int ecw2cw(int ecw)
{
return (1 << ecw) - 1;
}
static enum ieee80211_conn_mode
ieee80211_determine_ap_chan(struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
u32 vht_cap_info,
const struct ieee802_11_elems *elems,
bool ignore_ht_channel_mismatch,
const struct ieee80211_conn_settings *conn,
struct cfg80211_chan_def *chandef)
{
const struct ieee80211_ht_operation *ht_oper = elems->ht_operation;
const struct ieee80211_vht_operation *vht_oper = elems->vht_operation;
const struct ieee80211_he_operation *he_oper = elems->he_operation;
const struct ieee80211_eht_operation *eht_oper = elems->eht_operation;
struct ieee80211_supported_band *sband =
sdata->local->hw.wiphy->bands[channel->band];
struct cfg80211_chan_def vht_chandef;
bool no_vht = false;
u32 ht_cfreq;
*chandef = (struct cfg80211_chan_def) {
.chan = channel,
.width = NL80211_CHAN_WIDTH_20_NOHT,
.center_freq1 = channel->center_freq,
.freq1_offset = channel->freq_offset,
};
/* get special S1G case out of the way */
if (sband->band == NL80211_BAND_S1GHZ) {
if (!ieee80211_chandef_s1g_oper(elems->s1g_oper, chandef)) {
sdata_info(sdata,
"Missing S1G Operation Element? Trying operating == primary\n");
chandef->width = ieee80211_s1g_channel_width(channel);
}
return IEEE80211_CONN_MODE_S1G;
}
/* get special 6 GHz case out of the way */
if (sband->band == NL80211_BAND_6GHZ) {
enum ieee80211_conn_mode mode = IEEE80211_CONN_MODE_EHT;
/* this is an error */
if (conn->mode < IEEE80211_CONN_MODE_HE)
return IEEE80211_CONN_MODE_LEGACY;
if (!elems->he_6ghz_capa || !elems->he_cap) {
sdata_info(sdata,
"HE 6 GHz AP is missing HE/HE 6 GHz band capability\n");
return IEEE80211_CONN_MODE_LEGACY;
}
if (!eht_oper || !elems->eht_cap) {
eht_oper = NULL;
mode = IEEE80211_CONN_MODE_HE;
}
if (!ieee80211_chandef_he_6ghz_oper(sdata->local, he_oper,
eht_oper, chandef)) {
sdata_info(sdata, "bad HE/EHT 6 GHz operation\n");
return IEEE80211_CONN_MODE_LEGACY;
}
return mode;
}
/* now we have the progression HT, VHT, ... */
if (conn->mode < IEEE80211_CONN_MODE_HT)
return IEEE80211_CONN_MODE_LEGACY;
if (!ht_oper || !elems->ht_cap_elem)
return IEEE80211_CONN_MODE_LEGACY;
chandef->width = NL80211_CHAN_WIDTH_20;
ht_cfreq = ieee80211_channel_to_frequency(ht_oper->primary_chan,
channel->band);
/* check that channel matches the right operating channel */
if (!ignore_ht_channel_mismatch && channel->center_freq != ht_cfreq) {
/*
* It's possible that some APs are confused here;
* Netgear WNDR3700 sometimes reports 4 higher than
* the actual channel in association responses, but
* since we look at probe response/beacon data here
* it should be OK.
*/
sdata_info(sdata,
"Wrong control channel: center-freq: %d ht-cfreq: %d ht->primary_chan: %d band: %d - Disabling HT\n",
channel->center_freq, ht_cfreq,
ht_oper->primary_chan, channel->band);
return IEEE80211_CONN_MODE_LEGACY;
}
ieee80211_chandef_ht_oper(ht_oper, chandef);
if (conn->mode < IEEE80211_CONN_MODE_VHT)
return IEEE80211_CONN_MODE_HT;
vht_chandef = *chandef;
/*
* having he_cap/he_oper parsed out implies we're at
* least operating as HE STA
*/
if (elems->he_cap && he_oper &&
he_oper->he_oper_params & cpu_to_le32(IEEE80211_HE_OPERATION_VHT_OPER_INFO)) {
struct ieee80211_vht_operation he_oper_vht_cap;
/*
* Set only first 3 bytes (other 2 aren't used in
* ieee80211_chandef_vht_oper() anyway)
*/
memcpy(&he_oper_vht_cap, he_oper->optional, 3);
he_oper_vht_cap.basic_mcs_set = cpu_to_le16(0);
if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info,
&he_oper_vht_cap, ht_oper,
&vht_chandef)) {
sdata_info(sdata,
"HE AP VHT information is invalid, disabling HE\n");
/* this will cause us to re-parse as VHT STA */
return IEEE80211_CONN_MODE_VHT;
}
} else if (!vht_oper || !elems->vht_cap_elem) {
if (sband->band == NL80211_BAND_5GHZ) {
sdata_info(sdata,
"VHT information is missing, disabling VHT\n");
return IEEE80211_CONN_MODE_HT;
}
no_vht = true;
} else if (sband->band == NL80211_BAND_2GHZ) {
no_vht = true;
} else if (!ieee80211_chandef_vht_oper(&sdata->local->hw,
vht_cap_info,
vht_oper, ht_oper,
&vht_chandef)) {
sdata_info(sdata,
"AP VHT information is invalid, disabling VHT\n");
return IEEE80211_CONN_MODE_HT;
}
if (!cfg80211_chandef_compatible(chandef, &vht_chandef)) {
sdata_info(sdata,
"AP VHT information doesn't match HT, disabling VHT\n");
return IEEE80211_CONN_MODE_HT;
}
*chandef = vht_chandef;
/* stick to current max mode if we or the AP don't have HE */
if (conn->mode < IEEE80211_CONN_MODE_HE ||
!elems->he_operation || !elems->he_cap) {
if (no_vht)
return IEEE80211_CONN_MODE_HT;
return IEEE80211_CONN_MODE_VHT;
}
/* stick to HE if we or the AP don't have EHT */
if (conn->mode < IEEE80211_CONN_MODE_EHT ||
!eht_oper || !elems->eht_cap)
return IEEE80211_CONN_MODE_HE;
/*
* handle the case that the EHT operation indicates that it holds EHT
* operation information (in case that the channel width differs from
* the channel width reported in HT/VHT/HE).
*/
if (eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
struct cfg80211_chan_def eht_chandef = *chandef;
ieee80211_chandef_eht_oper((const void *)eht_oper->optional,
&eht_chandef);
eht_chandef.punctured =
ieee80211_eht_oper_dis_subchan_bitmap(eht_oper);
if (!cfg80211_chandef_valid(&eht_chandef)) {
sdata_info(sdata,
"AP EHT information is invalid, disabling EHT\n");
return IEEE80211_CONN_MODE_HE;
}
if (!cfg80211_chandef_compatible(chandef, &eht_chandef)) {
sdata_info(sdata,
"AP EHT information doesn't match HT/VHT/HE, disabling EHT\n");
return IEEE80211_CONN_MODE_HE;
}
*chandef = eht_chandef;
}
return IEEE80211_CONN_MODE_EHT;
}
static bool
ieee80211_verify_peer_he_mcs_support(struct ieee80211_sub_if_data *sdata,
const struct ieee80211_he_cap_elem *he_cap,
const struct ieee80211_he_operation *he_op)
{
struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp;
u16 mcs_80_map_tx, mcs_80_map_rx;
u16 ap_min_req_set;
int nss;
if (!he_cap)
return false;
/* mcs_nss is right after he_cap info */
he_mcs_nss_supp = (void *)(he_cap + 1);
mcs_80_map_tx = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80);
mcs_80_map_rx = le16_to_cpu(he_mcs_nss_supp->rx_mcs_80);
/* P802.11-REVme/D0.3
* 27.1.1 Introduction to the HE PHY
* ...
* An HE STA shall support the following features:
* ...
* Single spatial stream HE-MCSs 0 to 7 (transmit and receive) in all
* supported channel widths for HE SU PPDUs
*/
if ((mcs_80_map_tx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED ||
(mcs_80_map_rx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED) {
sdata_info(sdata,
"Missing mandatory rates for 1 Nss, rx 0x%x, tx 0x%x, disable HE\n",
mcs_80_map_tx, mcs_80_map_rx);
return false;
}
if (!he_op)
return true;
ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set);
/*
* Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all
* zeroes, which is nonsense, and completely inconsistent with itself
* (it doesn't have 8 streams). Accept the settings in this case anyway.
*/
if (!ap_min_req_set)
return true;
/* make sure the AP is consistent with itself
*
* P802.11-REVme/D0.3
* 26.17.1 Basic HE BSS operation
*
* A STA that is operating in an HE BSS shall be able to receive and
* transmit at each of the <HE-MCS, NSS> tuple values indicated by the
* Basic HE-MCS And NSS Set field of the HE Operation parameter of the
* MLME-START.request primitive and shall be able to receive at each of
* the <HE-MCS, NSS> tuple values indicated by the Supported HE-MCS and
* NSS Set field in the HE Capabilities parameter of the MLMESTART.request
* primitive
*/
for (nss = 8; nss > 0; nss--) {
u8 ap_op_val = (ap_min_req_set >> (2 * (nss - 1))) & 3;
u8 ap_rx_val;
u8 ap_tx_val;
if (ap_op_val == IEEE80211_HE_MCS_NOT_SUPPORTED)
continue;
ap_rx_val = (mcs_80_map_rx >> (2 * (nss - 1))) & 3;
ap_tx_val = (mcs_80_map_tx >> (2 * (nss - 1))) & 3;
if (ap_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED ||
ap_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED ||
ap_rx_val < ap_op_val || ap_tx_val < ap_op_val) {
sdata_info(sdata,
"Invalid rates for %d Nss, rx %d, tx %d oper %d, disable HE\n",
nss, ap_rx_val, ap_rx_val, ap_op_val);
return false;
}
}
return true;
}
static bool
ieee80211_verify_sta_he_mcs_support(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
const struct ieee80211_he_operation *he_op)
{
const struct ieee80211_sta_he_cap *sta_he_cap =
ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
u16 ap_min_req_set;
int i;
if (!sta_he_cap || !he_op)
return false;
ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set);
/*
* Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all
* zeroes, which is nonsense, and completely inconsistent with itself
* (it doesn't have 8 streams). Accept the settings in this case anyway.
*/
if (!ap_min_req_set)
return true;
/* Need to go over for 80MHz, 160MHz and for 80+80 */
for (i = 0; i < 3; i++) {
const struct ieee80211_he_mcs_nss_supp *sta_mcs_nss_supp =
&sta_he_cap->he_mcs_nss_supp;
u16 sta_mcs_map_rx =
le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i]);
u16 sta_mcs_map_tx =
le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i + 1]);
u8 nss;
bool verified = true;
/*
* For each band there is a maximum of 8 spatial streams
* possible. Each of the sta_mcs_map_* is a 16-bit struct built
* of 2 bits per NSS (1-8), with the values defined in enum
* ieee80211_he_mcs_support. Need to make sure STA TX and RX
* capabilities aren't less than the AP's minimum requirements
* for this HE BSS per SS.
* It is enough to find one such band that meets the reqs.
*/
for (nss = 8; nss > 0; nss--) {
u8 sta_rx_val = (sta_mcs_map_rx >> (2 * (nss - 1))) & 3;
u8 sta_tx_val = (sta_mcs_map_tx >> (2 * (nss - 1))) & 3;
u8 ap_val = (ap_min_req_set >> (2 * (nss - 1))) & 3;
if (ap_val == IEEE80211_HE_MCS_NOT_SUPPORTED)
continue;
/*
* Make sure the HE AP doesn't require MCSs that aren't
* supported by the client as required by spec
*
* P802.11-REVme/D0.3
* 26.17.1 Basic HE BSS operation
*
* An HE STA shall not attempt to join * (MLME-JOIN.request primitive)
* a BSS, unless it supports (i.e., is able to both transmit and
* receive using) all of the <HE-MCS, NSS> tuples in the basic
* HE-MCS and NSS set.
*/
if (sta_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED ||
sta_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED ||
(ap_val > sta_rx_val) || (ap_val > sta_tx_val)) {
verified = false;
break;
}
}
if (verified)
return true;
}
/* If here, STA doesn't meet AP's HE min requirements */
return false;
}
static u8
ieee80211_get_eht_cap_mcs_nss(const struct ieee80211_sta_he_cap *sta_he_cap,
const struct ieee80211_sta_eht_cap *sta_eht_cap,
unsigned int idx, int bw)
{
u8 he_phy_cap0 = sta_he_cap->he_cap_elem.phy_cap_info[0];
u8 eht_phy_cap0 = sta_eht_cap->eht_cap_elem.phy_cap_info[0];
/* handle us being a 20 MHz-only EHT STA - with four values
* for MCS 0-7, 8-9, 10-11, 12-13.
*/
if (!(he_phy_cap0 & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL))
return sta_eht_cap->eht_mcs_nss_supp.only_20mhz.rx_tx_max_nss[idx];
/* the others have MCS 0-9 together, rather than separately from 0-7 */
if (idx > 0)
idx--;
switch (bw) {
case 0:
return sta_eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_max_nss[idx];
case 1:
if (!(he_phy_cap0 &
(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)))
return 0xff; /* pass check */
return sta_eht_cap->eht_mcs_nss_supp.bw._160.rx_tx_max_nss[idx];
case 2:
if (!(eht_phy_cap0 & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ))
return 0xff; /* pass check */
return sta_eht_cap->eht_mcs_nss_supp.bw._320.rx_tx_max_nss[idx];
}
WARN_ON(1);
return 0;
}
static bool
ieee80211_verify_sta_eht_mcs_support(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
const struct ieee80211_eht_operation *eht_op)
{
const struct ieee80211_sta_he_cap *sta_he_cap =
ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
const struct ieee80211_sta_eht_cap *sta_eht_cap =
ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif);
const struct ieee80211_eht_mcs_nss_supp_20mhz_only *req;
unsigned int i;
if (!sta_he_cap || !sta_eht_cap || !eht_op)
return false;
req = &eht_op->basic_mcs_nss;
for (i = 0; i < ARRAY_SIZE(req->rx_tx_max_nss); i++) {
u8 req_rx_nss, req_tx_nss;
unsigned int bw;
req_rx_nss = u8_get_bits(req->rx_tx_max_nss[i],
IEEE80211_EHT_MCS_NSS_RX);
req_tx_nss = u8_get_bits(req->rx_tx_max_nss[i],
IEEE80211_EHT_MCS_NSS_TX);
for (bw = 0; bw < 3; bw++) {
u8 have, have_rx_nss, have_tx_nss;
have = ieee80211_get_eht_cap_mcs_nss(sta_he_cap,
sta_eht_cap,
i, bw);
have_rx_nss = u8_get_bits(have,
IEEE80211_EHT_MCS_NSS_RX);
have_tx_nss = u8_get_bits(have,
IEEE80211_EHT_MCS_NSS_TX);
if (req_rx_nss > have_rx_nss ||
req_tx_nss > have_tx_nss)
return false;
}
}
return true;
}
static bool ieee80211_chandef_usable(struct ieee80211_sub_if_data *sdata,
const struct cfg80211_chan_def *chandef,
u32 prohibited_flags)
{
if (!cfg80211_chandef_usable(sdata->local->hw.wiphy,
chandef, prohibited_flags))
return false;
if (chandef->punctured &&
ieee80211_hw_check(&sdata->local->hw, DISALLOW_PUNCTURING))
return false;
return true;
}
static struct ieee802_11_elems *
ieee80211_determine_chan_mode(struct ieee80211_sub_if_data *sdata,
struct ieee80211_conn_settings *conn,
struct cfg80211_bss *cbss, int link_id,
struct ieee80211_chan_req *chanreq)
{
const struct cfg80211_bss_ies *ies = rcu_dereference(cbss->ies);
struct ieee80211_bss *bss = (void *)cbss->priv;
struct ieee80211_channel *channel = cbss->channel;
struct ieee80211_elems_parse_params parse_params = {
.link_id = -1,
.from_ap = true,
.start = ies->data,
.len = ies->len,
.mode = conn->mode,
};
struct ieee802_11_elems *elems;
struct ieee80211_supported_band *sband;
struct cfg80211_chan_def ap_chandef;
enum ieee80211_conn_mode ap_mode;
int ret;
again:
elems = ieee802_11_parse_elems_full(&parse_params);
if (!elems)
return ERR_PTR(-ENOMEM);
ap_mode = ieee80211_determine_ap_chan(sdata, channel, bss->vht_cap_info,
elems, false, conn, &ap_chandef);
mlme_link_id_dbg(sdata, link_id, "determined AP %pM to be %s\n",
cbss->bssid, ieee80211_conn_mode_str(ap_mode));
/* this should be impossible since parsing depends on our mode */
if (WARN_ON(ap_mode > conn->mode)) {
ret = -EINVAL;
goto free;
}
sband = sdata->local->hw.wiphy->bands[channel->band];
switch (channel->band) {
case NL80211_BAND_S1GHZ:
if (WARN_ON(ap_mode != IEEE80211_CONN_MODE_S1G)) {
ret = -EINVAL;
goto free;
}
return elems;
case NL80211_BAND_6GHZ:
if (ap_mode < IEEE80211_CONN_MODE_HE) {
sdata_info(sdata,
"Rejecting non-HE 6/7 GHz connection");
ret = -EINVAL;
goto free;
}
break;
default:
if (WARN_ON(ap_mode == IEEE80211_CONN_MODE_S1G)) {
ret = -EINVAL;
goto free;
}
}
switch (ap_mode) {
case IEEE80211_CONN_MODE_S1G:
WARN_ON(1);
ret = -EINVAL;
goto free;
case IEEE80211_CONN_MODE_LEGACY:
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
break;
case IEEE80211_CONN_MODE_HT:
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_40);
break;
case IEEE80211_CONN_MODE_VHT:
case IEEE80211_CONN_MODE_HE:
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_160);
break;
case IEEE80211_CONN_MODE_EHT:
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_320);
break;
}
conn->mode = ap_mode;
chanreq->oper = ap_chandef;
/* wider-bandwidth OFDMA is only done in EHT */
if (conn->mode >= IEEE80211_CONN_MODE_EHT &&
!(sdata->vif.driver_flags & IEEE80211_VIF_IGNORE_OFDMA_WIDER_BW))
chanreq->ap = ap_chandef;
else
chanreq->ap.chan = NULL;
while (!ieee80211_chandef_usable(sdata, &chanreq->oper,
IEEE80211_CHAN_DISABLED)) {
if (WARN_ON(chanreq->oper.width == NL80211_CHAN_WIDTH_20_NOHT)) {
ret = -EINVAL;
goto free;
}
ieee80211_chanreq_downgrade(chanreq, conn);
}
if (conn->mode >= IEEE80211_CONN_MODE_HE &&
!cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper,
IEEE80211_CHAN_NO_HE)) {
conn->mode = IEEE80211_CONN_MODE_VHT;
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_160);
}
if (conn->mode >= IEEE80211_CONN_MODE_EHT &&
!cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper,
IEEE80211_CHAN_NO_EHT)) {
conn->mode = IEEE80211_CONN_MODE_HE;
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_160);
}
if (chanreq->oper.width != ap_chandef.width || ap_mode != conn->mode)
sdata_info(sdata,
"regulatory prevented using AP config, downgraded\n");
if (conn->mode >= IEEE80211_CONN_MODE_HE &&
(!ieee80211_verify_peer_he_mcs_support(sdata, (void *)elems->he_cap,
elems->he_operation) ||
!ieee80211_verify_sta_he_mcs_support(sdata, sband,
elems->he_operation))) {
conn->mode = IEEE80211_CONN_MODE_VHT;
sdata_info(sdata, "required MCSes not supported, disabling HE\n");
}
if (conn->mode >= IEEE80211_CONN_MODE_EHT &&
!ieee80211_verify_sta_eht_mcs_support(sdata, sband,
elems->eht_operation)) {
conn->mode = IEEE80211_CONN_MODE_HE;
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_160);
sdata_info(sdata, "required MCSes not supported, disabling EHT\n");
}
/* the mode can only decrease, so this must terminate */
if (ap_mode != conn->mode)
goto again;
mlme_link_id_dbg(sdata, link_id,
"connecting with %s mode, max bandwidth %d MHz\n",
ieee80211_conn_mode_str(conn->mode),
20 * (1 << conn->bw_limit));
if (WARN_ON_ONCE(!cfg80211_chandef_valid(&chanreq->oper))) {
ret = -EINVAL;
goto free;
}
return elems;
free:
kfree(elems);
return ERR_PTR(ret);
}
static int ieee80211_config_bw(struct ieee80211_link_data *link,
struct ieee802_11_elems *elems,
bool update, u64 *changed)
{
struct ieee80211_channel *channel = link->conf->chanreq.oper.chan;
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_chan_req chanreq = {};
enum ieee80211_conn_mode ap_mode;
u32 vht_cap_info = 0;
u16 ht_opmode;
int ret;
/* don't track any bandwidth changes in legacy/S1G modes */
if (link->u.mgd.conn.mode == IEEE80211_CONN_MODE_LEGACY ||
link->u.mgd.conn.mode == IEEE80211_CONN_MODE_S1G)
return 0;
if (elems->vht_cap_elem)
vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info);
ap_mode = ieee80211_determine_ap_chan(sdata, channel, vht_cap_info,
elems, true, &link->u.mgd.conn,
&chanreq.ap);
if (ap_mode != link->u.mgd.conn.mode) {
link_info(link,
"AP appears to change mode (expected %s, found %s), disconnect\n",
ieee80211_conn_mode_str(link->u.mgd.conn.mode),
ieee80211_conn_mode_str(ap_mode));
return -EINVAL;
}
chanreq.oper = chanreq.ap;
if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_EHT ||
sdata->vif.driver_flags & IEEE80211_VIF_IGNORE_OFDMA_WIDER_BW)
chanreq.ap.chan = NULL;
/*
* if HT operation mode changed store the new one -
* this may be applicable even if channel is identical
*/
if (elems->ht_operation) {
ht_opmode = le16_to_cpu(elems->ht_operation->operation_mode);
if (link->conf->ht_operation_mode != ht_opmode) {
*changed |= BSS_CHANGED_HT;
link->conf->ht_operation_mode = ht_opmode;
}
}
/*
* Downgrade the new channel if we associated with restricted
* bandwidth capabilities. For example, if we associated as a
* 20 MHz STA to a 40 MHz AP (due to regulatory, capabilities
* or config reasons) then switching to a 40 MHz channel now
* won't do us any good -- we couldn't use it with the AP.
*/
while (link->u.mgd.conn.bw_limit <
ieee80211_min_bw_limit_from_chandef(&chanreq.oper))
ieee80211_chandef_downgrade(&chanreq.oper, NULL);
if (ieee80211_chanreq_identical(&chanreq, &link->conf->chanreq))
return 0;
link_info(link,
"AP %pM changed bandwidth, new used config is %d.%03d MHz, width %d (%d.%03d/%d MHz)\n",
link->u.mgd.bssid, chanreq.oper.chan->center_freq,
chanreq.oper.chan->freq_offset, chanreq.oper.width,
chanreq.oper.center_freq1, chanreq.oper.freq1_offset,
chanreq.oper.center_freq2);
if (!cfg80211_chandef_valid(&chanreq.oper)) {
sdata_info(sdata,
"AP %pM changed caps/bw in a way we can't support - disconnect\n",
link->u.mgd.bssid);
return -EINVAL;
}
if (!update) {
link->conf->chanreq = chanreq;
return 0;
}
/*
* We're tracking the current AP here, so don't do any further checks
* here. This keeps us from playing ping-pong with regulatory, without
* it the following can happen (for example):
* - connect to an AP with 80 MHz, world regdom allows 80 MHz
* - AP advertises regdom US
* - CRDA loads regdom US with 80 MHz prohibited (old database)
* - we detect an unsupported channel and disconnect
* - disconnect causes CRDA to reload world regdomain and the game
* starts anew.
* (see https://bugzilla.kernel.org/show_bug.cgi?id=70881)
*
* It seems possible that there are still scenarios with CSA or real
* bandwidth changes where a this could happen, but those cases are
* less common and wouldn't completely prevent using the AP.
*/
ret = ieee80211_link_change_chanreq(link, &chanreq, changed);
if (ret) {
sdata_info(sdata,
"AP %pM changed bandwidth to incompatible one - disconnect\n",
link->u.mgd.bssid);
return ret;
}
cfg80211_schedule_channels_check(&sdata->wdev);
return 0;
}
/* frame sending functions */
static void ieee80211_add_ht_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u8 ap_ht_param,
struct ieee80211_supported_band *sband,
struct ieee80211_channel *channel,
enum ieee80211_smps_mode smps,
const struct ieee80211_conn_settings *conn)
{
u8 *pos;
u32 flags = channel->flags;
u16 cap;
struct ieee80211_sta_ht_cap ht_cap;
BUILD_BUG_ON(sizeof(ht_cap) != sizeof(sband->ht_cap));
memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap));
ieee80211_apply_htcap_overrides(sdata, &ht_cap);
/* determine capability flags */
cap = ht_cap.cap;
switch (ap_ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
if (flags & IEEE80211_CHAN_NO_HT40PLUS) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
if (flags & IEEE80211_CHAN_NO_HT40MINUS) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
break;
}
/*
* If 40 MHz was disabled associate as though we weren't
* capable of 40 MHz -- some broken APs will never fall
* back to trying to transmit in 20 MHz.
*/
if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_20) {
cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40;
cap &= ~IEEE80211_HT_CAP_SGI_40;
}
/* set SM PS mode properly */
cap &= ~IEEE80211_HT_CAP_SM_PS;
switch (smps) {
case IEEE80211_SMPS_AUTOMATIC:
case IEEE80211_SMPS_NUM_MODES:
WARN_ON(1);
fallthrough;
case IEEE80211_SMPS_OFF:
cap |= WLAN_HT_CAP_SM_PS_DISABLED <<
IEEE80211_HT_CAP_SM_PS_SHIFT;
break;
case IEEE80211_SMPS_STATIC:
cap |= WLAN_HT_CAP_SM_PS_STATIC <<
IEEE80211_HT_CAP_SM_PS_SHIFT;
break;
case IEEE80211_SMPS_DYNAMIC:
cap |= WLAN_HT_CAP_SM_PS_DYNAMIC <<
IEEE80211_HT_CAP_SM_PS_SHIFT;
break;
}
/* reserve and fill IE */
pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2);
ieee80211_ie_build_ht_cap(pos, &ht_cap, cap);
}
/* This function determines vht capability flags for the association
* and builds the IE.
* Note - the function returns true to own the MU-MIMO capability
*/
static bool ieee80211_add_vht_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
struct ieee80211_supported_band *sband,
struct ieee80211_vht_cap *ap_vht_cap,
const struct ieee80211_conn_settings *conn)
{
struct ieee80211_local *local = sdata->local;
u8 *pos;
u32 cap;
struct ieee80211_sta_vht_cap vht_cap;
u32 mask, ap_bf_sts, our_bf_sts;
bool mu_mimo_owner = false;
BUILD_BUG_ON(sizeof(vht_cap) != sizeof(sband->vht_cap));
memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap));
ieee80211_apply_vhtcap_overrides(sdata, &vht_cap);
/* determine capability flags */
cap = vht_cap.cap;
if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_80) {
cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160;
cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
}
/*
* Some APs apparently get confused if our capabilities are better
* than theirs, so restrict what we advertise in the assoc request.
*/
if (!(ap_vht_cap->vht_cap_info &
cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)))
cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE);
else if (!(ap_vht_cap->vht_cap_info &
cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)))
cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
/*
* If some other vif is using the MU-MIMO capability we cannot associate
* using MU-MIMO - this will lead to contradictions in the group-id
* mechanism.
* Ownership is defined since association request, in order to avoid
* simultaneous associations with MU-MIMO.
*/
if (cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) {
bool disable_mu_mimo = false;
struct ieee80211_sub_if_data *other;
list_for_each_entry_rcu(other, &local->interfaces, list) {
if (other->vif.bss_conf.mu_mimo_owner) {
disable_mu_mimo = true;
break;
}
}
if (disable_mu_mimo)
cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
else
mu_mimo_owner = true;
}
mask = IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
ap_bf_sts = le32_to_cpu(ap_vht_cap->vht_cap_info) & mask;
our_bf_sts = cap & mask;
if (ap_bf_sts < our_bf_sts) {
cap &= ~mask;
cap |= ap_bf_sts;
}
/* reserve and fill IE */
pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2);
ieee80211_ie_build_vht_cap(pos, &vht_cap, cap);
return mu_mimo_owner;
}
/* This function determines HE capability flags for the association
* and builds the IE.
*/
static void ieee80211_add_he_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
struct ieee80211_supported_band *sband,
enum ieee80211_smps_mode smps_mode,
const struct ieee80211_conn_settings *conn)
{
u8 *pos, *pre_he_pos;
const struct ieee80211_sta_he_cap *he_cap;
u8 he_cap_size;
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
if (WARN_ON(!he_cap))
return;
/* get a max size estimate */
he_cap_size =
2 + 1 + sizeof(he_cap->he_cap_elem) +
ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem) +
ieee80211_he_ppe_size(he_cap->ppe_thres[0],
he_cap->he_cap_elem.phy_cap_info);
pos = skb_put(skb, he_cap_size);
pre_he_pos = pos;
pos = ieee80211_ie_build_he_cap(conn, he_cap, pos, pos + he_cap_size);
/* trim excess if any */
skb_trim(skb, skb->len - (pre_he_pos + he_cap_size - pos));
ieee80211_ie_build_he_6ghz_cap(sdata, smps_mode, skb);
}
static void ieee80211_add_eht_ie(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb,
struct ieee80211_supported_band *sband)
{
u8 *pos;
const struct ieee80211_sta_he_cap *he_cap;
const struct ieee80211_sta_eht_cap *eht_cap;
u8 eht_cap_size;
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif);
/*
* EHT capabilities element is only added if the HE capabilities element
* was added so assume that 'he_cap' is valid and don't check it.
*/
if (WARN_ON(!he_cap || !eht_cap))
return;
eht_cap_size =
2 + 1 + sizeof(eht_cap->eht_cap_elem) +
ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
&eht_cap->eht_cap_elem,
false) +
ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
eht_cap->eht_cap_elem.phy_cap_info);
pos = skb_put(skb, eht_cap_size);
ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, pos + eht_cap_size,
false);
}
static void ieee80211_assoc_add_rates(struct sk_buff *skb,
enum nl80211_chan_width width,
struct ieee80211_supported_band *sband,
struct ieee80211_mgd_assoc_data *assoc_data)
{
unsigned int rates_len, supp_rates_len;
u32 rates = 0;
int i, count;
u8 *pos;
if (assoc_data->supp_rates_len) {
/*
* Get all rates supported by the device and the AP as
* some APs don't like getting a superset of their rates
* in the association request (e.g. D-Link DAP 1353 in
* b-only mode)...
*/
rates_len = ieee80211_parse_bitrates(width, sband,
assoc_data->supp_rates,
assoc_data->supp_rates_len,
&rates);
} else {
/*
* In case AP not provide any supported rates information
* before association, we send information element(s) with
* all rates that we support.
*/
rates_len = sband->n_bitrates;
for (i = 0; i < sband->n_bitrates; i++)
rates |= BIT(i);
}
supp_rates_len = rates_len;
if (supp_rates_len > 8)
supp_rates_len = 8;
pos = skb_put(skb, supp_rates_len + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = supp_rates_len;
count = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5);
*pos++ = (u8)rate;
if (++count == 8)
break;
}
}
if (rates_len > count) {
pos = skb_put(skb, rates_len - count + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates_len - count;
for (i++; i < sband->n_bitrates; i++) {
if (BIT(i) & rates) {
int rate;
rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5);
*pos++ = (u8)rate;
}
}
}
}
static size_t ieee80211_add_before_ht_elems(struct sk_buff *skb,
const u8 *elems,
size_t elems_len,
size_t offset)
{
size_t noffset;
static const u8 before_ht[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_EXT_SUPP_RATES,
WLAN_EID_PWR_CAPABILITY,
WLAN_EID_SUPPORTED_CHANNELS,
WLAN_EID_RSN,
WLAN_EID_QOS_CAPA,
WLAN_EID_RRM_ENABLED_CAPABILITIES,
WLAN_EID_MOBILITY_DOMAIN,
WLAN_EID_FAST_BSS_TRANSITION, /* reassoc only */
WLAN_EID_RIC_DATA, /* reassoc only */
WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
};
static const u8 after_ric[] = {
WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
WLAN_EID_HT_CAPABILITY,
WLAN_EID_BSS_COEX_2040,
/* luckily this is almost always there */
WLAN_EID_EXT_CAPABILITY,
WLAN_EID_QOS_TRAFFIC_CAPA,
WLAN_EID_TIM_BCAST_REQ,
WLAN_EID_INTERWORKING,
/* 60 GHz (Multi-band, DMG, MMS) can't happen */
WLAN_EID_VHT_CAPABILITY,
WLAN_EID_OPMODE_NOTIF,
};
if (!elems_len)
return offset;
noffset = ieee80211_ie_split_ric(elems, elems_len,
before_ht,
ARRAY_SIZE(before_ht),
after_ric,
ARRAY_SIZE(after_ric),
offset);
skb_put_data(skb, elems + offset, noffset - offset);
return noffset;
}
static size_t ieee80211_add_before_vht_elems(struct sk_buff *skb,
const u8 *elems,
size_t elems_len,
size_t offset)
{
static const u8 before_vht[] = {
/*
* no need to list the ones split off before HT
* or generated here
*/
WLAN_EID_BSS_COEX_2040,
WLAN_EID_EXT_CAPABILITY,
WLAN_EID_QOS_TRAFFIC_CAPA,
WLAN_EID_TIM_BCAST_REQ,
WLAN_EID_INTERWORKING,
/* 60 GHz (Multi-band, DMG, MMS) can't happen */
};
size_t noffset;
if (!elems_len)
return offset;
/* RIC already taken care of in ieee80211_add_before_ht_elems() */
noffset = ieee80211_ie_split(elems, elems_len,
before_vht, ARRAY_SIZE(before_vht),
offset);
skb_put_data(skb, elems + offset, noffset - offset);
return noffset;
}
static size_t ieee80211_add_before_he_elems(struct sk_buff *skb,
const u8 *elems,
size_t elems_len,
size_t offset)
{
static const u8 before_he[] = {
/*
* no need to list the ones split off before VHT
* or generated here
*/
WLAN_EID_OPMODE_NOTIF,
WLAN_EID_EXTENSION, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE,
/* 11ai elements */
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_SESSION,
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_PUBLIC_KEY,
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_KEY_CONFIRM,
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_HLP_CONTAINER,
WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN,
/* TODO: add 11ah/11aj/11ak elements */
};
size_t noffset;
if (!elems_len)
return offset;
/* RIC already taken care of in ieee80211_add_before_ht_elems() */
noffset = ieee80211_ie_split(elems, elems_len,
before_he, ARRAY_SIZE(before_he),
offset);
skb_put_data(skb, elems + offset, noffset - offset);
return noffset;
}
#define PRESENT_ELEMS_MAX 8
#define PRESENT_ELEM_EXT_OFFS 0x100
static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u16 capab,
const struct element *ext_capa,
const u16 *present_elems);
static size_t ieee80211_assoc_link_elems(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u16 *capab,
const struct element *ext_capa,
const u8 *extra_elems,
size_t extra_elems_len,
unsigned int link_id,
struct ieee80211_link_data *link,
u16 *present_elems)
{
enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data;
struct cfg80211_bss *cbss = assoc_data->link[link_id].bss;
struct ieee80211_channel *chan = cbss->channel;
const struct ieee80211_sband_iftype_data *iftd;
struct ieee80211_local *local = sdata->local;
struct ieee80211_supported_band *sband;
enum nl80211_chan_width width = NL80211_CHAN_WIDTH_20;
struct ieee80211_chanctx_conf *chanctx_conf;
enum ieee80211_smps_mode smps_mode;
u16 orig_capab = *capab;
size_t offset = 0;
int present_elems_len = 0;
u8 *pos;
int i;
#define ADD_PRESENT_ELEM(id) do { \
/* need a last for termination - we use 0 == SSID */ \
if (!WARN_ON(present_elems_len >= PRESENT_ELEMS_MAX - 1)) \
present_elems[present_elems_len++] = (id); \
} while (0)
#define ADD_PRESENT_EXT_ELEM(id) ADD_PRESENT_ELEM(PRESENT_ELEM_EXT_OFFS | (id))
if (link)
smps_mode = link->smps_mode;
else if (sdata->u.mgd.powersave)
smps_mode = IEEE80211_SMPS_DYNAMIC;
else
smps_mode = IEEE80211_SMPS_OFF;
if (link) {
/*
* 5/10 MHz scenarios are only viable without MLO, in which
* case this pointer should be used ... All of this is a bit
* unclear though, not sure this even works at all.
*/
rcu_read_lock();
chanctx_conf = rcu_dereference(link->conf->chanctx_conf);
if (chanctx_conf)
width = chanctx_conf->def.width;
rcu_read_unlock();
}
sband = local->hw.wiphy->bands[chan->band];
iftd = ieee80211_get_sband_iftype_data(sband, iftype);
if (sband->band == NL80211_BAND_2GHZ) {
*capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
*capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
}
if ((cbss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) &&
ieee80211_hw_check(&local->hw, SPECTRUM_MGMT))
*capab |= WLAN_CAPABILITY_SPECTRUM_MGMT;
if (sband->band != NL80211_BAND_S1GHZ)
ieee80211_assoc_add_rates(skb, width, sband, assoc_data);
if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT ||
*capab & WLAN_CAPABILITY_RADIO_MEASURE) {
struct cfg80211_chan_def chandef = {
.width = width,
.chan = chan,
};
pos = skb_put(skb, 4);
*pos++ = WLAN_EID_PWR_CAPABILITY;
*pos++ = 2;
*pos++ = 0; /* min tx power */
/* max tx power */
*pos++ = ieee80211_chandef_max_power(&chandef);
ADD_PRESENT_ELEM(WLAN_EID_PWR_CAPABILITY);
}
/*
* Per spec, we shouldn't include the list of channels if we advertise
* support for extended channel switching, but we've always done that;
* (for now?) apply this restriction only on the (new) 6 GHz band.
*/
if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT &&
(sband->band != NL80211_BAND_6GHZ ||
!ext_capa || ext_capa->datalen < 1 ||
!(ext_capa->data[0] & WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING))) {
/* TODO: get this in reg domain format */
pos = skb_put(skb, 2 * sband->n_channels + 2);
*pos++ = WLAN_EID_SUPPORTED_CHANNELS;
*pos++ = 2 * sband->n_channels;
for (i = 0; i < sband->n_channels; i++) {
int cf = sband->channels[i].center_freq;
*pos++ = ieee80211_frequency_to_channel(cf);
*pos++ = 1; /* one channel in the subband*/
}
ADD_PRESENT_ELEM(WLAN_EID_SUPPORTED_CHANNELS);
}
/* if present, add any custom IEs that go before HT */
offset = ieee80211_add_before_ht_elems(skb, extra_elems,
extra_elems_len,
offset);
if (sband->band != NL80211_BAND_6GHZ &&
assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HT) {
ieee80211_add_ht_ie(sdata, skb,
assoc_data->link[link_id].ap_ht_param,
sband, chan, smps_mode,
&assoc_data->link[link_id].conn);
ADD_PRESENT_ELEM(WLAN_EID_HT_CAPABILITY);
}
/* if present, add any custom IEs that go before VHT */
offset = ieee80211_add_before_vht_elems(skb, extra_elems,
extra_elems_len,
offset);
if (sband->band != NL80211_BAND_6GHZ &&
assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_VHT) {
bool mu_mimo_owner =
ieee80211_add_vht_ie(sdata, skb, sband,
&assoc_data->link[link_id].ap_vht_cap,
&assoc_data->link[link_id].conn);
if (link)
link->conf->mu_mimo_owner = mu_mimo_owner;
ADD_PRESENT_ELEM(WLAN_EID_VHT_CAPABILITY);
}
/* if present, add any custom IEs that go before HE */
offset = ieee80211_add_before_he_elems(skb, extra_elems,
extra_elems_len,
offset);
if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HE) {
ieee80211_add_he_ie(sdata, skb, sband, smps_mode,
&assoc_data->link[link_id].conn);
ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_HE_CAPABILITY);
}
/*
* careful - need to know about all the present elems before
* calling ieee80211_assoc_add_ml_elem(), so add this one if
* we're going to put it after the ML element
*/
if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT)
ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_EHT_CAPABILITY);
if (link_id == assoc_data->assoc_link_id)
ieee80211_assoc_add_ml_elem(sdata, skb, orig_capab, ext_capa,
present_elems);
/* crash if somebody gets it wrong */
present_elems = NULL;
if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT)
ieee80211_add_eht_ie(sdata, skb, sband);
if (sband->band == NL80211_BAND_S1GHZ) {
ieee80211_add_aid_request_ie(sdata, skb);
ieee80211_add_s1g_capab_ie(sdata, &sband->s1g_cap, skb);
}
if (iftd && iftd->vendor_elems.data && iftd->vendor_elems.len)
skb_put_data(skb, iftd->vendor_elems.data, iftd->vendor_elems.len);
return offset;
}
static void ieee80211_add_non_inheritance_elem(struct sk_buff *skb,
const u16 *outer,
const u16 *inner)
{
unsigned int skb_len = skb->len;
bool at_extension = false;
bool added = false;
int i, j;
u8 *len, *list_len = NULL;
skb_put_u8(skb, WLAN_EID_EXTENSION);
len = skb_put(skb, 1);
skb_put_u8(skb, WLAN_EID_EXT_NON_INHERITANCE);
for (i = 0; i < PRESENT_ELEMS_MAX && outer[i]; i++) {
u16 elem = outer[i];
bool have_inner = false;
/* should at least be sorted in the sense of normal -> ext */
WARN_ON(at_extension && elem < PRESENT_ELEM_EXT_OFFS);
/* switch to extension list */
if (!at_extension && elem >= PRESENT_ELEM_EXT_OFFS) {
at_extension = true;
if (!list_len)
skb_put_u8(skb, 0);
list_len = NULL;
}
for (j = 0; j < PRESENT_ELEMS_MAX && inner[j]; j++) {
if (elem == inner[j]) {
have_inner = true;
break;
}
}
if (have_inner)
continue;
if (!list_len) {
list_len = skb_put(skb, 1);
*list_len = 0;
}
*list_len += 1;
skb_put_u8(skb, (u8)elem);
added = true;
}
/* if we added a list but no extension list, make a zero-len one */
if (added && (!at_extension || !list_len))
skb_put_u8(skb, 0);
/* if nothing added remove extension element completely */
if (!added)
skb_trim(skb, skb_len);
else
*len = skb->len - skb_len - 2;
}
static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb, u16 capab,
const struct element *ext_capa,
const u16 *outer_present_elems)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data;
struct ieee80211_multi_link_elem *ml_elem;
struct ieee80211_mle_basic_common_info *common;
const struct wiphy_iftype_ext_capab *ift_ext_capa;
__le16 eml_capa = 0, mld_capa_ops = 0;
unsigned int link_id;
u8 *ml_elem_len;
void *capab_pos;
if (!ieee80211_vif_is_mld(&sdata->vif))
return;
ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy,
ieee80211_vif_type_p2p(&sdata->vif));
if (ift_ext_capa) {
eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities);
mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops);
}
skb_put_u8(skb, WLAN_EID_EXTENSION);
ml_elem_len = skb_put(skb, 1);
skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK);
ml_elem = skb_put(skb, sizeof(*ml_elem));
ml_elem->control =
cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC |
IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP);
common = skb_put(skb, sizeof(*common));
common->len = sizeof(*common) +
2; /* MLD capa/ops */
memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN);
/* add EML_CAPA only if needed, see Draft P802.11be_D2.1, 35.3.17 */
if (eml_capa &
cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP |
IEEE80211_EML_CAP_EMLMR_SUPPORT))) {
common->len += 2; /* EML capabilities */
ml_elem->control |=
cpu_to_le16(IEEE80211_MLC_BASIC_PRES_EML_CAPA);
skb_put_data(skb, &eml_capa, sizeof(eml_capa));
}
skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops));
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
u16 link_present_elems[PRESENT_ELEMS_MAX] = {};
const u8 *extra_elems;
size_t extra_elems_len;
size_t extra_used;
u8 *subelem_len = NULL;
__le16 ctrl;
if (!assoc_data->link[link_id].bss ||
link_id == assoc_data->assoc_link_id)
continue;
extra_elems = assoc_data->link[link_id].elems;
extra_elems_len = assoc_data->link[link_id].elems_len;
skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE);
subelem_len = skb_put(skb, 1);
ctrl = cpu_to_le16(link_id |
IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE |
IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT);
skb_put_data(skb, &ctrl, sizeof(ctrl));
skb_put_u8(skb, 1 + ETH_ALEN); /* STA Info Length */
skb_put_data(skb, assoc_data->link[link_id].addr,
ETH_ALEN);
/*
* Now add the contents of the (re)association request,
* but the "listen interval" and "current AP address"
* (if applicable) are skipped. So we only have
* the capability field (remember the position and fill
* later), followed by the elements added below by
* calling ieee80211_assoc_link_elems().
*/
capab_pos = skb_put(skb, 2);
extra_used = ieee80211_assoc_link_elems(sdata, skb, &capab,
ext_capa,
extra_elems,
extra_elems_len,
link_id, NULL,
link_present_elems);
if (extra_elems)
skb_put_data(skb, extra_elems + extra_used,
extra_elems_len - extra_used);
put_unaligned_le16(capab, capab_pos);
ieee80211_add_non_inheritance_elem(skb, outer_present_elems,
link_present_elems);
ieee80211_fragment_element(skb, subelem_len,
IEEE80211_MLE_SUBELEM_FRAGMENT);
}
ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT);
}
static int ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data;
struct ieee80211_link_data *link;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, qos_info, *ie_start;
size_t offset, noffset;
u16 capab = 0, link_capab;
__le16 listen_int;
struct element *ext_capa = NULL;
enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
struct ieee80211_prep_tx_info info = {};
unsigned int link_id, n_links = 0;
u16 present_elems[PRESENT_ELEMS_MAX] = {};
void *capab_pos;
size_t size;
int ret;
/* we know it's writable, cast away the const */
if (assoc_data->ie_len)
ext_capa = (void *)cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY,
assoc_data->ie,
assoc_data->ie_len);
lockdep_assert_wiphy(sdata->local->hw.wiphy);
size = local->hw.extra_tx_headroom +
sizeof(*mgmt) + /* bit too much but doesn't matter */
2 + assoc_data->ssid_len + /* SSID */
assoc_data->ie_len + /* extra IEs */
(assoc_data->fils_kek_len ? 16 /* AES-SIV */ : 0) +
9; /* WMM */
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
struct cfg80211_bss *cbss = assoc_data->link[link_id].bss;
const struct ieee80211_sband_iftype_data *iftd;
struct ieee80211_supported_band *sband;
if (!cbss)
continue;
sband = local->hw.wiphy->bands[cbss->channel->band];
n_links++;
/* add STA profile elements length */
size += assoc_data->link[link_id].elems_len;
/* and supported rates length */
size += 4 + sband->n_bitrates;
/* supported channels */
size += 2 + 2 * sband->n_channels;
iftd = ieee80211_get_sband_iftype_data(sband, iftype);
if (iftd)
size += iftd->vendor_elems.len;
/* power capability */
size += 4;
/* HT, VHT, HE, EHT */
size += 2 + sizeof(struct ieee80211_ht_cap);
size += 2 + sizeof(struct ieee80211_vht_cap);
size += 2 + 1 + sizeof(struct ieee80211_he_cap_elem) +
sizeof(struct ieee80211_he_mcs_nss_supp) +
IEEE80211_HE_PPE_THRES_MAX_LEN;
if (sband->band == NL80211_BAND_6GHZ)
size += 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa);
size += 2 + 1 + sizeof(struct ieee80211_eht_cap_elem) +
sizeof(struct ieee80211_eht_mcs_nss_supp) +
IEEE80211_EHT_PPE_THRES_MAX_LEN;
/* non-inheritance element */
size += 2 + 2 + PRESENT_ELEMS_MAX;
/* should be the same across all BSSes */
if (cbss->capability & WLAN_CAPABILITY_PRIVACY)
capab |= WLAN_CAPABILITY_PRIVACY;
}
if (ieee80211_vif_is_mld(&sdata->vif)) {
/* consider the multi-link element with STA profile */
size += sizeof(struct ieee80211_multi_link_elem);
/* max common info field in basic multi-link element */
size += sizeof(struct ieee80211_mle_basic_common_info) +
2 + /* capa & op */
2; /* EML capa */
/*
* The capability elements were already considered above;
* note this over-estimates a bit because there's no
* STA profile for the assoc link.
*/
size += (n_links - 1) *
(1 + 1 + /* subelement ID/length */
2 + /* STA control */
1 + ETH_ALEN + 2 /* STA Info field */);
}
link = sdata_dereference(sdata->link[assoc_data->assoc_link_id], sdata);
if (WARN_ON(!link))
return -EINVAL;
if (WARN_ON(!assoc_data->link[assoc_data->assoc_link_id].bss))
return -EINVAL;
skb = alloc_skb(size, GFP_KERNEL);
if (!skb)
return -ENOMEM;
skb_reserve(skb, local->hw.extra_tx_headroom);
if (ifmgd->flags & IEEE80211_STA_ENABLE_RRM)
capab |= WLAN_CAPABILITY_RADIO_MEASURE;
/* Set MBSSID support for HE AP if needed */
if (ieee80211_hw_check(&local->hw, SUPPORTS_ONLY_HE_MULTI_BSSID) &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE &&
ext_capa && ext_capa->datalen >= 3)
ext_capa->data[2] |= WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT;
mgmt = skb_put_zero(skb, 24);
memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN);
listen_int = cpu_to_le16(assoc_data->s1g ?
ieee80211_encode_usf(local->hw.conf.listen_interval) :
local->hw.conf.listen_interval);
if (!is_zero_ether_addr(assoc_data->prev_ap_addr)) {
skb_put(skb, 10);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_REASSOC_REQ);
capab_pos = &mgmt->u.reassoc_req.capab_info;
mgmt->u.reassoc_req.listen_interval = listen_int;
memcpy(mgmt->u.reassoc_req.current_ap,
assoc_data->prev_ap_addr, ETH_ALEN);
info.subtype = IEEE80211_STYPE_REASSOC_REQ;
} else {
skb_put(skb, 4);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ASSOC_REQ);
capab_pos = &mgmt->u.assoc_req.capab_info;
mgmt->u.assoc_req.listen_interval = listen_int;
info.subtype = IEEE80211_STYPE_ASSOC_REQ;
}
/* SSID */
pos = skb_put(skb, 2 + assoc_data->ssid_len);
ie_start = pos;
*pos++ = WLAN_EID_SSID;
*pos++ = assoc_data->ssid_len;
memcpy(pos, assoc_data->ssid, assoc_data->ssid_len);
/*
* This bit is technically reserved, so it shouldn't matter for either
* the AP or us, but it also means we shouldn't set it. However, we've
* always set it in the past, and apparently some EHT APs check that
* we don't set it. To avoid interoperability issues with old APs that
* for some reason check it and want it to be set, set the bit for all
* pre-EHT connections as we used to do.
*/
if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_EHT)
capab |= WLAN_CAPABILITY_ESS;
/* add the elements for the assoc (main) link */
link_capab = capab;
offset = ieee80211_assoc_link_elems(sdata, skb, &link_capab,
ext_capa,
assoc_data->ie,
assoc_data->ie_len,
assoc_data->assoc_link_id, link,
present_elems);
put_unaligned_le16(link_capab, capab_pos);
/* if present, add any custom non-vendor IEs */
if (assoc_data->ie_len) {
noffset = ieee80211_ie_split_vendor(assoc_data->ie,
assoc_data->ie_len,
offset);
skb_put_data(skb, assoc_data->ie + offset, noffset - offset);
offset = noffset;
}
if (assoc_data->wmm) {
if (assoc_data->uapsd) {
qos_info = ifmgd->uapsd_queues;
qos_info |= (ifmgd->uapsd_max_sp_len <<
IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT);
} else {
qos_info = 0;
}
pos = ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info);
}
/* add any remaining custom (i.e. vendor specific here) IEs */
if (assoc_data->ie_len) {
noffset = assoc_data->ie_len;
skb_put_data(skb, assoc_data->ie + offset, noffset - offset);
}
if (assoc_data->fils_kek_len) {
ret = fils_encrypt_assoc_req(skb, assoc_data);
if (ret < 0) {
dev_kfree_skb(skb);
return ret;
}
}
pos = skb_tail_pointer(skb);
kfree(ifmgd->assoc_req_ies);
ifmgd->assoc_req_ies = kmemdup(ie_start, pos - ie_start, GFP_ATOMIC);
if (!ifmgd->assoc_req_ies) {
dev_kfree_skb(skb);
return -ENOMEM;
}
ifmgd->assoc_req_ies_len = pos - ie_start;
info.link_id = assoc_data->assoc_link_id;
drv_mgd_prepare_tx(local, sdata, &info);
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_MLME_CONN_TX;
ieee80211_tx_skb(sdata, skb);
return 0;
}
void ieee80211_send_pspoll(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_pspoll *pspoll;
struct sk_buff *skb;
skb = ieee80211_pspoll_get(&local->hw, &sdata->vif);
if (!skb)
return;
pspoll = (struct ieee80211_pspoll *) skb->data;
pspoll->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
ieee80211_tx_skb(sdata, skb);
}
void ieee80211_send_nullfunc(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
bool powersave)
{
struct sk_buff *skb;
struct ieee80211_hdr_3addr *nullfunc;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
skb = ieee80211_nullfunc_get(&local->hw, &sdata->vif, -1,
!ieee80211_hw_check(&local->hw,
DOESNT_SUPPORT_QOS_NDP));
if (!skb)
return;
nullfunc = (struct ieee80211_hdr_3addr *) skb->data;
if (powersave)
nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
IEEE80211_TX_INTFL_OFFCHAN_TX_OK;
if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL)
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE;
ieee80211_tx_skb(sdata, skb);
}
void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
struct sk_buff *skb;
struct ieee80211_hdr *nullfunc;
__le16 fc;
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 30);
if (!skb)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = skb_put_zero(skb, 30);
fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
nullfunc->frame_control = fc;
memcpy(nullfunc->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->deflink.u.mgd.bssid, ETH_ALEN);
memcpy(nullfunc->addr4, sdata->vif.addr, ETH_ALEN);
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE;
ieee80211_tx_skb(sdata, skb);
}
/* spectrum management related things */
static void ieee80211_chswitch_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_link_data *link =
container_of(work, struct ieee80211_link_data,
u.mgd.chswitch_work.work);
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
int ret;
if (!ieee80211_sdata_running(sdata))
return;
lockdep_assert_wiphy(local->hw.wiphy);
if (!ifmgd->associated)
return;
if (!link->conf->csa_active)
return;
/*
* using reservation isn't immediate as it may be deferred until later
* with multi-vif. once reservation is complete it will re-schedule the
* work with no reserved_chanctx so verify chandef to check if it
* completed successfully
*/
if (link->reserved_chanctx) {
/*
* with multi-vif csa driver may call ieee80211_csa_finish()
* many times while waiting for other interfaces to use their
* reservations
*/
if (link->reserved_ready)
return;
ret = ieee80211_link_use_reserved_context(link);
if (ret) {
sdata_info(sdata,
"failed to use reserved channel context, disconnecting (err=%d)\n",
ret);
wiphy_work_queue(sdata->local->hw.wiphy,
&ifmgd->csa_connection_drop_work);
}
return;
}
if (!ieee80211_chanreq_identical(&link->conf->chanreq,
&link->csa_chanreq)) {
sdata_info(sdata,
"failed to finalize channel switch, disconnecting\n");
wiphy_work_queue(sdata->local->hw.wiphy,
&ifmgd->csa_connection_drop_work);
return;
}
link->u.mgd.csa_waiting_bcn = true;
ieee80211_sta_reset_beacon_monitor(sdata);
ieee80211_sta_reset_conn_monitor(sdata);
}
static void ieee80211_chswitch_post_beacon(struct ieee80211_link_data *link)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
int ret;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
WARN_ON(!link->conf->csa_active);
if (link->csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
link->csa_block_tx = false;
}
link->conf->csa_active = false;
link->u.mgd.csa_waiting_bcn = false;
/*
* If the CSA IE is still present on the beacon after the switch,
* we need to consider it as a new CSA (possibly to self).
*/
link->u.mgd.beacon_crc_valid = false;
ret = drv_post_channel_switch(link);
if (ret) {
sdata_info(sdata,
"driver post channel switch failed, disconnecting\n");
wiphy_work_queue(sdata->local->hw.wiphy,
&ifmgd->csa_connection_drop_work);
return;
}
cfg80211_ch_switch_notify(sdata->dev, &link->reserved.oper,
link->link_id);
}
void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success,
unsigned int link_id)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
trace_api_chswitch_done(sdata, success, link_id);
rcu_read_lock();
if (!success) {
sdata_info(sdata,
"driver channel switch failed, disconnecting\n");
wiphy_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.csa_connection_drop_work);
} else {
struct ieee80211_link_data *link =
rcu_dereference(sdata->link[link_id]);
if (WARN_ON(!link)) {
rcu_read_unlock();
return;
}
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&link->u.mgd.chswitch_work, 0);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(ieee80211_chswitch_done);
static void
ieee80211_sta_abort_chanswitch(struct ieee80211_link_data *link)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
lockdep_assert_wiphy(local->hw.wiphy);
if (!local->ops->abort_channel_switch)
return;
ieee80211_link_unreserve_chanctx(link);
if (link->csa_block_tx)
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
link->csa_block_tx = false;
link->conf->csa_active = false;
drv_abort_channel_switch(sdata);
}
static void
ieee80211_sta_process_chanswitch(struct ieee80211_link_data *link,
u64 timestamp, u32 device_timestamp,
struct ieee802_11_elems *elems,
bool beacon)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct cfg80211_bss *cbss = link->u.mgd.bss;
struct ieee80211_chanctx_conf *conf;
struct ieee80211_chanctx *chanctx;
enum nl80211_band current_band;
struct ieee80211_csa_ie csa_ie;
struct ieee80211_channel_switch ch_switch;
struct ieee80211_bss *bss;
unsigned long timeout;
int res;
lockdep_assert_wiphy(local->hw.wiphy);
if (!cbss)
return;
current_band = cbss->channel->band;
bss = (void *)cbss->priv;
res = ieee80211_parse_ch_switch_ie(sdata, elems, current_band,
bss->vht_cap_info,
&link->u.mgd.conn,
link->u.mgd.bssid, &csa_ie);
if (!res) {
ch_switch.timestamp = timestamp;
ch_switch.device_timestamp = device_timestamp;
ch_switch.block_tx = csa_ie.mode;
ch_switch.chandef = csa_ie.chanreq.oper;
ch_switch.count = csa_ie.count;
ch_switch.delay = csa_ie.max_switch_time;
}
if (res < 0)
goto drop_connection;
if (beacon && link->conf->csa_active &&
!link->u.mgd.csa_waiting_bcn) {
if (res)
ieee80211_sta_abort_chanswitch(link);
else
drv_channel_switch_rx_beacon(sdata, &ch_switch);
return;
} else if (link->conf->csa_active || res) {
/* disregard subsequent announcements if already processing */
return;
}
if (link->conf->chanreq.oper.chan->band !=
csa_ie.chanreq.oper.chan->band) {
sdata_info(sdata,
"AP %pM switches to different band (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n",
link->u.mgd.bssid,
csa_ie.chanreq.oper.chan->center_freq,
csa_ie.chanreq.oper.width,
csa_ie.chanreq.oper.center_freq1,
csa_ie.chanreq.oper.center_freq2);
goto drop_connection;
}
if (!cfg80211_chandef_usable(local->hw.wiphy, &csa_ie.chanreq.oper,
IEEE80211_CHAN_DISABLED)) {
sdata_info(sdata,
"AP %pM switches to unsupported channel "
"(%d.%03d MHz, width:%d, CF1/2: %d.%03d/%d MHz), "
"disconnecting\n",
link->u.mgd.bssid,
csa_ie.chanreq.oper.chan->center_freq,
csa_ie.chanreq.oper.chan->freq_offset,
csa_ie.chanreq.oper.width,
csa_ie.chanreq.oper.center_freq1,
csa_ie.chanreq.oper.freq1_offset,
csa_ie.chanreq.oper.center_freq2);
goto drop_connection;
}
if (cfg80211_chandef_identical(&csa_ie.chanreq.oper,
&link->conf->chanreq.oper) &&
(!csa_ie.mode || !beacon)) {
if (link->u.mgd.csa_ignored_same_chan)
return;
sdata_info(sdata,
"AP %pM tries to chanswitch to same channel, ignore\n",
link->u.mgd.bssid);
link->u.mgd.csa_ignored_same_chan = true;
return;
}
/*
* Drop all TDLS peers - either we disconnect or move to a different
* channel from this point on. There's no telling what our peer will do.
* The TDLS WIDER_BW scenario is also problematic, as peers might now
* have an incompatible wider chandef.
*/
ieee80211_teardown_tdls_peers(sdata);
conf = rcu_dereference_protected(link->conf->chanctx_conf,
lockdep_is_held(&local->hw.wiphy->mtx));
if (!conf) {
sdata_info(sdata,
"no channel context assigned to vif?, disconnecting\n");
goto drop_connection;
}
chanctx = container_of(conf, struct ieee80211_chanctx, conf);
if (!ieee80211_hw_check(&local->hw, CHANCTX_STA_CSA)) {
sdata_info(sdata,
"driver doesn't support chan-switch with channel contexts\n");
goto drop_connection;
}
if (drv_pre_channel_switch(sdata, &ch_switch)) {
sdata_info(sdata,
"preparing for channel switch failed, disconnecting\n");
goto drop_connection;
}
res = ieee80211_link_reserve_chanctx(link, &csa_ie.chanreq,
chanctx->mode, false);
if (res) {
sdata_info(sdata,
"failed to reserve channel context for channel switch, disconnecting (err=%d)\n",
res);
goto drop_connection;
}
link->conf->csa_active = true;
link->csa_chanreq = csa_ie.chanreq;
link->csa_block_tx = csa_ie.mode;
link->u.mgd.csa_ignored_same_chan = false;
link->u.mgd.beacon_crc_valid = false;
if (link->csa_block_tx)
ieee80211_stop_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
cfg80211_ch_switch_started_notify(sdata->dev, &csa_ie.chanreq.oper,
link->link_id, csa_ie.count,
csa_ie.mode);
if (local->ops->channel_switch) {
/* use driver's channel switch callback */
drv_channel_switch(local, sdata, &ch_switch);
return;
}
/* channel switch handled in software */
timeout = TU_TO_JIFFIES((max_t(int, csa_ie.count, 1) - 1) *
cbss->beacon_interval);
wiphy_delayed_work_queue(local->hw.wiphy,
&link->u.mgd.chswitch_work,
timeout);
return;
drop_connection:
/*
* This is just so that the disconnect flow will know that
* we were trying to switch channel and failed. In case the
* mode is 1 (we are not allowed to Tx), we will know not to
* send a deauthentication frame. Those two fields will be
* reset when the disconnection worker runs.
*/
link->conf->csa_active = true;
link->csa_block_tx = csa_ie.mode;
wiphy_work_queue(sdata->local->hw.wiphy,
&ifmgd->csa_connection_drop_work);
}
static bool
ieee80211_find_80211h_pwr_constr(struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
const u8 *country_ie, u8 country_ie_len,
const u8 *pwr_constr_elem,
int *chan_pwr, int *pwr_reduction)
{
struct ieee80211_country_ie_triplet *triplet;
int chan = ieee80211_frequency_to_channel(channel->center_freq);
int i, chan_increment;
bool have_chan_pwr = false;
/* Invalid IE */
if (country_ie_len % 2 || country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
return false;
triplet = (void *)(country_ie + 3);
country_ie_len -= 3;
switch (channel->band) {
default:
WARN_ON_ONCE(1);
fallthrough;
case NL80211_BAND_2GHZ:
case NL80211_BAND_60GHZ:
case NL80211_BAND_LC:
chan_increment = 1;
break;
case NL80211_BAND_5GHZ:
chan_increment = 4;
break;
case NL80211_BAND_6GHZ:
/*
* In the 6 GHz band, the "maximum transmit power level"
* field in the triplets is reserved, and thus will be
* zero and we shouldn't use it to control TX power.
* The actual TX power will be given in the transmit
* power envelope element instead.
*/
return false;
}
/* find channel */
while (country_ie_len >= 3) {
u8 first_channel = triplet->chans.first_channel;
if (first_channel >= IEEE80211_COUNTRY_EXTENSION_ID)
goto next;
for (i = 0; i < triplet->chans.num_channels; i++) {
if (first_channel + i * chan_increment == chan) {
have_chan_pwr = true;
*chan_pwr = triplet->chans.max_power;
break;
}
}
if (have_chan_pwr)
break;
next:
triplet++;
country_ie_len -= 3;
}
if (have_chan_pwr && pwr_constr_elem)
*pwr_reduction = *pwr_constr_elem;
else
*pwr_reduction = 0;
return have_chan_pwr;
}
static void ieee80211_find_cisco_dtpc(struct ieee80211_sub_if_data *sdata,
struct ieee80211_channel *channel,
const u8 *cisco_dtpc_ie,
int *pwr_level)
{
/* From practical testing, the first data byte of the DTPC element
* seems to contain the requested dBm level, and the CLI on Cisco
* APs clearly state the range is -127 to 127 dBm, which indicates
* a signed byte, although it seemingly never actually goes negative.
* The other byte seems to always be zero.
*/
*pwr_level = (__s8)cisco_dtpc_ie[4];
}
static u64 ieee80211_handle_pwr_constr(struct ieee80211_link_data *link,
struct ieee80211_channel *channel,
struct ieee80211_mgmt *mgmt,
const u8 *country_ie, u8 country_ie_len,
const u8 *pwr_constr_ie,
const u8 *cisco_dtpc_ie)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
bool has_80211h_pwr = false, has_cisco_pwr = false;
int chan_pwr = 0, pwr_reduction_80211h = 0;
int pwr_level_cisco, pwr_level_80211h;
int new_ap_level;
__le16 capab = mgmt->u.probe_resp.capab_info;
if (ieee80211_is_s1g_beacon(mgmt->frame_control))
return 0; /* TODO */
if (country_ie &&
(capab & cpu_to_le16(WLAN_CAPABILITY_SPECTRUM_MGMT) ||
capab & cpu_to_le16(WLAN_CAPABILITY_RADIO_MEASURE))) {
has_80211h_pwr = ieee80211_find_80211h_pwr_constr(
sdata, channel, country_ie, country_ie_len,
pwr_constr_ie, &chan_pwr, &pwr_reduction_80211h);
pwr_level_80211h =
max_t(int, 0, chan_pwr - pwr_reduction_80211h);
}
if (cisco_dtpc_ie) {
ieee80211_find_cisco_dtpc(
sdata, channel, cisco_dtpc_ie, &pwr_level_cisco);
has_cisco_pwr = true;
}
if (!has_80211h_pwr && !has_cisco_pwr)
return 0;
/* If we have both 802.11h and Cisco DTPC, apply both limits
* by picking the smallest of the two power levels advertised.
*/
if (has_80211h_pwr &&
(!has_cisco_pwr || pwr_level_80211h <= pwr_level_cisco)) {
new_ap_level = pwr_level_80211h;
if (link->ap_power_level == new_ap_level)
return 0;
sdata_dbg(sdata,
"Limiting TX power to %d (%d - %d) dBm as advertised by %pM\n",
pwr_level_80211h, chan_pwr, pwr_reduction_80211h,
link->u.mgd.bssid);
} else { /* has_cisco_pwr is always true here. */
new_ap_level = pwr_level_cisco;
if (link->ap_power_level == new_ap_level)
return 0;
sdata_dbg(sdata,
"Limiting TX power to %d dBm as advertised by %pM\n",
pwr_level_cisco, link->u.mgd.bssid);
}
link->ap_power_level = new_ap_level;
if (__ieee80211_recalc_txpower(sdata))
return BSS_CHANGED_TXPOWER;
return 0;
}
/* powersave */
static void ieee80211_enable_ps(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_conf *conf = &local->hw.conf;
/*
* If we are scanning right now then the parameters will
* take effect when scan finishes.
*/
if (local->scanning)
return;
if (conf->dynamic_ps_timeout > 0 &&
!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) {
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(conf->dynamic_ps_timeout));
} else {
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
ieee80211_send_nullfunc(local, sdata, true);
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) &&
ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
return;
conf->flags |= IEEE80211_CONF_PS;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
}
}
static void ieee80211_change_ps(struct ieee80211_local *local)
{
struct ieee80211_conf *conf = &local->hw.conf;
if (local->ps_sdata) {
ieee80211_enable_ps(local, local->ps_sdata);
} else if (conf->flags & IEEE80211_CONF_PS) {
conf->flags &= ~IEEE80211_CONF_PS;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
del_timer_sync(&local->dynamic_ps_timer);
wiphy_work_cancel(local->hw.wiphy,
&local->dynamic_ps_enable_work);
}
}
static bool ieee80211_powersave_allowed(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *mgd = &sdata->u.mgd;
struct sta_info *sta = NULL;
bool authorized = false;
if (!mgd->powersave)
return false;
if (mgd->broken_ap)
return false;
if (!mgd->associated)
return false;
if (mgd->flags & IEEE80211_STA_CONNECTION_POLL)
return false;
if (!(local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO) &&
!sdata->deflink.u.mgd.have_beacon)
return false;
rcu_read_lock();
sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr);
if (sta)
authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
rcu_read_unlock();
return authorized;
}
/* need to hold RTNL or interface lock */
void ieee80211_recalc_ps(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata, *found = NULL;
int count = 0;
int timeout;
if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS) ||
ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) {
local->ps_sdata = NULL;
return;
}
list_for_each_entry(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_AP) {
/* If an AP vif is found, then disable PS
* by setting the count to zero thereby setting
* ps_sdata to NULL.
*/
count = 0;
break;
}
if (sdata->vif.type != NL80211_IFTYPE_STATION)
continue;
found = sdata;
count++;
}
if (count == 1 && ieee80211_powersave_allowed(found)) {
u8 dtimper = found->deflink.u.mgd.dtim_period;
timeout = local->dynamic_ps_forced_timeout;
if (timeout < 0)
timeout = 100;
local->hw.conf.dynamic_ps_timeout = timeout;
/* If the TIM IE is invalid, pretend the value is 1 */
if (!dtimper)
dtimper = 1;
local->hw.conf.ps_dtim_period = dtimper;
local->ps_sdata = found;
} else {
local->ps_sdata = NULL;
}
ieee80211_change_ps(local);
}
void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata)
{
bool ps_allowed = ieee80211_powersave_allowed(sdata);
if (sdata->vif.cfg.ps != ps_allowed) {
sdata->vif.cfg.ps = ps_allowed;
ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_PS);
}
}
void ieee80211_dynamic_ps_disable_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local,
dynamic_ps_disable_work);
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
local->hw.conf.flags &= ~IEEE80211_CONF_PS;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
}
ieee80211_wake_queues_by_reason(&local->hw,
IEEE80211_MAX_QUEUE_MAP,
IEEE80211_QUEUE_STOP_REASON_PS,
false);
}
void ieee80211_dynamic_ps_enable_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local,
dynamic_ps_enable_work);
struct ieee80211_sub_if_data *sdata = local->ps_sdata;
struct ieee80211_if_managed *ifmgd;
unsigned long flags;
int q;
/* can only happen when PS was just disabled anyway */
if (!sdata)
return;
ifmgd = &sdata->u.mgd;
if (local->hw.conf.flags & IEEE80211_CONF_PS)
return;
if (local->hw.conf.dynamic_ps_timeout > 0) {
/* don't enter PS if TX frames are pending */
if (drv_tx_frames_pending(local)) {
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(
local->hw.conf.dynamic_ps_timeout));
return;
}
/*
* transmission can be stopped by others which leads to
* dynamic_ps_timer expiry. Postpone the ps timer if it
* is not the actual idle state.
*/
spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
for (q = 0; q < local->hw.queues; q++) {
if (local->queue_stop_reasons[q]) {
spin_unlock_irqrestore(&local->queue_stop_reason_lock,
flags);
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(
local->hw.conf.dynamic_ps_timeout));
return;
}
}
spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
}
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) &&
!(ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) {
if (drv_tx_frames_pending(local)) {
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(
local->hw.conf.dynamic_ps_timeout));
} else {
ieee80211_send_nullfunc(local, sdata, true);
/* Flush to get the tx status of nullfunc frame */
ieee80211_flush_queues(local, sdata, false);
}
}
if (!(ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) &&
ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) ||
(ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) {
ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
local->hw.conf.flags |= IEEE80211_CONF_PS;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
}
}
void ieee80211_dynamic_ps_timer(struct timer_list *t)
{
struct ieee80211_local *local = from_timer(local, t, dynamic_ps_timer);
wiphy_work_queue(local->hw.wiphy, &local->dynamic_ps_enable_work);
}
void ieee80211_dfs_cac_timer_work(struct wiphy *wiphy, struct wiphy_work *work)
{
struct ieee80211_link_data *link =
container_of(work, struct ieee80211_link_data,
dfs_cac_timer_work.work);
struct cfg80211_chan_def chandef = link->conf->chanreq.oper;
struct ieee80211_sub_if_data *sdata = link->sdata;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (sdata->wdev.cac_started) {
ieee80211_link_release_channel(link);
cfg80211_cac_event(sdata->dev, &chandef,
NL80211_RADAR_CAC_FINISHED,
GFP_KERNEL);
}
}
static bool
__ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
bool ret = false;
int ac;
if (local->hw.queues < IEEE80211_NUM_ACS)
return false;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac];
int non_acm_ac;
unsigned long now = jiffies;
if (tx_tspec->action == TX_TSPEC_ACTION_NONE &&
tx_tspec->admitted_time &&
time_after(now, tx_tspec->time_slice_start + HZ)) {
tx_tspec->consumed_tx_time = 0;
tx_tspec->time_slice_start = now;
if (tx_tspec->downgraded)
tx_tspec->action =
TX_TSPEC_ACTION_STOP_DOWNGRADE;
}
switch (tx_tspec->action) {
case TX_TSPEC_ACTION_STOP_DOWNGRADE:
/* take the original parameters */
if (drv_conf_tx(local, &sdata->deflink, ac,
&sdata->deflink.tx_conf[ac]))
link_err(&sdata->deflink,
"failed to set TX queue parameters for queue %d\n",
ac);
tx_tspec->action = TX_TSPEC_ACTION_NONE;
tx_tspec->downgraded = false;
ret = true;
break;
case TX_TSPEC_ACTION_DOWNGRADE:
if (time_after(now, tx_tspec->time_slice_start + HZ)) {
tx_tspec->action = TX_TSPEC_ACTION_NONE;
ret = true;
break;
}
/* downgrade next lower non-ACM AC */
for (non_acm_ac = ac + 1;
non_acm_ac < IEEE80211_NUM_ACS;
non_acm_ac++)
if (!(sdata->wmm_acm & BIT(7 - 2 * non_acm_ac)))
break;
/* Usually the loop will result in using BK even if it
* requires admission control, but such a configuration
* makes no sense and we have to transmit somehow - the
* AC selection does the same thing.
* If we started out trying to downgrade from BK, then
* the extra condition here might be needed.
*/
if (non_acm_ac >= IEEE80211_NUM_ACS)
non_acm_ac = IEEE80211_AC_BK;
if (drv_conf_tx(local, &sdata->deflink, ac,
&sdata->deflink.tx_conf[non_acm_ac]))
link_err(&sdata->deflink,
"failed to set TX queue parameters for queue %d\n",
ac);
tx_tspec->action = TX_TSPEC_ACTION_NONE;
ret = true;
wiphy_delayed_work_queue(local->hw.wiphy,
&ifmgd->tx_tspec_wk,
tx_tspec->time_slice_start +
HZ - now + 1);
break;
case TX_TSPEC_ACTION_NONE:
/* nothing now */
break;
}
}
return ret;
}
void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata)
{
if (__ieee80211_sta_handle_tspec_ac_params(sdata))
ieee80211_link_info_change_notify(sdata, &sdata->deflink,
BSS_CHANGED_QOS);
}
static void ieee80211_sta_handle_tspec_ac_params_wk(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata;
sdata = container_of(work, struct ieee80211_sub_if_data,
u.mgd.tx_tspec_wk.work);
ieee80211_sta_handle_tspec_ac_params(sdata);
}
void ieee80211_mgd_set_link_qos_params(struct ieee80211_link_data *link)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_tx_queue_params *params = link->tx_conf;
u8 ac;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
mlme_dbg(sdata,
"WMM AC=%d acm=%d aifs=%d cWmin=%d cWmax=%d txop=%d uapsd=%d, downgraded=%d\n",
ac, params[ac].acm,
params[ac].aifs, params[ac].cw_min, params[ac].cw_max,
params[ac].txop, params[ac].uapsd,
ifmgd->tx_tspec[ac].downgraded);
if (!ifmgd->tx_tspec[ac].downgraded &&
drv_conf_tx(local, link, ac, &params[ac]))
link_err(link,
"failed to set TX queue parameters for AC %d\n",
ac);
}
}
/* MLME */
static bool
ieee80211_sta_wmm_params(struct ieee80211_local *local,
struct ieee80211_link_data *link,
const u8 *wmm_param, size_t wmm_param_len,
const struct ieee80211_mu_edca_param_set *mu_edca)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_tx_queue_params params[IEEE80211_NUM_ACS];
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
size_t left;
int count, mu_edca_count, ac;
const u8 *pos;
u8 uapsd_queues = 0;
if (!local->ops->conf_tx)
return false;
if (local->hw.queues < IEEE80211_NUM_ACS)
return false;
if (!wmm_param)
return false;
if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
return false;
if (ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
uapsd_queues = ifmgd->uapsd_queues;
count = wmm_param[6] & 0x0f;
/* -1 is the initial value of ifmgd->mu_edca_last_param_set.
* if mu_edca was preset before and now it disappeared tell
* the driver about it.
*/
mu_edca_count = mu_edca ? mu_edca->mu_qos_info & 0x0f : -1;
if (count == link->u.mgd.wmm_last_param_set &&
mu_edca_count == link->u.mgd.mu_edca_last_param_set)
return false;
link->u.mgd.wmm_last_param_set = count;
link->u.mgd.mu_edca_last_param_set = mu_edca_count;
pos = wmm_param + 8;
left = wmm_param_len - 8;
memset(&params, 0, sizeof(params));
sdata->wmm_acm = 0;
for (; left >= 4; left -= 4, pos += 4) {
int aci = (pos[0] >> 5) & 0x03;
int acm = (pos[0] >> 4) & 0x01;
bool uapsd = false;
switch (aci) {
case 1: /* AC_BK */
ac = IEEE80211_AC_BK;
if (acm)
sdata->wmm_acm |= BIT(1) | BIT(2); /* BK/- */
if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
uapsd = true;
params[ac].mu_edca = !!mu_edca;
if (mu_edca)
params[ac].mu_edca_param_rec = mu_edca->ac_bk;
break;
case 2: /* AC_VI */
ac = IEEE80211_AC_VI;
if (acm)
sdata->wmm_acm |= BIT(4) | BIT(5); /* CL/VI */
if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
uapsd = true;
params[ac].mu_edca = !!mu_edca;
if (mu_edca)
params[ac].mu_edca_param_rec = mu_edca->ac_vi;
break;
case 3: /* AC_VO */
ac = IEEE80211_AC_VO;
if (acm)
sdata->wmm_acm |= BIT(6) | BIT(7); /* VO/NC */
if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
uapsd = true;
params[ac].mu_edca = !!mu_edca;
if (mu_edca)
params[ac].mu_edca_param_rec = mu_edca->ac_vo;
break;
case 0: /* AC_BE */
default:
ac = IEEE80211_AC_BE;
if (acm)
sdata->wmm_acm |= BIT(0) | BIT(3); /* BE/EE */
if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
uapsd = true;
params[ac].mu_edca = !!mu_edca;
if (mu_edca)
params[ac].mu_edca_param_rec = mu_edca->ac_be;
break;
}
params[ac].aifs = pos[0] & 0x0f;
if (params[ac].aifs < 2) {
link_info(link,
"AP has invalid WMM params (AIFSN=%d for ACI %d), will use 2\n",
params[ac].aifs, aci);
params[ac].aifs = 2;
}
params[ac].cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
params[ac].cw_min = ecw2cw(pos[1] & 0x0f);
params[ac].txop = get_unaligned_le16(pos + 2);
params[ac].acm = acm;
params[ac].uapsd = uapsd;
if (params[ac].cw_min == 0 ||
params[ac].cw_min > params[ac].cw_max) {
link_info(link,
"AP has invalid WMM params (CWmin/max=%d/%d for ACI %d), using defaults\n",
params[ac].cw_min, params[ac].cw_max, aci);
return false;
}
ieee80211_regulatory_limit_wmm_params(sdata, &params[ac], ac);
}
/* WMM specification requires all 4 ACIs. */
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
if (params[ac].cw_min == 0) {
link_info(link,
"AP has invalid WMM params (missing AC %d), using defaults\n",
ac);
return false;
}
}
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
link->tx_conf[ac] = params[ac];
ieee80211_mgd_set_link_qos_params(link);
/* enable WMM or activate new settings */
link->conf->qos = true;
return true;
}
static void __ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata)
{
lockdep_assert_wiphy(sdata->local->hw.wiphy);
sdata->u.mgd.flags &= ~IEEE80211_STA_CONNECTION_POLL;
ieee80211_run_deferred_scan(sdata->local);
}
static void ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata)
{
lockdep_assert_wiphy(sdata->local->hw.wiphy);
__ieee80211_stop_poll(sdata);
}
static u64 ieee80211_handle_bss_capability(struct ieee80211_link_data *link,
u16 capab, bool erp_valid, u8 erp)
{
struct ieee80211_bss_conf *bss_conf = link->conf;
struct ieee80211_supported_band *sband;
u64 changed = 0;
bool use_protection;
bool use_short_preamble;
bool use_short_slot;
sband = ieee80211_get_link_sband(link);
if (!sband)
return changed;
if (erp_valid) {
use_protection = (erp & WLAN_ERP_USE_PROTECTION) != 0;
use_short_preamble = (erp & WLAN_ERP_BARKER_PREAMBLE) == 0;
} else {
use_protection = false;
use_short_preamble = !!(capab & WLAN_CAPABILITY_SHORT_PREAMBLE);
}
use_short_slot = !!(capab & WLAN_CAPABILITY_SHORT_SLOT_TIME);
if (sband->band == NL80211_BAND_5GHZ ||
sband->band == NL80211_BAND_6GHZ)
use_short_slot = true;
if (use_protection != bss_conf->use_cts_prot) {
bss_conf->use_cts_prot = use_protection;
changed |= BSS_CHANGED_ERP_CTS_PROT;
}
if (use_short_preamble != bss_conf->use_short_preamble) {
bss_conf->use_short_preamble = use_short_preamble;
changed |= BSS_CHANGED_ERP_PREAMBLE;
}
if (use_short_slot != bss_conf->use_short_slot) {
bss_conf->use_short_slot = use_short_slot;
changed |= BSS_CHANGED_ERP_SLOT;
}
return changed;
}
static u64 ieee80211_link_set_associated(struct ieee80211_link_data *link,
struct cfg80211_bss *cbss)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_bss_conf *bss_conf = link->conf;
struct ieee80211_bss *bss = (void *)cbss->priv;
u64 changed = BSS_CHANGED_QOS;
/* not really used in MLO */
sdata->u.mgd.beacon_timeout =
usecs_to_jiffies(ieee80211_tu_to_usec(beacon_loss_count *
bss_conf->beacon_int));
changed |= ieee80211_handle_bss_capability(link,
bss_conf->assoc_capability,
bss->has_erp_value,
bss->erp_value);
ieee80211_check_rate_mask(link);
link->u.mgd.bss = cbss;
memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN);
if (sdata->vif.p2p ||
sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
ies = rcu_dereference(cbss->ies);
if (ies) {
int ret;
ret = cfg80211_get_p2p_attr(
ies->data, ies->len,
IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
(u8 *) &bss_conf->p2p_noa_attr,
sizeof(bss_conf->p2p_noa_attr));
if (ret >= 2) {
link->u.mgd.p2p_noa_index =
bss_conf->p2p_noa_attr.index;
changed |= BSS_CHANGED_P2P_PS;
}
}
rcu_read_unlock();
}
if (link->u.mgd.have_beacon) {
bss_conf->beacon_rate = bss->beacon_rate;
changed |= BSS_CHANGED_BEACON_INFO;
} else {
bss_conf->beacon_rate = NULL;
}
/* Tell the driver to monitor connection quality (if supported) */
if (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI &&
bss_conf->cqm_rssi_thold)
changed |= BSS_CHANGED_CQM;
return changed;
}
static void ieee80211_set_associated(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgd_assoc_data *assoc_data,
u64 changed[IEEE80211_MLD_MAX_NUM_LINKS])
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg;
u64 vif_changed = BSS_CHANGED_ASSOC;
unsigned int link_id;
lockdep_assert_wiphy(local->hw.wiphy);
sdata->u.mgd.associated = true;
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
struct cfg80211_bss *cbss = assoc_data->link[link_id].bss;
struct ieee80211_link_data *link;
if (!cbss ||
assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS)
continue;
if (ieee80211_vif_is_mld(&sdata->vif) &&
!(ieee80211_vif_usable_links(&sdata->vif) & BIT(link_id)))
continue;
link = sdata_dereference(sdata->link[link_id], sdata);
if (WARN_ON(!link))
return;
changed[link_id] |= ieee80211_link_set_associated(link, cbss);
}
/* just to be sure */
ieee80211_stop_poll(sdata);
ieee80211_led_assoc(local, 1);
vif_cfg->assoc = 1;
/* Enable ARP filtering */
if (vif_cfg->arp_addr_cnt)
vif_changed |= BSS_CHANGED_ARP_FILTER;
if (ieee80211_vif_is_mld(&sdata->vif)) {
for (link_id = 0;
link_id < IEEE80211_MLD_MAX_NUM_LINKS;
link_id++) {
struct ieee80211_link_data *link;
struct cfg80211_bss *cbss = assoc_data->link[link_id].bss;
if (!cbss ||
!(BIT(link_id) &
ieee80211_vif_usable_links(&sdata->vif)) ||
assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS)
continue;
link = sdata_dereference(sdata->link[link_id], sdata);
if (WARN_ON(!link))
return;
ieee80211_link_info_change_notify(sdata, link,
changed[link_id]);
ieee80211_recalc_smps(sdata, link);
}
ieee80211_vif_cfg_change_notify(sdata, vif_changed);
} else {
ieee80211_bss_info_change_notify(sdata,
vif_changed | changed[0]);
}
ieee80211_recalc_ps(local);
/* leave this here to not change ordering in non-MLO cases */
if (!ieee80211_vif_is_mld(&sdata->vif))
ieee80211_recalc_smps(sdata, &sdata->deflink);
ieee80211_recalc_ps_vif(sdata);
netif_carrier_on(sdata->dev);
}
static void ieee80211_set_disassoc(struct ieee80211_sub_if_data *sdata,
u16 stype, u16 reason, bool tx,
u8 *frame_buf)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_local *local = sdata->local;
unsigned int link_id;
u64 changed = 0;
struct ieee80211_prep_tx_info info = {
.subtype = stype,
};
lockdep_assert_wiphy(local->hw.wiphy);
if (WARN_ON_ONCE(tx && !frame_buf))
return;
if (WARN_ON(!ifmgd->associated))
return;
ieee80211_stop_poll(sdata);
ifmgd->associated = false;
/* other links will be destroyed */
sdata->deflink.u.mgd.bss = NULL;
sdata->deflink.smps_mode = IEEE80211_SMPS_OFF;
netif_carrier_off(sdata->dev);
/*
* if we want to get out of ps before disassoc (why?) we have
* to do it before sending disassoc, as otherwise the null-packet
* won't be valid.
*/
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
local->hw.conf.flags &= ~IEEE80211_CONF_PS;
ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
}
local->ps_sdata = NULL;
/* disable per-vif ps */
ieee80211_recalc_ps_vif(sdata);
/* make sure ongoing transmission finishes */
synchronize_net();
/*
* drop any frame before deauth/disassoc, this can be data or
* management frame. Since we are disconnecting, we should not
* insist sending these frames which can take time and delay
* the disconnection and possible the roaming.
*/
if (tx)
ieee80211_flush_queues(local, sdata, true);
/* deauthenticate/disassociate now */
if (tx || frame_buf) {
/*
* In multi channel scenarios guarantee that the virtual
* interface is granted immediate airtime to transmit the
* deauthentication frame by calling mgd_prepare_tx, if the
* driver requested so.
*/
if (ieee80211_hw_check(&local->hw, DEAUTH_NEED_MGD_TX_PREP)) {
for (link_id = 0; link_id < ARRAY_SIZE(sdata->link);
link_id++) {
struct ieee80211_link_data *link;
link = sdata_dereference(sdata->link[link_id],
sdata);
if (!link)
continue;
if (link->u.mgd.have_beacon)
break;
}
if (link_id == IEEE80211_MLD_MAX_NUM_LINKS) {
info.link_id = ffs(sdata->vif.active_links) - 1;
drv_mgd_prepare_tx(sdata->local, sdata, &info);
}
}
ieee80211_send_deauth_disassoc(sdata, sdata->vif.cfg.ap_addr,
sdata->vif.cfg.ap_addr, stype,
reason, tx, frame_buf);
}
/* flush out frame - make sure the deauth was actually sent */
if (tx)
ieee80211_flush_queues(local, sdata, false);
drv_mgd_complete_tx(sdata->local, sdata, &info);
/* clear AP addr only after building the needed mgmt frames */
eth_zero_addr(sdata->deflink.u.mgd.bssid);
eth_zero_addr(sdata->vif.cfg.ap_addr);
sdata->vif.cfg.ssid_len = 0;
/* remove AP and TDLS peers */
sta_info_flush(sdata);
/* finally reset all BSS / config parameters */
if (!ieee80211_vif_is_mld(&sdata->vif))
changed |= ieee80211_reset_erp_info(sdata);
ieee80211_led_assoc(local, 0);
changed |= BSS_CHANGED_ASSOC;
sdata->vif.cfg.assoc = false;
sdata->deflink.u.mgd.p2p_noa_index = -1;
memset(&sdata->vif.bss_conf.p2p_noa_attr, 0,
sizeof(sdata->vif.bss_conf.p2p_noa_attr));
/* on the next assoc, re-program HT/VHT parameters */
memset(&ifmgd->ht_capa, 0, sizeof(ifmgd->ht_capa));
memset(&ifmgd->ht_capa_mask, 0, sizeof(ifmgd->ht_capa_mask));
memset(&ifmgd->vht_capa, 0, sizeof(ifmgd->vht_capa));
memset(&ifmgd->vht_capa_mask, 0, sizeof(ifmgd->vht_capa_mask));
/*
* reset MU-MIMO ownership and group data in default link,
* if used, other links are destroyed
*/
memset(sdata->vif.bss_conf.mu_group.membership, 0,
sizeof(sdata->vif.bss_conf.mu_group.membership));
memset(sdata->vif.bss_conf.mu_group.position, 0,
sizeof(sdata->vif.bss_conf.mu_group.position));
if (!ieee80211_vif_is_mld(&sdata->vif))
changed |= BSS_CHANGED_MU_GROUPS;
sdata->vif.bss_conf.mu_mimo_owner = false;
sdata->deflink.ap_power_level = IEEE80211_UNSET_POWER_LEVEL;
del_timer_sync(&local->dynamic_ps_timer);
wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work);
/* Disable ARP filtering */
if (sdata->vif.cfg.arp_addr_cnt)
changed |= BSS_CHANGED_ARP_FILTER;
sdata->vif.bss_conf.qos = false;
if (!ieee80211_vif_is_mld(&sdata->vif)) {
changed |= BSS_CHANGED_QOS;
/* The BSSID (not really interesting) and HT changed */
changed |= BSS_CHANGED_BSSID | BSS_CHANGED_HT;
ieee80211_bss_info_change_notify(sdata, changed);
} else {
ieee80211_vif_cfg_change_notify(sdata, changed);
}
/* disassociated - set to defaults now */
ieee80211_set_wmm_default(&sdata->deflink, false, false);
del_timer_sync(&sdata->u.mgd.conn_mon_timer);
del_timer_sync(&sdata->u.mgd.bcn_mon_timer);
del_timer_sync(&sdata->u.mgd.timer);
sdata->vif.bss_conf.dtim_period = 0;
sdata->vif.bss_conf.beacon_rate = NULL;
sdata->deflink.u.mgd.have_beacon = false;
sdata->deflink.u.mgd.tracking_signal_avg = false;
sdata->deflink.u.mgd.disable_wmm_tracking = false;
ifmgd->flags = 0;
for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) {
struct ieee80211_link_data *link;
link = sdata_dereference(sdata->link[link_id], sdata);
if (!link)
continue;
ieee80211_link_release_channel(link);
}
sdata->vif.bss_conf.csa_active = false;
sdata->deflink.u.mgd.csa_waiting_bcn = false;
sdata->deflink.u.mgd.csa_ignored_same_chan = false;
if (sdata->deflink.csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
sdata->deflink.csa_block_tx = false;
}
/* existing TX TSPEC sessions no longer exist */
memset(ifmgd->tx_tspec, 0, sizeof(ifmgd->tx_tspec));
wiphy_delayed_work_cancel(local->hw.wiphy, &ifmgd->tx_tspec_wk);
sdata->vif.bss_conf.power_type = IEEE80211_REG_UNSET_AP;
sdata->vif.bss_conf.pwr_reduction = 0;
sdata->vif.bss_conf.tx_pwr_env_num = 0;
memset(sdata->vif.bss_conf.tx_pwr_env, 0,
sizeof(sdata->vif.bss_conf.tx_pwr_env));
sdata->vif.cfg.eml_cap = 0;
sdata->vif.cfg.eml_med_sync_delay = 0;
sdata->vif.cfg.mld_capa_op = 0;
memset(&sdata->u.mgd.ttlm_info, 0,
sizeof(sdata->u.mgd.ttlm_info));
wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->ttlm_work);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&ifmgd->neg_ttlm_timeout_work);
ieee80211_vif_set_links(sdata, 0, 0);
}
static void ieee80211_reset_ap_probe(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_local *local = sdata->local;
lockdep_assert_wiphy(local->hw.wiphy);
if (!(ifmgd->flags & IEEE80211_STA_CONNECTION_POLL))
return;
__ieee80211_stop_poll(sdata);
ieee80211_recalc_ps(local);
if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR))
return;
/*
* We've received a probe response, but are not sure whether
* we have or will be receiving any beacons or data, so let's
* schedule the timers again, just in case.
*/
ieee80211_sta_reset_beacon_monitor(sdata);
mod_timer(&ifmgd->conn_mon_timer,
round_jiffies_up(jiffies +
IEEE80211_CONNECTION_IDLE_TIME));
}
static void ieee80211_sta_tx_wmm_ac_notify(struct ieee80211_sub_if_data *sdata,
struct ieee80211_hdr *hdr,
u16 tx_time)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u16 tid;
int ac;
struct ieee80211_sta_tx_tspec *tx_tspec;
unsigned long now = jiffies;
if (!ieee80211_is_data_qos(hdr->frame_control))
return;
tid = ieee80211_get_tid(hdr);
ac = ieee80211_ac_from_tid(tid);
tx_tspec = &ifmgd->tx_tspec[ac];
if (likely(!tx_tspec->admitted_time))
return;
if (time_after(now, tx_tspec->time_slice_start + HZ)) {
tx_tspec->consumed_tx_time = 0;
tx_tspec->time_slice_start = now;
if (tx_tspec->downgraded) {
tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE;
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&ifmgd->tx_tspec_wk, 0);
}
}
if (tx_tspec->downgraded)
return;
tx_tspec->consumed_tx_time += tx_time;
if (tx_tspec->consumed_tx_time >= tx_tspec->admitted_time) {
tx_tspec->downgraded = true;
tx_tspec->action = TX_TSPEC_ACTION_DOWNGRADE;
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&ifmgd->tx_tspec_wk, 0);
}
}
void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata,
struct ieee80211_hdr *hdr, bool ack, u16 tx_time)
{
ieee80211_sta_tx_wmm_ac_notify(sdata, hdr, tx_time);
if (!ieee80211_is_any_nullfunc(hdr->frame_control) ||
!sdata->u.mgd.probe_send_count)
return;
if (ack)
sdata->u.mgd.probe_send_count = 0;
else
sdata->u.mgd.nullfunc_failed = true;
wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work);
}
static void ieee80211_mlme_send_probe_req(struct ieee80211_sub_if_data *sdata,
const u8 *src, const u8 *dst,
const u8 *ssid, size_t ssid_len,
struct ieee80211_channel *channel)
{
struct sk_buff *skb;
skb = ieee80211_build_probe_req(sdata, src, dst, (u32)-1, channel,
ssid, ssid_len, NULL, 0,
IEEE80211_PROBE_FLAG_DIRECTED);
if (skb)
ieee80211_tx_skb(sdata, skb);
}
static void ieee80211_mgd_probe_ap_send(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u8 *dst = sdata->vif.cfg.ap_addr;
u8 unicast_limit = max(1, max_probe_tries - 3);
struct sta_info *sta;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif)))
return;
/*
* Try sending broadcast probe requests for the last three
* probe requests after the first ones failed since some
* buggy APs only support broadcast probe requests.
*/
if (ifmgd->probe_send_count >= unicast_limit)
dst = NULL;
/*
* When the hardware reports an accurate Tx ACK status, it's
* better to send a nullfunc frame instead of a probe request,
* as it will kick us off the AP quickly if we aren't associated
* anymore. The timeout will be reset if the frame is ACKed by
* the AP.
*/
ifmgd->probe_send_count++;
if (dst) {
sta = sta_info_get(sdata, dst);
if (!WARN_ON(!sta))
ieee80211_check_fast_rx(sta);
}
if (ieee80211_hw_check(&sdata->local->hw, REPORTS_TX_ACK_STATUS)) {
ifmgd->nullfunc_failed = false;
ieee80211_send_nullfunc(sdata->local, sdata, false);
} else {
ieee80211_mlme_send_probe_req(sdata, sdata->vif.addr, dst,
sdata->vif.cfg.ssid,
sdata->vif.cfg.ssid_len,
sdata->deflink.u.mgd.bss->channel);
}
ifmgd->probe_timeout = jiffies + msecs_to_jiffies(probe_wait_ms);
run_again(sdata, ifmgd->probe_timeout);
}
static void ieee80211_mgd_probe_ap(struct ieee80211_sub_if_data *sdata,
bool beacon)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
bool already = false;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (WARN_ON_ONCE(ieee80211_vif_is_mld(&sdata->vif)))
return;
if (!ieee80211_sdata_running(sdata))
return;
if (!ifmgd->associated)
return;
if (sdata->local->tmp_channel || sdata->local->scanning)
return;
if (sdata->local->suspending) {
/* reschedule after resume */
ieee80211_reset_ap_probe(sdata);
return;
}
if (beacon) {
mlme_dbg_ratelimited(sdata,
"detected beacon loss from AP (missed %d beacons) - probing\n",
beacon_loss_count);
ieee80211_cqm_beacon_loss_notify(&sdata->vif, GFP_KERNEL);
}
/*
* The driver/our work has already reported this event or the
* connection monitoring has kicked in and we have already sent
* a probe request. Or maybe the AP died and the driver keeps
* reporting until we disassociate...
*
* In either case we have to ignore the current call to this
* function (except for setting the correct probe reason bit)
* because otherwise we would reset the timer every time and
* never check whether we received a probe response!
*/
if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL)
already = true;
ifmgd->flags |= IEEE80211_STA_CONNECTION_POLL;
if (already)
return;
ieee80211_recalc_ps(sdata->local);
ifmgd->probe_send_count = 0;
ieee80211_mgd_probe_ap_send(sdata);
}
struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct cfg80211_bss *cbss;
struct sk_buff *skb;
const struct element *ssid;
int ssid_len;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION ||
ieee80211_vif_is_mld(&sdata->vif)))
return NULL;
if (ifmgd->associated)
cbss = sdata->deflink.u.mgd.bss;
else if (ifmgd->auth_data)
cbss = ifmgd->auth_data->bss;
else if (ifmgd->assoc_data && ifmgd->assoc_data->link[0].bss)
cbss = ifmgd->assoc_data->link[0].bss;
else
return NULL;
rcu_read_lock();
ssid = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID);
if (WARN_ONCE(!ssid || ssid->datalen > IEEE80211_MAX_SSID_LEN,
"invalid SSID element (len=%d)",
ssid ? ssid->datalen : -1))
ssid_len = 0;
else
ssid_len = ssid->datalen;
skb = ieee80211_build_probe_req(sdata, sdata->vif.addr, cbss->bssid,
(u32) -1, cbss->channel,
ssid->data, ssid_len,
NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED);
rcu_read_unlock();
return skb;
}
EXPORT_SYMBOL(ieee80211_ap_probereq_get);
static void ieee80211_report_disconnect(struct ieee80211_sub_if_data *sdata,
const u8 *buf, size_t len, bool tx,
u16 reason, bool reconnect)
{
struct ieee80211_event event = {
.type = MLME_EVENT,
.u.mlme.data = tx ? DEAUTH_TX_EVENT : DEAUTH_RX_EVENT,
.u.mlme.reason = reason,
};
if (tx)
cfg80211_tx_mlme_mgmt(sdata->dev, buf, len, reconnect);
else
cfg80211_rx_mlme_mgmt(sdata->dev, buf, len);
drv_event_callback(sdata->local, sdata, &event);
}
static void __ieee80211_disconnect(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
bool tx;
lockdep_assert_wiphy(local->hw.wiphy);
if (!ifmgd->associated)
return;
/* in MLO assume we have a link where we can TX the frame */
tx = ieee80211_vif_is_mld(&sdata->vif) ||
!sdata->deflink.csa_block_tx;
if (!ifmgd->driver_disconnect) {
unsigned int link_id;
/*
* AP is probably out of range (or not reachable for another
* reason) so remove the bss structs for that AP. In the case
* of multi-link, it's not clear that all of them really are
* out of range, but if they weren't the driver likely would
* have switched to just have a single link active?
*/
for (link_id = 0;
link_id < ARRAY_SIZE(sdata->link);
link_id++) {
struct ieee80211_link_data *link;
link = sdata_dereference(sdata->link[link_id], sdata);
if (!link)
continue;
cfg80211_unlink_bss(local->hw.wiphy, link->u.mgd.bss);
link->u.mgd.bss = NULL;
}
}
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH,
ifmgd->driver_disconnect ?
WLAN_REASON_DEAUTH_LEAVING :
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY,
tx, frame_buf);
/* the other links will be destroyed */
sdata->vif.bss_conf.csa_active = false;
sdata->deflink.u.mgd.csa_waiting_bcn = false;
if (sdata->deflink.csa_block_tx) {
ieee80211_wake_vif_queues(local, sdata,
IEEE80211_QUEUE_STOP_REASON_CSA);
sdata->deflink.csa_block_tx = false;
}
ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), tx,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY,
ifmgd->reconnect);
ifmgd->reconnect = false;
}
static void ieee80211_beacon_connection_loss_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.beacon_connection_loss_work);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
if (ifmgd->connection_loss) {
sdata_info(sdata, "Connection to AP %pM lost\n",
sdata->vif.cfg.ap_addr);
__ieee80211_disconnect(sdata);
ifmgd->connection_loss = false;
} else if (ifmgd->driver_disconnect) {
sdata_info(sdata,
"Driver requested disconnection from AP %pM\n",
sdata->vif.cfg.ap_addr);
__ieee80211_disconnect(sdata);
ifmgd->driver_disconnect = false;
} else {
if (ifmgd->associated)
sdata->deflink.u.mgd.beacon_loss_count++;
ieee80211_mgd_probe_ap(sdata, true);
}
}
static void ieee80211_csa_connection_drop_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.csa_connection_drop_work);
__ieee80211_disconnect(sdata);
}
void ieee80211_beacon_loss(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_hw *hw = &sdata->local->hw;
trace_api_beacon_loss(sdata);
sdata->u.mgd.connection_loss = false;
wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work);
}
EXPORT_SYMBOL(ieee80211_beacon_loss);
void ieee80211_connection_loss(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_hw *hw = &sdata->local->hw;
trace_api_connection_loss(sdata);
sdata->u.mgd.connection_loss = true;
wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work);
}
EXPORT_SYMBOL(ieee80211_connection_loss);
void ieee80211_disconnect(struct ieee80211_vif *vif, bool reconnect)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_hw *hw = &sdata->local->hw;
trace_api_disconnect(sdata, reconnect);
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
sdata->u.mgd.driver_disconnect = true;
sdata->u.mgd.reconnect = reconnect;
wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work);
}
EXPORT_SYMBOL(ieee80211_disconnect);
static void ieee80211_destroy_auth_data(struct ieee80211_sub_if_data *sdata,
bool assoc)
{
struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (!assoc) {
/*
* we are not authenticated yet, the only timer that could be
* running is the timeout for the authentication response which
* which is not relevant anymore.
*/
del_timer_sync(&sdata->u.mgd.timer);
sta_info_destroy_addr(sdata, auth_data->ap_addr);
/* other links are destroyed */
eth_zero_addr(sdata->deflink.u.mgd.bssid);
ieee80211_link_info_change_notify(sdata, &sdata->deflink,
BSS_CHANGED_BSSID);
sdata->u.mgd.flags = 0;
ieee80211_link_release_channel(&sdata->deflink);
ieee80211_vif_set_links(sdata, 0, 0);
}
cfg80211_put_bss(sdata->local->hw.wiphy, auth_data->bss);
kfree(auth_data);
sdata->u.mgd.auth_data = NULL;
}
enum assoc_status {
ASSOC_SUCCESS,
ASSOC_REJECTED,
ASSOC_TIMEOUT,
ASSOC_ABANDON,
};
static void ieee80211_destroy_assoc_data(struct ieee80211_sub_if_data *sdata,
enum assoc_status status)
{
struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (status != ASSOC_SUCCESS) {
/*
* we are not associated yet, the only timer that could be
* running is the timeout for the association response which
* which is not relevant anymore.
*/
del_timer_sync(&sdata->u.mgd.timer);
sta_info_destroy_addr(sdata, assoc_data->ap_addr);
eth_zero_addr(sdata->deflink.u.mgd.bssid);
ieee80211_link_info_change_notify(sdata, &sdata->deflink,
BSS_CHANGED_BSSID);
sdata->u.mgd.flags = 0;
sdata->vif.bss_conf.mu_mimo_owner = false;
if (status != ASSOC_REJECTED) {
struct cfg80211_assoc_failure data = {
.timeout = status == ASSOC_TIMEOUT,
};
int i;
BUILD_BUG_ON(ARRAY_SIZE(data.bss) !=
ARRAY_SIZE(assoc_data->link));
for (i = 0; i < ARRAY_SIZE(data.bss); i++)
data.bss[i] = assoc_data->link[i].bss;
if (ieee80211_vif_is_mld(&sdata->vif))
data.ap_mld_addr = assoc_data->ap_addr;
cfg80211_assoc_failure(sdata->dev, &data);
}
ieee80211_link_release_channel(&sdata->deflink);
ieee80211_vif_set_links(sdata, 0, 0);
}
kfree(assoc_data);
sdata->u.mgd.assoc_data = NULL;
}
static void ieee80211_auth_challenge(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data;
const struct element *challenge;
u8 *pos;
u32 tx_flags = 0;
struct ieee80211_prep_tx_info info = {
.subtype = IEEE80211_STYPE_AUTH,
.link_id = auth_data->link_id,
};
pos = mgmt->u.auth.variable;
challenge = cfg80211_find_elem(WLAN_EID_CHALLENGE, pos,
len - (pos - (u8 *)mgmt));
if (!challenge)
return;
auth_data->expected_transaction = 4;
drv_mgd_prepare_tx(sdata->local, sdata, &info);
if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_MLME_CONN_TX;
ieee80211_send_auth(sdata, 3, auth_data->algorithm, 0,
(void *)challenge,
challenge->datalen + sizeof(*challenge),
auth_data->ap_addr, auth_data->ap_addr,
auth_data->key, auth_data->key_len,
auth_data->key_idx, tx_flags);
}
static bool ieee80211_mark_sta_auth(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
const u8 *ap_addr = ifmgd->auth_data->ap_addr;
struct sta_info *sta;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
sdata_info(sdata, "authenticated\n");
ifmgd->auth_data->done = true;
ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_ASSOC;
ifmgd->auth_data->timeout_started = true;
run_again(sdata, ifmgd->auth_data->timeout);
/* move station state to auth */
sta = sta_info_get(sdata, ap_addr);
if (!sta) {
WARN_ONCE(1, "%s: STA %pM not found", sdata->name, ap_addr);
return false;
}
if (sta_info_move_state(sta, IEEE80211_STA_AUTH)) {
sdata_info(sdata, "failed moving %pM to auth\n", ap_addr);
return false;
}
return true;
}
static void ieee80211_rx_mgmt_auth(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u16 auth_alg, auth_transaction, status_code;
struct ieee80211_event event = {
.type = MLME_EVENT,
.u.mlme.data = AUTH_EVENT,
};
struct ieee80211_prep_tx_info info = {
.subtype = IEEE80211_STYPE_AUTH,
};
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (len < 24 + 6)
return;
if (!ifmgd->auth_data || ifmgd->auth_data->done)
return;
if (!ether_addr_equal(ifmgd->auth_data->ap_addr, mgmt->bssid))
return;
auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
status_code = le16_to_cpu(mgmt->u.auth.status_code);
if (auth_alg != ifmgd->auth_data->algorithm ||
(auth_alg != WLAN_AUTH_SAE &&
auth_transaction != ifmgd->auth_data->expected_transaction) ||
(auth_alg == WLAN_AUTH_SAE &&
(auth_transaction < ifmgd->auth_data->expected_transaction ||
auth_transaction > 2))) {
sdata_info(sdata, "%pM unexpected authentication state: alg %d (expected %d) transact %d (expected %d)\n",
mgmt->sa, auth_alg, ifmgd->auth_data->algorithm,
auth_transaction,
ifmgd->auth_data->expected_transaction);
goto notify_driver;
}
if (status_code != WLAN_STATUS_SUCCESS) {
cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len);
if (auth_alg == WLAN_AUTH_SAE &&
(status_code == WLAN_STATUS_ANTI_CLOG_REQUIRED ||
(auth_transaction == 1 &&
(status_code == WLAN_STATUS_SAE_HASH_TO_ELEMENT ||
status_code == WLAN_STATUS_SAE_PK)))) {
/* waiting for userspace now */
ifmgd->auth_data->waiting = true;
ifmgd->auth_data->timeout =
jiffies + IEEE80211_AUTH_WAIT_SAE_RETRY;
ifmgd->auth_data->timeout_started = true;
run_again(sdata, ifmgd->auth_data->timeout);
goto notify_driver;
}
sdata_info(sdata, "%pM denied authentication (status %d)\n",
mgmt->sa, status_code);
ieee80211_destroy_auth_data(sdata, false);
event.u.mlme.status = MLME_DENIED;
event.u.mlme.reason = status_code;
drv_event_callback(sdata->local, sdata, &event);
goto notify_driver;
}
switch (ifmgd->auth_data->algorithm) {
case WLAN_AUTH_OPEN:
case WLAN_AUTH_LEAP:
case WLAN_AUTH_FT:
case WLAN_AUTH_SAE:
case WLAN_AUTH_FILS_SK:
case WLAN_AUTH_FILS_SK_PFS:
case WLAN_AUTH_FILS_PK:
break;
case WLAN_AUTH_SHARED_KEY:
if (ifmgd->auth_data->expected_transaction != 4) {
ieee80211_auth_challenge(sdata, mgmt, len);
/* need another frame */
return;
}
break;
default:
WARN_ONCE(1, "invalid auth alg %d",
ifmgd->auth_data->algorithm);
goto notify_driver;
}
event.u.mlme.status = MLME_SUCCESS;
info.success = 1;
drv_event_callback(sdata->local, sdata, &event);
if (ifmgd->auth_data->algorithm != WLAN_AUTH_SAE ||
(auth_transaction == 2 &&
ifmgd->auth_data->expected_transaction == 2)) {
if (!ieee80211_mark_sta_auth(sdata))
return; /* ignore frame -- wait for timeout */
} else if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE &&
auth_transaction == 2) {
sdata_info(sdata, "SAE peer confirmed\n");
ifmgd->auth_data->peer_confirmed = true;
}
cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len);
notify_driver:
drv_mgd_complete_tx(sdata->local, sdata, &info);
}
#define case_WLAN(type) \
case WLAN_REASON_##type: return #type
const char *ieee80211_get_reason_code_string(u16 reason_code)
{
switch (reason_code) {
case_WLAN(UNSPECIFIED);
case_WLAN(PREV_AUTH_NOT_VALID);
case_WLAN(DEAUTH_LEAVING);
case_WLAN(DISASSOC_DUE_TO_INACTIVITY);
case_WLAN(DISASSOC_AP_BUSY);
case_WLAN(CLASS2_FRAME_FROM_NONAUTH_STA);
case_WLAN(CLASS3_FRAME_FROM_NONASSOC_STA);
case_WLAN(DISASSOC_STA_HAS_LEFT);
case_WLAN(STA_REQ_ASSOC_WITHOUT_AUTH);
case_WLAN(DISASSOC_BAD_POWER);
case_WLAN(DISASSOC_BAD_SUPP_CHAN);
case_WLAN(INVALID_IE);
case_WLAN(MIC_FAILURE);
case_WLAN(4WAY_HANDSHAKE_TIMEOUT);
case_WLAN(GROUP_KEY_HANDSHAKE_TIMEOUT);
case_WLAN(IE_DIFFERENT);
case_WLAN(INVALID_GROUP_CIPHER);
case_WLAN(INVALID_PAIRWISE_CIPHER);
case_WLAN(INVALID_AKMP);
case_WLAN(UNSUPP_RSN_VERSION);
case_WLAN(INVALID_RSN_IE_CAP);
case_WLAN(IEEE8021X_FAILED);
case_WLAN(CIPHER_SUITE_REJECTED);
case_WLAN(DISASSOC_UNSPECIFIED_QOS);
case_WLAN(DISASSOC_QAP_NO_BANDWIDTH);
case_WLAN(DISASSOC_LOW_ACK);
case_WLAN(DISASSOC_QAP_EXCEED_TXOP);
case_WLAN(QSTA_LEAVE_QBSS);
case_WLAN(QSTA_NOT_USE);
case_WLAN(QSTA_REQUIRE_SETUP);
case_WLAN(QSTA_TIMEOUT);
case_WLAN(QSTA_CIPHER_NOT_SUPP);
case_WLAN(MESH_PEER_CANCELED);
case_WLAN(MESH_MAX_PEERS);
case_WLAN(MESH_CONFIG);
case_WLAN(MESH_CLOSE);
case_WLAN(MESH_MAX_RETRIES);
case_WLAN(MESH_CONFIRM_TIMEOUT);
case_WLAN(MESH_INVALID_GTK);
case_WLAN(MESH_INCONSISTENT_PARAM);
case_WLAN(MESH_INVALID_SECURITY);
case_WLAN(MESH_PATH_ERROR);
case_WLAN(MESH_PATH_NOFORWARD);
case_WLAN(MESH_PATH_DEST_UNREACHABLE);
case_WLAN(MAC_EXISTS_IN_MBSS);
case_WLAN(MESH_CHAN_REGULATORY);
case_WLAN(MESH_CHAN);
default: return "<unknown>";
}
}
static void ieee80211_rx_mgmt_deauth(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (len < 24 + 2)
return;
if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) {
ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code);
return;
}
if (ifmgd->associated &&
ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) {
sdata_info(sdata, "deauthenticated from %pM (Reason: %u=%s)\n",
sdata->vif.cfg.ap_addr, reason_code,
ieee80211_get_reason_code_string(reason_code));
ieee80211_set_disassoc(sdata, 0, 0, false, NULL);
ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false,
reason_code, false);
return;
}
if (ifmgd->assoc_data &&
ether_addr_equal(mgmt->bssid, ifmgd->assoc_data->ap_addr)) {
sdata_info(sdata,
"deauthenticated from %pM while associating (Reason: %u=%s)\n",
ifmgd->assoc_data->ap_addr, reason_code,
ieee80211_get_reason_code_string(reason_code));
ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON);
cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len);
return;
}
}
static void ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u16 reason_code;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (len < 24 + 2)
return;
if (!ifmgd->associated ||
!ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr))
return;
reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) {
ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code);
return;
}
sdata_info(sdata, "disassociated from %pM (Reason: %u=%s)\n",
sdata->vif.cfg.ap_addr, reason_code,
ieee80211_get_reason_code_string(reason_code));
ieee80211_set_disassoc(sdata, 0, 0, false, NULL);
ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code,
false);
}
static void ieee80211_get_rates(struct ieee80211_supported_band *sband,
u8 *supp_rates, unsigned int supp_rates_len,
u32 *rates, u32 *basic_rates,
bool *have_higher_than_11mbit,
int *min_rate, int *min_rate_index)
{
int i, j;
for (i = 0; i < supp_rates_len; i++) {
int rate = supp_rates[i] & 0x7f;
bool is_basic = !!(supp_rates[i] & 0x80);
if ((rate * 5) > 110)
*have_higher_than_11mbit = true;
/*
* Skip HT, VHT, HE, EHT and SAE H2E only BSS membership
* selectors since they're not rates.
*
* Note: Even though the membership selector and the basic
* rate flag share the same bit, they are not exactly
* the same.
*/
if (supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_HT_PHY) ||
supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_VHT_PHY) ||
supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_HE_PHY) ||
supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_EHT_PHY) ||
supp_rates[i] == (0x80 | BSS_MEMBERSHIP_SELECTOR_SAE_H2E))
continue;
for (j = 0; j < sband->n_bitrates; j++) {
struct ieee80211_rate *br;
int brate;
br = &sband->bitrates[j];
brate = DIV_ROUND_UP(br->bitrate, 5);
if (brate == rate) {
*rates |= BIT(j);
if (is_basic)
*basic_rates |= BIT(j);
if ((rate * 5) < *min_rate) {
*min_rate = rate * 5;
*min_rate_index = j;
}
break;
}
}
}
}
static bool ieee80211_twt_req_supported(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
const struct link_sta_info *link_sta,
const struct ieee802_11_elems *elems)
{
const struct ieee80211_sta_he_cap *own_he_cap =
ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
if (elems->ext_capab_len < 10)
return false;
if (!(elems->ext_capab[9] & WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT))
return false;
return link_sta->pub->he_cap.he_cap_elem.mac_cap_info[0] &
IEEE80211_HE_MAC_CAP0_TWT_RES &&
own_he_cap &&
(own_he_cap->he_cap_elem.mac_cap_info[0] &
IEEE80211_HE_MAC_CAP0_TWT_REQ);
}
static u64 ieee80211_recalc_twt_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
struct ieee80211_link_data *link,
struct link_sta_info *link_sta,
struct ieee802_11_elems *elems)
{
bool twt = ieee80211_twt_req_supported(sdata, sband, link_sta, elems);
if (link->conf->twt_requester != twt) {
link->conf->twt_requester = twt;
return BSS_CHANGED_TWT;
}
return 0;
}
static bool ieee80211_twt_bcast_support(struct ieee80211_sub_if_data *sdata,
struct ieee80211_bss_conf *bss_conf,
struct ieee80211_supported_band *sband,
struct link_sta_info *link_sta)
{
const struct ieee80211_sta_he_cap *own_he_cap =
ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
return bss_conf->he_support &&
(link_sta->pub->he_cap.he_cap_elem.mac_cap_info[2] &
IEEE80211_HE_MAC_CAP2_BCAST_TWT) &&
own_he_cap &&
(own_he_cap->he_cap_elem.mac_cap_info[2] &
IEEE80211_HE_MAC_CAP2_BCAST_TWT);
}
static bool ieee80211_assoc_config_link(struct ieee80211_link_data *link,
struct link_sta_info *link_sta,
struct cfg80211_bss *cbss,
struct ieee80211_mgmt *mgmt,
const u8 *elem_start,
unsigned int elem_len,
u64 *changed)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data;
struct ieee80211_bss_conf *bss_conf = link->conf;
struct ieee80211_local *local = sdata->local;
unsigned int link_id = link->link_id;
struct ieee80211_elems_parse_params parse_params = {
.mode = link->u.mgd.conn.mode,
.start = elem_start,
.len = elem_len,
.link_id = link_id == assoc_data->assoc_link_id ? -1 : link_id,
.from_ap = true,
};
bool is_5ghz = cbss->channel->band == NL80211_BAND_5GHZ;
bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ;
bool is_s1g = cbss->channel->band == NL80211_BAND_S1GHZ;
const struct cfg80211_bss_ies *bss_ies = NULL;
struct ieee80211_supported_band *sband;
struct ieee802_11_elems *elems;
const __le16 prof_bss_param_ch_present =
cpu_to_le16(IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT);
u16 capab_info;
bool ret;
elems = ieee802_11_parse_elems_full(&parse_params);
if (!elems)
return false;
if (link_id == assoc_data->assoc_link_id) {
capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
/*
* we should not get to this flow unless the association was
* successful, so set the status directly to success
*/
assoc_data->link[link_id].status = WLAN_STATUS_SUCCESS;
if (elems->ml_basic) {
if (!(elems->ml_basic->control &
cpu_to_le16(IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))) {
ret = false;
goto out;
}
link->u.mgd.bss_param_ch_cnt =
ieee80211_mle_get_bss_param_ch_cnt(elems->ml_basic);
}
} else if (!elems->prof ||
!(elems->prof->control & prof_bss_param_ch_present)) {
ret = false;
goto out;
} else {
const u8 *ptr = elems->prof->variable +
elems->prof->sta_info_len - 1;
/*
* During parsing, we validated that these fields exist,
* otherwise elems->prof would have been set to NULL.
*/
capab_info = get_unaligned_le16(ptr);
assoc_data->link[link_id].status = get_unaligned_le16(ptr + 2);
link->u.mgd.bss_param_ch_cnt =
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(elems->prof);
if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) {
link_info(link, "association response status code=%u\n",
assoc_data->link[link_id].status);
ret = true;
goto out;
}
}
if (!is_s1g && !elems->supp_rates) {
sdata_info(sdata, "no SuppRates element in AssocResp\n");
ret = false;
goto out;
}
link->u.mgd.tdls_chan_switch_prohibited =
elems->ext_capab && elems->ext_capab_len >= 5 &&
(elems->ext_capab[4] & WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED);
/*
* Some APs are erroneously not including some information in their
* (re)association response frames. Try to recover by using the data
* from the beacon or probe response. This seems to afflict mobile
* 2G/3G/4G wifi routers, reported models include the "Onda PN51T",
* "Vodafone PocketWiFi 2", "ZTE MF60" and a similar T-Mobile device.
*/
if (!is_6ghz &&
((assoc_data->wmm && !elems->wmm_param) ||
(link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT &&
(!elems->ht_cap_elem || !elems->ht_operation)) ||
(link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT &&
(!elems->vht_cap_elem || !elems->vht_operation)))) {
const struct cfg80211_bss_ies *ies;
struct ieee802_11_elems *bss_elems;
rcu_read_lock();
ies = rcu_dereference(cbss->ies);
if (ies)
bss_ies = kmemdup(ies, sizeof(*ies) + ies->len,
GFP_ATOMIC);
rcu_read_unlock();
if (!bss_ies) {
ret = false;
goto out;
}
parse_params.start = bss_ies->data;
parse_params.len = bss_ies->len;
parse_params.bss = cbss;
bss_elems = ieee802_11_parse_elems_full(&parse_params);
if (!bss_elems) {
ret = false;
goto out;
}
if (assoc_data->wmm &&
!elems->wmm_param && bss_elems->wmm_param) {
elems->wmm_param = bss_elems->wmm_param;
sdata_info(sdata,
"AP bug: WMM param missing from AssocResp\n");
}
/*
* Also check if we requested HT/VHT, otherwise the AP doesn't
* have to include the IEs in the (re)association response.
*/
if (!elems->ht_cap_elem && bss_elems->ht_cap_elem &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) {
elems->ht_cap_elem = bss_elems->ht_cap_elem;
sdata_info(sdata,
"AP bug: HT capability missing from AssocResp\n");
}
if (!elems->ht_operation && bss_elems->ht_operation &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) {
elems->ht_operation = bss_elems->ht_operation;
sdata_info(sdata,
"AP bug: HT operation missing from AssocResp\n");
}
if (!elems->vht_cap_elem && bss_elems->vht_cap_elem &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) {
elems->vht_cap_elem = bss_elems->vht_cap_elem;
sdata_info(sdata,
"AP bug: VHT capa missing from AssocResp\n");
}
if (!elems->vht_operation && bss_elems->vht_operation &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) {
elems->vht_operation = bss_elems->vht_operation;
sdata_info(sdata,
"AP bug: VHT operation missing from AssocResp\n");
}
kfree(bss_elems);
}
/*
* We previously checked these in the beacon/probe response, so
* they should be present here. This is just a safety net.
* Note that the ieee80211_config_bw() below would also check
* for this (and more), but this has better error reporting.
*/
if (!is_6ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT &&
(!elems->wmm_param || !elems->ht_cap_elem || !elems->ht_operation)) {
sdata_info(sdata,
"HT AP is missing WMM params or HT capability/operation\n");
ret = false;
goto out;
}
if (is_5ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT &&
(!elems->vht_cap_elem || !elems->vht_operation)) {
sdata_info(sdata,
"VHT AP is missing VHT capability/operation\n");
ret = false;
goto out;
}
/* check/update if AP changed anything in assoc response vs. scan */
if (ieee80211_config_bw(link, elems,
link_id == assoc_data->assoc_link_id,
changed)) {
ret = false;
goto out;
}
if (WARN_ON(!link->conf->chanreq.oper.chan)) {
ret = false;
goto out;
}
sband = local->hw.wiphy->bands[link->conf->chanreq.oper.chan->band];
/* Set up internal HT/VHT capabilities */
if (elems->ht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT)
ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband,
elems->ht_cap_elem,
link_sta);
if (elems->vht_cap_elem &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) {
const struct ieee80211_vht_cap *bss_vht_cap = NULL;
const struct cfg80211_bss_ies *ies;
/*
* Cisco AP module 9115 with FW 17.3 has a bug and sends a
* too large maximum MPDU length in the association response
* (indicating 12k) that it cannot actually process ...
* Work around that.
*/
rcu_read_lock();
ies = rcu_dereference(cbss->ies);
if (ies) {
const struct element *elem;
elem = cfg80211_find_elem(WLAN_EID_VHT_CAPABILITY,
ies->data, ies->len);
if (elem && elem->datalen >= sizeof(*bss_vht_cap))
bss_vht_cap = (const void *)elem->data;
}
ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband,
elems->vht_cap_elem,
bss_vht_cap, link_sta);
rcu_read_unlock();
}
if (elems->he_operation &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE &&
elems->he_cap) {
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband,
elems->he_cap,
elems->he_cap_len,
elems->he_6ghz_capa,
link_sta);
he_6ghz_oper = ieee80211_he_6ghz_oper(elems->he_operation);
if (is_6ghz && he_6ghz_oper) {
switch (u8_get_bits(he_6ghz_oper->control,
IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
bss_conf->power_type = IEEE80211_REG_LPI_AP;
break;
case IEEE80211_6GHZ_CTRL_REG_SP_AP:
bss_conf->power_type = IEEE80211_REG_SP_AP;
break;
case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
bss_conf->power_type = IEEE80211_REG_VLP_AP;
break;
default:
bss_conf->power_type = IEEE80211_REG_UNSET_AP;
break;
}
} else if (is_6ghz) {
link_info(link,
"HE 6 GHz operation missing (on %d MHz), expect issues\n",
bss_conf->chanreq.oper.chan->center_freq);
}
bss_conf->he_support = link_sta->pub->he_cap.has_he;
if (elems->rsnx && elems->rsnx_len &&
(elems->rsnx[0] & WLAN_RSNX_CAPA_PROTECTED_TWT) &&
wiphy_ext_feature_isset(local->hw.wiphy,
NL80211_EXT_FEATURE_PROTECTED_TWT))
bss_conf->twt_protected = true;
else
bss_conf->twt_protected = false;
*changed |= ieee80211_recalc_twt_req(sdata, sband, link,
link_sta, elems);
if (elems->eht_operation && elems->eht_cap &&
link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_EHT) {
ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband,
elems->he_cap,
elems->he_cap_len,
elems->eht_cap,
elems->eht_cap_len,
link_sta);
bss_conf->eht_support = link_sta->pub->eht_cap.has_eht;
} else {
bss_conf->eht_support = false;
}
} else {
bss_conf->he_support = false;
bss_conf->twt_requester = false;
bss_conf->twt_protected = false;
bss_conf->eht_support = false;
}
bss_conf->twt_broadcast =
ieee80211_twt_bcast_support(sdata, bss_conf, sband, link_sta);
if (bss_conf->he_support) {
bss_conf->he_bss_color.color =
le32_get_bits(elems->he_operation->he_oper_params,
IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
bss_conf->he_bss_color.partial =
le32_get_bits(elems->he_operation->he_oper_params,
IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR);
bss_conf->he_bss_color.enabled =
!le32_get_bits(elems->he_operation->he_oper_params,
IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
if (bss_conf->he_bss_color.enabled)
*changed |= BSS_CHANGED_HE_BSS_COLOR;
bss_conf->htc_trig_based_pkt_ext =
le32_get_bits(elems->he_operation->he_oper_params,
IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK);
bss_conf->frame_time_rts_th =
le32_get_bits(elems->he_operation->he_oper_params,
IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
bss_conf->uora_exists = !!elems->uora_element;
if (elems->uora_element)
bss_conf->uora_ocw_range = elems->uora_element[0];
ieee80211_he_op_ie_to_bss_conf(&sdata->vif, elems->he_operation);
ieee80211_he_spr_ie_to_bss_conf(&sdata->vif, elems->he_spr);
/* TODO: OPEN: what happens if BSS color disable is set? */
}
if (cbss->transmitted_bss) {
bss_conf->nontransmitted = true;
ether_addr_copy(bss_conf->transmitter_bssid,
cbss->transmitted_bss->bssid);
bss_conf->bssid_indicator = cbss->max_bssid_indicator;
bss_conf->bssid_index = cbss->bssid_index;
}
/*
* Some APs, e.g. Netgear WNDR3700, report invalid HT operation data
* in their association response, so ignore that data for our own
* configuration. If it changed since the last beacon, we'll get the
* next beacon and update then.
*/
/*
* If an operating mode notification IE is present, override the
* NSS calculation (that would be done in rate_control_rate_init())
* and use the # of streams from that element.
*/
if (elems->opmode_notif &&
!(*elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF)) {
u8 nss;
nss = *elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_MASK;
nss >>= IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT;
nss += 1;
link_sta->pub->rx_nss = nss;
}
/*
* Always handle WMM once after association regardless
* of the first value the AP uses. Setting -1 here has
* that effect because the AP values is an unsigned
* 4-bit value.
*/
link->u.mgd.wmm_last_param_set = -1;
link->u.mgd.mu_edca_last_param_set = -1;
if (link->u.mgd.disable_wmm_tracking) {
ieee80211_set_wmm_default(link, false, false);
} else if (!ieee80211_sta_wmm_params(local, link, elems->wmm_param,
elems->wmm_param_len,
elems->mu_edca_param_set)) {
/* still enable QoS since we might have HT/VHT */
ieee80211_set_wmm_default(link, false, true);
/* disable WMM tracking in this case to disable
* tracking WMM parameter changes in the beacon if
* the parameters weren't actually valid. Doing so
* avoids changing parameters very strangely when
* the AP is going back and forth between valid and
* invalid parameters.
*/
link->u.mgd.disable_wmm_tracking = true;
}
if (elems->max_idle_period_ie) {
bss_conf->max_idle_period =
le16_to_cpu(elems->max_idle_period_ie->max_idle_period);
bss_conf->protected_keep_alive =
!!(elems->max_idle_period_ie->idle_options &
WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE);
*changed |= BSS_CHANGED_KEEP_ALIVE;
} else {
bss_conf->max_idle_period = 0;
bss_conf->protected_keep_alive = false;
}
/* set assoc capability (AID was already set earlier),
* ieee80211_set_associated() will tell the driver */
bss_conf->assoc_capability = capab_info;
ret = true;
out:
kfree(elems);
kfree(bss_ies);
return ret;
}
static int ieee80211_mgd_setup_link_sta(struct ieee80211_link_data *link,
struct sta_info *sta,
struct link_sta_info *link_sta,
struct cfg80211_bss *cbss)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_bss *bss = (void *)cbss->priv;
u32 rates = 0, basic_rates = 0;
bool have_higher_than_11mbit = false;
int min_rate = INT_MAX, min_rate_index = -1;
struct ieee80211_supported_band *sband;
memcpy(link_sta->addr, cbss->bssid, ETH_ALEN);
memcpy(link_sta->pub->addr, cbss->bssid, ETH_ALEN);
/* TODO: S1G Basic Rate Set is expressed elsewhere */
if (cbss->channel->band == NL80211_BAND_S1GHZ) {
ieee80211_s1g_sta_rate_init(sta);
return 0;
}
sband = local->hw.wiphy->bands[cbss->channel->band];
ieee80211_get_rates(sband, bss->supp_rates, bss->supp_rates_len,
&rates, &basic_rates, &have_higher_than_11mbit,
&min_rate, &min_rate_index);
/*
* This used to be a workaround for basic rates missing
* in the association response frame. Now that we no
* longer use the basic rates from there, it probably
* doesn't happen any more, but keep the workaround so
* in case some *other* APs are buggy in different ways
* we can connect -- with a warning.
* Allow this workaround only in case the AP provided at least
* one rate.
*/
if (min_rate_index < 0) {
link_info(link, "No legacy rates in association response\n");
return -EINVAL;
} else if (!basic_rates) {
link_info(link, "No basic rates, using min rate instead\n");
basic_rates = BIT(min_rate_index);
}
if (rates)
link_sta->pub->supp_rates[cbss->channel->band] = rates;
else
link_info(link, "No rates found, keeping mandatory only\n");
link->conf->basic_rates = basic_rates;
/* cf. IEEE 802.11 9.2.12 */
link->operating_11g_mode = sband->band == NL80211_BAND_2GHZ &&
have_higher_than_11mbit;
return 0;
}
static u8 ieee80211_max_rx_chains(struct ieee80211_link_data *link,
struct cfg80211_bss *cbss)
{
struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp;
const struct element *ht_cap_elem, *vht_cap_elem;
const struct cfg80211_bss_ies *ies;
const struct ieee80211_ht_cap *ht_cap;
const struct ieee80211_vht_cap *vht_cap;
const struct ieee80211_he_cap_elem *he_cap;
const struct element *he_cap_elem;
u16 mcs_80_map, mcs_160_map;
int i, mcs_nss_size;
bool support_160;
u8 chains = 1;
if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HT)
return chains;
ht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_CAPABILITY);
if (ht_cap_elem && ht_cap_elem->datalen >= sizeof(*ht_cap)) {
ht_cap = (void *)ht_cap_elem->data;
chains = ieee80211_mcs_to_chains(&ht_cap->mcs);
/*
* TODO: use "Tx Maximum Number Spatial Streams Supported" and
* "Tx Unequal Modulation Supported" fields.
*/
}
if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_VHT)
return chains;
vht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY);
if (vht_cap_elem && vht_cap_elem->datalen >= sizeof(*vht_cap)) {
u8 nss;
u16 tx_mcs_map;
vht_cap = (void *)vht_cap_elem->data;
tx_mcs_map = le16_to_cpu(vht_cap->supp_mcs.tx_mcs_map);
for (nss = 8; nss > 0; nss--) {
if (((tx_mcs_map >> (2 * (nss - 1))) & 3) !=
IEEE80211_VHT_MCS_NOT_SUPPORTED)
break;
}
/* TODO: use "Tx Highest Supported Long GI Data Rate" field? */
chains = max(chains, nss);
}
if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HE)
return chains;
ies = rcu_dereference(cbss->ies);
he_cap_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
ies->data, ies->len);
if (!he_cap_elem || he_cap_elem->datalen < sizeof(*he_cap))
return chains;
/* skip one byte ext_tag_id */
he_cap = (void *)(he_cap_elem->data + 1);
mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap);
/* invalid HE IE */
if (he_cap_elem->datalen < 1 + mcs_nss_size + sizeof(*he_cap))
return chains;
/* mcs_nss is right after he_cap info */
he_mcs_nss_supp = (void *)(he_cap + 1);
mcs_80_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80);
for (i = 7; i >= 0; i--) {
u8 mcs_80 = mcs_80_map >> (2 * i) & 3;
if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) {
chains = max_t(u8, chains, i + 1);
break;
}
}
support_160 = he_cap->phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
if (!support_160)
return chains;
mcs_160_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_160);
for (i = 7; i >= 0; i--) {
u8 mcs_160 = mcs_160_map >> (2 * i) & 3;
if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) {
chains = max_t(u8, chains, i + 1);
break;
}
}
return chains;
}
static void
ieee80211_determine_our_sta_mode(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
struct cfg80211_assoc_request *req,
bool wmm_used, int link_id,
struct ieee80211_conn_settings *conn)
{
struct ieee80211_sta_ht_cap sta_ht_cap = sband->ht_cap;
bool is_5ghz = sband->band == NL80211_BAND_5GHZ;
bool is_6ghz = sband->band == NL80211_BAND_6GHZ;
const struct ieee80211_sta_he_cap *he_cap;
const struct ieee80211_sta_eht_cap *eht_cap;
struct ieee80211_sta_vht_cap vht_cap;
if (sband->band == NL80211_BAND_S1GHZ) {
conn->mode = IEEE80211_CONN_MODE_S1G;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
mlme_dbg(sdata, "operating as S1G STA\n");
return;
}
conn->mode = IEEE80211_CONN_MODE_LEGACY;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap);
if (req && req->flags & ASSOC_REQ_DISABLE_HT) {
mlme_link_id_dbg(sdata, link_id,
"HT disabled by flag, limiting to legacy\n");
goto out;
}
if (!wmm_used) {
mlme_link_id_dbg(sdata, link_id,
"WMM/QoS not supported, limiting to legacy\n");
goto out;
}
if (req) {
unsigned int i;
for (i = 0; i < req->crypto.n_ciphers_pairwise; i++) {
if (req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP40 ||
req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_TKIP ||
req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP104) {
netdev_info(sdata->dev,
"WEP/TKIP use, limiting to legacy\n");
goto out;
}
}
}
if (!sta_ht_cap.ht_supported && !is_6ghz) {
mlme_link_id_dbg(sdata, link_id,
"HT not supported (and not on 6 GHz), limiting to legacy\n");
goto out;
}
/* HT is fine */
conn->mode = IEEE80211_CONN_MODE_HT;
conn->bw_limit = sta_ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ?
IEEE80211_CONN_BW_LIMIT_40 :
IEEE80211_CONN_BW_LIMIT_20;
memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap));
ieee80211_apply_vhtcap_overrides(sdata, &vht_cap);
if (req && req->flags & ASSOC_REQ_DISABLE_VHT) {
mlme_link_id_dbg(sdata, link_id,
"VHT disabled by flag, limiting to HT\n");
goto out;
}
if (vht_cap.vht_supported && is_5ghz) {
bool have_80mhz = false;
unsigned int i;
if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) {
mlme_link_id_dbg(sdata, link_id,
"no 40 MHz support on 5 GHz, limiting to HT\n");
goto out;
}
/* Allow VHT if at least one channel on the sband supports 80 MHz */
for (i = 0; i < sband->n_channels; i++) {
if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
IEEE80211_CHAN_NO_80MHZ))
continue;
have_80mhz = true;
break;
}
if (!have_80mhz) {
mlme_link_id_dbg(sdata, link_id,
"no 80 MHz channel support on 5 GHz, limiting to HT\n");
goto out;
}
} else if (is_5ghz) { /* !vht_supported but on 5 GHz */
mlme_link_id_dbg(sdata, link_id,
"no VHT support on 5 GHz, limiting to HT\n");
goto out;
}
/* VHT - if we have - is fine, including 80 MHz, check 160 below again */
if (sband->band != NL80211_BAND_2GHZ) {
conn->mode = IEEE80211_CONN_MODE_VHT;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160;
}
if (is_5ghz &&
!(vht_cap.cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) {
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80;
mlme_link_id_dbg(sdata, link_id,
"no VHT 160 MHz capability on 5 GHz, limiting to 80 MHz");
}
if (req && req->flags & ASSOC_REQ_DISABLE_HE) {
mlme_link_id_dbg(sdata, link_id,
"HE disabled by flag, limiting to HT/VHT\n");
goto out;
}
he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif);
if (!he_cap) {
WARN_ON(is_6ghz);
mlme_link_id_dbg(sdata, link_id,
"no HE support, limiting to HT/VHT\n");
goto out;
}
/* so we have HE */
conn->mode = IEEE80211_CONN_MODE_HE;
/* check bandwidth */
switch (sband->band) {
default:
case NL80211_BAND_2GHZ:
if (he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
break;
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
mlme_link_id_dbg(sdata, link_id,
"no 40 MHz HE cap in 2.4 GHz, limiting to 20 MHz\n");
break;
case NL80211_BAND_5GHZ:
if (!(he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) {
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20;
mlme_link_id_dbg(sdata, link_id,
"no 40/80 MHz HE cap in 5 GHz, limiting to 20 MHz\n");
break;
}
if (!(he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)) {
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_80);
mlme_link_id_dbg(sdata, link_id,
"no 160 MHz HE cap in 5 GHz, limiting to 80 MHz\n");
}
break;
case NL80211_BAND_6GHZ:
if (he_cap->he_cap_elem.phy_cap_info[0] &
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
break;
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit,
IEEE80211_CONN_BW_LIMIT_80);
mlme_link_id_dbg(sdata, link_id,
"no 160 MHz HE cap in 6 GHz, limiting to 80 MHz\n");
break;
}
if (req && req->flags & ASSOC_REQ_DISABLE_EHT) {
mlme_link_id_dbg(sdata, link_id,
"EHT disabled by flag, limiting to HE\n");
goto out;
}
eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif);
if (!eht_cap) {
mlme_link_id_dbg(sdata, link_id,
"no EHT support, limiting to HE\n");
goto out;
}
/* we have EHT */
conn->mode = IEEE80211_CONN_MODE_EHT;
/* check bandwidth */
if (is_6ghz &&
eht_cap->eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
conn->bw_limit = IEEE80211_CONN_BW_LIMIT_320;
else if (is_6ghz)
mlme_link_id_dbg(sdata, link_id,
"no EHT 320 MHz cap in 6 GHz, limiting to 160 MHz\n");
out:
mlme_link_id_dbg(sdata, link_id,
"determined local STA to be %s, BW limited to %d MHz\n",
ieee80211_conn_mode_str(conn->mode),
20 * (1 << conn->bw_limit));
}
static void
ieee80211_determine_our_sta_mode_auth(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
struct cfg80211_auth_request *req,
bool wmm_used,
struct ieee80211_conn_settings *conn)
{
ieee80211_determine_our_sta_mode(sdata, sband, NULL, wmm_used,
req->link_id > 0 ? req->link_id : 0,
conn);
}
static void
ieee80211_determine_our_sta_mode_assoc(struct ieee80211_sub_if_data *sdata,
struct ieee80211_supported_band *sband,
struct cfg80211_assoc_request *req,
bool wmm_used, int link_id,
struct ieee80211_conn_settings *conn)
{
struct ieee80211_conn_settings tmp;
WARN_ON(!req);
ieee80211_determine_our_sta_mode(sdata, sband, req, wmm_used, link_id,
&tmp);
conn->mode = min_t(enum ieee80211_conn_mode,
conn->mode, tmp.mode);
conn->bw_limit = min_t(enum ieee80211_conn_bw_limit,
conn->bw_limit, tmp.bw_limit);
}
static int ieee80211_prep_channel(struct ieee80211_sub_if_data *sdata,
struct ieee80211_link_data *link,
int link_id,
struct cfg80211_bss *cbss, bool mlo,
struct ieee80211_conn_settings *conn)
{
struct ieee80211_local *local = sdata->local;
bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ;
struct ieee80211_chan_req chanreq = {};
struct ieee802_11_elems *elems;
int ret;
u32 i;
lockdep_assert_wiphy(local->hw.wiphy);
rcu_read_lock();
elems = ieee80211_determine_chan_mode(sdata, conn, cbss, link_id,
&chanreq);
if (IS_ERR(elems)) {
rcu_read_unlock();
return PTR_ERR(elems);
}
if (mlo && !elems->ml_basic) {
sdata_info(sdata, "Rejecting MLO as it is not supported by AP\n");
rcu_read_unlock();
kfree(elems);
return -EINVAL;
}
if (link && is_6ghz && conn->mode >= IEEE80211_CONN_MODE_HE) {
struct ieee80211_bss_conf *bss_conf;
u8 j = 0;
bss_conf = link->conf;
if (elems->pwr_constr_elem)
bss_conf->pwr_reduction = *elems->pwr_constr_elem;
BUILD_BUG_ON(ARRAY_SIZE(bss_conf->tx_pwr_env) !=
ARRAY_SIZE(elems->tx_pwr_env));
for (i = 0; i < elems->tx_pwr_env_num; i++) {
if (elems->tx_pwr_env_len[i] > sizeof(bss_conf->tx_pwr_env[j]))
continue;
bss_conf->tx_pwr_env_num++;
memcpy(&bss_conf->tx_pwr_env[j], elems->tx_pwr_env[i],
elems->tx_pwr_env_len[i]);
j++;
}
}
rcu_read_unlock();
/* the element data was RCU protected so no longer valid anyway */
kfree(elems);
elems = NULL;
if (!link)
return 0;
rcu_read_lock();
link->needed_rx_chains = min(ieee80211_max_rx_chains(link, cbss),
local->rx_chains);
rcu_read_unlock();
/*
* If this fails (possibly due to channel context sharing
* on incompatible channels, e.g. 80+80 and 160 sharing the
* same control channel) try to use a smaller bandwidth.
*/
ret = ieee80211_link_use_channel(link, &chanreq,
IEEE80211_CHANCTX_SHARED);
/* don't downgrade for 5 and 10 MHz channels, though. */
if (chanreq.oper.width == NL80211_CHAN_WIDTH_5 ||
chanreq.oper.width == NL80211_CHAN_WIDTH_10)
return ret;
while (ret && chanreq.oper.width != NL80211_CHAN_WIDTH_20_NOHT) {
ieee80211_chanreq_downgrade(&chanreq, conn);
ret = ieee80211_link_use_channel(link, &chanreq,
IEEE80211_CHANCTX_SHARED);
}
return ret;
}
static bool ieee80211_get_dtim(const struct cfg80211_bss_ies *ies,
u8 *dtim_count, u8 *dtim_period)
{
const u8 *tim_ie = cfg80211_find_ie(WLAN_EID_TIM, ies->data, ies->len);
const u8 *idx_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, ies->data,
ies->len);
const struct ieee80211_tim_ie *tim = NULL;
const struct ieee80211_bssid_index *idx;
bool valid = tim_ie && tim_ie[1] >= 2;
if (valid)
tim = (void *)(tim_ie + 2);
if (dtim_count)
*dtim_count = valid ? tim->dtim_count : 0;
if (dtim_period)
*dtim_period = valid ? tim->dtim_period : 0;
/* Check if value is overridden by non-transmitted profile */
if (!idx_ie || idx_ie[1] < 3)
return valid;
idx = (void *)(idx_ie + 2);
if (dtim_count)
*dtim_count = idx->dtim_count;
if (dtim_period)
*dtim_period = idx->dtim_period;
return true;
}
static bool ieee80211_assoc_success(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt,
struct ieee802_11_elems *elems,
const u8 *elem_start, unsigned int elem_len)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data;
struct ieee80211_local *local = sdata->local;
unsigned int link_id;
struct sta_info *sta;
u64 changed[IEEE80211_MLD_MAX_NUM_LINKS] = {};
u16 valid_links = 0, dormant_links = 0;
int err;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
/*
* station info was already allocated and inserted before
* the association and should be available to us
*/
sta = sta_info_get(sdata, assoc_data->ap_addr);
if (WARN_ON(!sta))
goto out_err;
sta->sta.spp_amsdu = assoc_data->spp_amsdu;
if (ieee80211_vif_is_mld(&sdata->vif)) {
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
if (!assoc_data->link[link_id].bss)
continue;
valid_links |= BIT(link_id);
if (assoc_data->link[link_id].disabled)
dormant_links |= BIT(link_id);
if (link_id != assoc_data->assoc_link_id) {
err = ieee80211_sta_allocate_link(sta, link_id);
if (err)
goto out_err;
}
}
ieee80211_vif_set_links(sdata, valid_links, dormant_links);
}
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
struct cfg80211_bss *cbss = assoc_data->link[link_id].bss;
struct ieee80211_link_data *link;
struct link_sta_info *link_sta;
if (!cbss)
continue;
link = sdata_dereference(sdata->link[link_id], sdata);
if (WARN_ON(!link))
goto out_err;
if (ieee80211_vif_is_mld(&sdata->vif))
link_info(link,
"local address %pM, AP link address %pM%s\n",
link->conf->addr,
assoc_data->link[link_id].bss->bssid,
link_id == assoc_data->assoc_link_id ?
" (assoc)" : "");
link_sta = rcu_dereference_protected(sta->link[link_id],
lockdep_is_held(&local->hw.wiphy->mtx));
if (WARN_ON(!link_sta))
goto out_err;
if (!link->u.mgd.have_beacon) {
const struct cfg80211_bss_ies *ies;
rcu_read_lock();
ies = rcu_dereference(cbss->beacon_ies);
if (ies)
link->u.mgd.have_beacon = true;
else
ies = rcu_dereference(cbss->ies);
ieee80211_get_dtim(ies,
&link->conf->sync_dtim_count,
&link->u.mgd.dtim_period);
link->conf->beacon_int = cbss->beacon_interval;
rcu_read_unlock();
}
link->conf->dtim_period = link->u.mgd.dtim_period ?: 1;
if (link_id != assoc_data->assoc_link_id) {
link->u.mgd.conn = assoc_data->link[link_id].conn;
err = ieee80211_prep_channel(sdata, link, link_id, cbss,
true, &link->u.mgd.conn);
if (err) {
link_info(link, "prep_channel failed\n");
goto out_err;
}
}
err = ieee80211_mgd_setup_link_sta(link, sta, link_sta,
assoc_data->link[link_id].bss);
if (err)
goto out_err;
if (!ieee80211_assoc_config_link(link, link_sta,
assoc_data->link[link_id].bss,
mgmt, elem_start, elem_len,
&changed[link_id]))
goto out_err;
if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) {
valid_links &= ~BIT(link_id);
ieee80211_sta_remove_link(sta, link_id);
continue;
}
if (link_id != assoc_data->assoc_link_id) {
err = ieee80211_sta_activate_link(sta, link_id);
if (err)
goto out_err;
}
}
/* links might have changed due to rejected ones, set them again */
ieee80211_vif_set_links(sdata, valid_links, dormant_links);
rate_control_rate_init(sta);
if (ifmgd->flags & IEEE80211_STA_MFP_ENABLED) {
set_sta_flag(sta, WLAN_STA_MFP);
sta->sta.mfp = true;
} else {
sta->sta.mfp = false;
}
ieee80211_sta_set_max_amsdu_subframes(sta, elems->ext_capab,
elems->ext_capab_len);
sta->sta.wme = (elems->wmm_param || elems->s1g_capab) &&
local->hw.queues >= IEEE80211_NUM_ACS;
err = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
if (!err && !(ifmgd->flags & IEEE80211_STA_CONTROL_PORT))
err = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED);
if (err) {
sdata_info(sdata,
"failed to move station %pM to desired state\n",
sta->sta.addr);
WARN_ON(__sta_info_destroy(sta));
goto out_err;
}
if (sdata->wdev.use_4addr)
drv_sta_set_4addr(local, sdata, &sta->sta, true);
ieee80211_set_associated(sdata, assoc_data, changed);
/*
* If we're using 4-addr mode, let the AP know that we're
* doing so, so that it can create the STA VLAN on its side
*/
if (ifmgd->use_4addr)
ieee80211_send_4addr_nullfunc(local, sdata);
/*
* Start timer to probe the connection to the AP now.
* Also start the timer that will detect beacon loss.
*/
ieee80211_sta_reset_beacon_monitor(sdata);
ieee80211_sta_reset_conn_monitor(sdata);
return true;
out_err:
eth_zero_addr(sdata->vif.cfg.ap_addr);
return false;
}
static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data;
u16 capab_info, status_code, aid;
struct ieee80211_elems_parse_params parse_params = {
.bss = NULL,
.link_id = -1,
.from_ap = true,
};
struct ieee802_11_elems *elems;
int ac;
const u8 *elem_start;
unsigned int elem_len;
bool reassoc;
struct ieee80211_event event = {
.type = MLME_EVENT,
.u.mlme.data = ASSOC_EVENT,
};
struct ieee80211_prep_tx_info info = {};
struct cfg80211_rx_assoc_resp_data resp = {
.uapsd_queues = -1,
};
u8 ap_mld_addr[ETH_ALEN] __aligned(2);
unsigned int link_id;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (!assoc_data)
return;
parse_params.mode =
assoc_data->link[assoc_data->assoc_link_id].conn.mode;
if (!ether_addr_equal(assoc_data->ap_addr, mgmt->bssid) ||
!ether_addr_equal(assoc_data->ap_addr, mgmt->sa))
return;
/*
* AssocResp and ReassocResp have identical structure, so process both
* of them in this function.
*/
if (len < 24 + 6)
return;
reassoc = ieee80211_is_reassoc_resp(mgmt->frame_control);
capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
if (assoc_data->s1g)
elem_start = mgmt->u.s1g_assoc_resp.variable;
else
elem_start = mgmt->u.assoc_resp.variable;
/*
* Note: this may not be perfect, AP might misbehave - if
* anyone needs to rely on perfect complete notification
* with the exact right subtype, then we need to track what
* we actually transmitted.
*/
info.subtype = reassoc ? IEEE80211_STYPE_REASSOC_REQ :
IEEE80211_STYPE_ASSOC_REQ;
if (assoc_data->fils_kek_len &&
fils_decrypt_assoc_resp(sdata, (u8 *)mgmt, &len, assoc_data) < 0)
return;
elem_len = len - (elem_start - (u8 *)mgmt);
parse_params.start = elem_start;
parse_params.len = elem_len;
elems = ieee802_11_parse_elems_full(&parse_params);
if (!elems)
goto notify_driver;
if (elems->aid_resp)
aid = le16_to_cpu(elems->aid_resp->aid);
else if (assoc_data->s1g)
aid = 0; /* TODO */
else
aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
/*
* The 5 MSB of the AID field are reserved
* (802.11-2016 9.4.1.8 AID field)
*/
aid &= 0x7ff;
sdata_info(sdata,
"RX %sssocResp from %pM (capab=0x%x status=%d aid=%d)\n",
reassoc ? "Rea" : "A", assoc_data->ap_addr,
capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
ifmgd->broken_ap = false;
if (status_code == WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY &&
elems->timeout_int &&
elems->timeout_int->type == WLAN_TIMEOUT_ASSOC_COMEBACK) {
u32 tu, ms;
cfg80211_assoc_comeback(sdata->dev, assoc_data->ap_addr,
le32_to_cpu(elems->timeout_int->value));
tu = le32_to_cpu(elems->timeout_int->value);
ms = tu * 1024 / 1000;
sdata_info(sdata,
"%pM rejected association temporarily; comeback duration %u TU (%u ms)\n",
assoc_data->ap_addr, tu, ms);
assoc_data->timeout = jiffies + msecs_to_jiffies(ms);
assoc_data->timeout_started = true;
assoc_data->comeback = true;
if (ms > IEEE80211_ASSOC_TIMEOUT)
run_again(sdata, assoc_data->timeout);
goto notify_driver;
}
if (status_code != WLAN_STATUS_SUCCESS) {
sdata_info(sdata, "%pM denied association (code=%d)\n",
assoc_data->ap_addr, status_code);
event.u.mlme.status = MLME_DENIED;
event.u.mlme.reason = status_code;
drv_event_callback(sdata->local, sdata, &event);
} else {
if (aid == 0 || aid > IEEE80211_MAX_AID) {
sdata_info(sdata,
"invalid AID value %d (out of range), turn off PS\n",
aid);
aid = 0;
ifmgd->broken_ap = true;
}
if (ieee80211_vif_is_mld(&sdata->vif)) {
struct ieee80211_mle_basic_common_info *common;
if (!elems->ml_basic) {
sdata_info(sdata,
"MLO association with %pM but no (basic) multi-link element in response!\n",
assoc_data->ap_addr);
goto abandon_assoc;
}
common = (void *)elems->ml_basic->variable;
if (memcmp(assoc_data->ap_addr,
common->mld_mac_addr, ETH_ALEN)) {
sdata_info(sdata,
"AP MLD MAC address mismatch: got %pM expected %pM\n",
common->mld_mac_addr,
assoc_data->ap_addr);
goto abandon_assoc;
}
sdata->vif.cfg.eml_cap =
ieee80211_mle_get_eml_cap((const void *)elems->ml_basic);
sdata->vif.cfg.eml_med_sync_delay =
ieee80211_mle_get_eml_med_sync_delay((const void *)elems->ml_basic);
sdata->vif.cfg.mld_capa_op =
ieee80211_mle_get_mld_capa_op((const void *)elems->ml_basic);
}
sdata->vif.cfg.aid = aid;
if (!ieee80211_assoc_success(sdata, mgmt, elems,
elem_start, elem_len)) {
/* oops -- internal error -- send timeout for now */
ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT);
goto notify_driver;
}
event.u.mlme.status = MLME_SUCCESS;
drv_event_callback(sdata->local, sdata, &event);
sdata_info(sdata, "associated\n");
info.success = 1;
}
for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) {
struct ieee80211_link_data *link;
if (!assoc_data->link[link_id].bss)
continue;
resp.links[link_id].bss = assoc_data->link[link_id].bss;
ether_addr_copy(resp.links[link_id].addr,
assoc_data->link[link_id].addr);
resp.links[link_id].status = assoc_data->link[link_id].status;
link = sdata_dereference(sdata->link[link_id], sdata);
if (!link)
continue;
/* get uapsd queues configuration - same for all links */
resp.uapsd_queues = 0;
for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
if (link->tx_conf[ac].uapsd)
resp.uapsd_queues |= ieee80211_ac_to_qos_mask[ac];
}
if (ieee80211_vif_is_mld(&sdata->vif)) {
ether_addr_copy(ap_mld_addr, sdata->vif.cfg.ap_addr);
resp.ap_mld_addr = ap_mld_addr;
}
ieee80211_destroy_assoc_data(sdata,
status_code == WLAN_STATUS_SUCCESS ?
ASSOC_SUCCESS :
ASSOC_REJECTED);
resp.buf = (u8 *)mgmt;
resp.len = len;
resp.req_ies = ifmgd->assoc_req_ies;
resp.req_ies_len = ifmgd->assoc_req_ies_len;
cfg80211_rx_assoc_resp(sdata->dev, &resp);
notify_driver:
drv_mgd_complete_tx(sdata->local, sdata, &info);
kfree(elems);
return;
abandon_assoc:
ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON);
goto notify_driver;
}
static void ieee80211_rx_bss_info(struct ieee80211_link_data *link,
struct ieee80211_mgmt *mgmt, size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
struct ieee80211_bss *bss;
struct ieee80211_channel *channel;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
channel = ieee80211_get_channel_khz(local->hw.wiphy,
ieee80211_rx_status_to_khz(rx_status));
if (!channel)
return;
bss = ieee80211_bss_info_update(local, rx_status, mgmt, len, channel);
if (bss) {
link->conf->beacon_rate = bss->beacon_rate;
ieee80211_rx_bss_put(local, bss);
}
}
static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_link_data *link,
struct sk_buff *skb)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_mgmt *mgmt = (void *)skb->data;
struct ieee80211_if_managed *ifmgd;
struct ieee80211_rx_status *rx_status = (void *) skb->cb;
struct ieee80211_channel *channel;
size_t baselen, len = skb->len;
ifmgd = &sdata->u.mgd;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
/*
* According to Draft P802.11ax D6.0 clause 26.17.2.3.2:
* "If a 6 GHz AP receives a Probe Request frame and responds with
* a Probe Response frame [..], the Address 1 field of the Probe
* Response frame shall be set to the broadcast address [..]"
* So, on 6GHz band we should also accept broadcast responses.
*/
channel = ieee80211_get_channel(sdata->local->hw.wiphy,
rx_status->freq);
if (!channel)
return;
if (!ether_addr_equal(mgmt->da, sdata->vif.addr) &&
(channel->band != NL80211_BAND_6GHZ ||
!is_broadcast_ether_addr(mgmt->da)))
return; /* ignore ProbeResp to foreign address */
baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt;
if (baselen > len)
return;
ieee80211_rx_bss_info(link, mgmt, len, rx_status);
if (ifmgd->associated &&
ether_addr_equal(mgmt->bssid, link->u.mgd.bssid))
ieee80211_reset_ap_probe(sdata);
}
/*
* This is the canonical list of information elements we care about,
* the filter code also gives us all changes to the Microsoft OUI
* (00:50:F2) vendor IE which is used for WMM which we need to track,
* as well as the DTPC IE (part of the Cisco OUI) used for signaling
* changes to requested client power.
*
* We implement beacon filtering in software since that means we can
* avoid processing the frame here and in cfg80211, and userspace
* will not be able to tell whether the hardware supports it or not.
*
* XXX: This list needs to be dynamic -- userspace needs to be able to
* add items it requires. It also needs to be able to tell us to
* look out for other vendor IEs.
*/
static const u64 care_about_ies =
(1ULL << WLAN_EID_COUNTRY) |
(1ULL << WLAN_EID_ERP_INFO) |
(1ULL << WLAN_EID_CHANNEL_SWITCH) |
(1ULL << WLAN_EID_PWR_CONSTRAINT) |
(1ULL << WLAN_EID_HT_CAPABILITY) |
(1ULL << WLAN_EID_HT_OPERATION) |
(1ULL << WLAN_EID_EXT_CHANSWITCH_ANN);
static void ieee80211_handle_beacon_sig(struct ieee80211_link_data *link,
struct ieee80211_if_managed *ifmgd,
struct ieee80211_bss_conf *bss_conf,
struct ieee80211_local *local,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
/* Track average RSSI from the Beacon frames of the current AP */
if (!link->u.mgd.tracking_signal_avg) {
link->u.mgd.tracking_signal_avg = true;
ewma_beacon_signal_init(&link->u.mgd.ave_beacon_signal);
link->u.mgd.last_cqm_event_signal = 0;
link->u.mgd.count_beacon_signal = 1;
link->u.mgd.last_ave_beacon_signal = 0;
} else {
link->u.mgd.count_beacon_signal++;
}
ewma_beacon_signal_add(&link->u.mgd.ave_beacon_signal,
-rx_status->signal);
if (ifmgd->rssi_min_thold != ifmgd->rssi_max_thold &&
link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) {
int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal);
int last_sig = link->u.mgd.last_ave_beacon_signal;
struct ieee80211_event event = {
.type = RSSI_EVENT,
};
/*
* if signal crosses either of the boundaries, invoke callback
* with appropriate parameters
*/
if (sig > ifmgd->rssi_max_thold &&
(last_sig <= ifmgd->rssi_min_thold || last_sig == 0)) {
link->u.mgd.last_ave_beacon_signal = sig;
event.u.rssi.data = RSSI_EVENT_HIGH;
drv_event_callback(local, sdata, &event);
} else if (sig < ifmgd->rssi_min_thold &&
(last_sig >= ifmgd->rssi_max_thold ||
last_sig == 0)) {
link->u.mgd.last_ave_beacon_signal = sig;
event.u.rssi.data = RSSI_EVENT_LOW;
drv_event_callback(local, sdata, &event);
}
}
if (bss_conf->cqm_rssi_thold &&
link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT &&
!(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)) {
int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal);
int last_event = link->u.mgd.last_cqm_event_signal;
int thold = bss_conf->cqm_rssi_thold;
int hyst = bss_conf->cqm_rssi_hyst;
if (sig < thold &&
(last_event == 0 || sig < last_event - hyst)) {
link->u.mgd.last_cqm_event_signal = sig;
ieee80211_cqm_rssi_notify(
&sdata->vif,
NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW,
sig, GFP_KERNEL);
} else if (sig > thold &&
(last_event == 0 || sig > last_event + hyst)) {
link->u.mgd.last_cqm_event_signal = sig;
ieee80211_cqm_rssi_notify(
&sdata->vif,
NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH,
sig, GFP_KERNEL);
}
}
if (bss_conf->cqm_rssi_low &&
link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) {
int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal);
int last_event = link->u.mgd.last_cqm_event_signal;
int low = bss_conf->cqm_rssi_low;
int high = bss_conf->cqm_rssi_high;
if (sig < low &&
(last_event == 0 || last_event >= low)) {
link->u.mgd.last_cqm_event_signal = sig;
ieee80211_cqm_rssi_notify(
&sdata->vif,
NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW,
sig, GFP_KERNEL);
} else if (sig > high &&
(last_event == 0 || last_event <= high)) {
link->u.mgd.last_cqm_event_signal = sig;
ieee80211_cqm_rssi_notify(
&sdata->vif,
NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH,
sig, GFP_KERNEL);
}
}
}
static bool ieee80211_rx_our_beacon(const u8 *tx_bssid,
struct cfg80211_bss *bss)
{
if (ether_addr_equal(tx_bssid, bss->bssid))
return true;
if (!bss->transmitted_bss)
return false;
return ether_addr_equal(tx_bssid, bss->transmitted_bss->bssid);
}
static void ieee80211_ml_reconf_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.ml_reconf_work.work);
u16 new_valid_links, new_active_links, new_dormant_links;
int ret;
if (!sdata->u.mgd.removed_links)
return;
sdata_info(sdata,
"MLO Reconfiguration: work: valid=0x%x, removed=0x%x\n",
sdata->vif.valid_links, sdata->u.mgd.removed_links);
new_valid_links = sdata->vif.valid_links & ~sdata->u.mgd.removed_links;
if (new_valid_links == sdata->vif.valid_links)
return;
if (!new_valid_links ||
!(new_valid_links & ~sdata->vif.dormant_links)) {
sdata_info(sdata, "No valid links after reconfiguration\n");
ret = -EINVAL;
goto out;
}
new_active_links = sdata->vif.active_links & ~sdata->u.mgd.removed_links;
if (new_active_links != sdata->vif.active_links) {
if (!new_active_links)
new_active_links =
BIT(ffs(new_valid_links &
~sdata->vif.dormant_links) - 1);
ret = ieee80211_set_active_links(&sdata->vif, new_active_links);
if (ret) {
sdata_info(sdata,
"Failed setting active links\n");
goto out;
}
}
new_dormant_links = sdata->vif.dormant_links & ~sdata->u.mgd.removed_links;
ret = ieee80211_vif_set_links(sdata, new_valid_links,
new_dormant_links);
if (ret)
sdata_info(sdata, "Failed setting valid links\n");
ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS);
out:
if (!ret)
cfg80211_links_removed(sdata->dev, sdata->u.mgd.removed_links);
else
__ieee80211_disconnect(sdata);
sdata->u.mgd.removed_links = 0;
}
static void ieee80211_ml_reconfiguration(struct ieee80211_sub_if_data *sdata,
struct ieee802_11_elems *elems)
{
const struct ieee80211_multi_link_elem *ml;
const struct element *sub;
ssize_t ml_len;
unsigned long removed_links = 0;
u16 link_removal_timeout[IEEE80211_MLD_MAX_NUM_LINKS] = {};
u8 link_id;
u32 delay;
if (!ieee80211_vif_is_mld(&sdata->vif) || !elems->ml_reconf)
return;
ml_len = cfg80211_defragment_element(elems->ml_reconf_elem,
elems->ie_start,
elems->total_len,
elems->scratch_pos,
elems->scratch + elems->scratch_len -
elems->scratch_pos,
WLAN_EID_FRAGMENT);
if (ml_len < 0)
return;
elems->ml_reconf = (const void *)elems->scratch_pos;
elems->ml_reconf_len = ml_len;
ml = elems->ml_reconf;
/* Directly parse the sub elements as the common information doesn't
* hold any useful information.
*/
for_each_mle_subelement(sub, (u8 *)ml, ml_len) {
struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data;
u8 *pos = prof->variable;
u16 control;
if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE)
continue;
if (!ieee80211_mle_reconf_sta_prof_size_ok(sub->data,
sub->datalen))
return;
control = le16_to_cpu(prof->control);
link_id = control & IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID;
removed_links |= BIT(link_id);
/* the MAC address should not be included, but handle it */
if (control &
IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
pos += 6;
/* According to Draft P802.11be_D3.0, the control should
* include the AP Removal Timer present. If the AP Removal Timer
* is not present assume immediate removal.
*/
if (control &
IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
link_removal_timeout[link_id] = le16_to_cpu(*(__le16 *)pos);
}
removed_links &= sdata->vif.valid_links;
if (!removed_links) {
/* In case the removal was cancelled, abort it */
if (sdata->u.mgd.removed_links) {
sdata->u.mgd.removed_links = 0;
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&sdata->u.mgd.ml_reconf_work);
}
return;
}
delay = 0;
for_each_set_bit(link_id, &removed_links, IEEE80211_MLD_MAX_NUM_LINKS) {
struct ieee80211_bss_conf *link_conf =
sdata_dereference(sdata->vif.link_conf[link_id], sdata);
u32 link_delay;
if (!link_conf) {
removed_links &= ~BIT(link_id);
continue;
}
link_delay = link_conf->beacon_int *
link_removal_timeout[link_id];
if (!delay)
delay = link_delay;
else
delay = min(delay, link_delay);
}
sdata->u.mgd.removed_links = removed_links;
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.ml_reconf_work,
TU_TO_JIFFIES(delay));
}
static int ieee80211_ttlm_set_links(struct ieee80211_sub_if_data *sdata,
u16 active_links, u16 dormant_links,
u16 suspended_links)
{
u64 changed = 0;
int ret;
if (!active_links) {
ret = -EINVAL;
goto out;
}
/* If there is an active negotiated TTLM, it should be discarded by
* the new negotiated/advertised TTLM.
*/
if (sdata->vif.neg_ttlm.valid) {
memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm));
sdata->vif.suspended_links = 0;
changed = BSS_CHANGED_MLD_TTLM;
}
if (sdata->vif.active_links != active_links) {
ret = ieee80211_set_active_links(&sdata->vif, active_links);
if (ret) {
sdata_info(sdata, "Failed to set TTLM active links\n");
goto out;
}
}
ret = ieee80211_vif_set_links(sdata, sdata->vif.valid_links,
dormant_links);
if (ret) {
sdata_info(sdata, "Failed to set TTLM dormant links\n");
goto out;
}
changed |= BSS_CHANGED_MLD_VALID_LINKS;
sdata->vif.suspended_links = suspended_links;
if (sdata->vif.suspended_links)
changed |= BSS_CHANGED_MLD_TTLM;
ieee80211_vif_cfg_change_notify(sdata, changed);
out:
if (ret)
ieee80211_disconnect(&sdata->vif, false);
return ret;
}
static void ieee80211_tid_to_link_map_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
u16 new_active_links, new_dormant_links;
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.ttlm_work.work);
new_active_links = sdata->u.mgd.ttlm_info.map &
sdata->vif.valid_links;
new_dormant_links = ~sdata->u.mgd.ttlm_info.map &
sdata->vif.valid_links;
ieee80211_vif_set_links(sdata, sdata->vif.valid_links, 0);
if (ieee80211_ttlm_set_links(sdata, new_active_links, new_dormant_links,
0))
return;
sdata->u.mgd.ttlm_info.active = true;
sdata->u.mgd.ttlm_info.switch_time = 0;
}
static u16 ieee80211_get_ttlm(u8 bm_size, u8 *data)
{
if (bm_size == 1)
return *data;
else
return get_unaligned_le16(data);
}
static int
ieee80211_parse_adv_t2l(struct ieee80211_sub_if_data *sdata,
const struct ieee80211_ttlm_elem *ttlm,
struct ieee80211_adv_ttlm_info *ttlm_info)
{
/* The element size was already validated in
* ieee80211_tid_to_link_map_size_ok()
*/
u8 control, link_map_presence, map_size, tid;
u8 *pos;
memset(ttlm_info, 0, sizeof(*ttlm_info));
pos = (void *)ttlm->optional;
control = ttlm->control;
if ((control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) ||
!(control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT))
return 0;
if ((control & IEEE80211_TTLM_CONTROL_DIRECTION) !=
IEEE80211_TTLM_DIRECTION_BOTH) {
sdata_info(sdata, "Invalid advertised T2L map direction\n");
return -EINVAL;
}
link_map_presence = *pos;
pos++;
ttlm_info->switch_time = get_unaligned_le16(pos);
/* Since ttlm_info->switch_time == 0 means no switch time, bump it
* by 1.
*/
if (!ttlm_info->switch_time)
ttlm_info->switch_time = 1;
pos += 2;
if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) {
ttlm_info->duration = pos[0] | pos[1] << 8 | pos[2] << 16;
pos += 3;
}
if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
map_size = 1;
else
map_size = 2;
/* According to Draft P802.11be_D3.0 clause 35.3.7.1.7, an AP MLD shall
* not advertise a TID-to-link mapping that does not map all TIDs to the
* same link set, reject frame if not all links have mapping
*/
if (link_map_presence != 0xff) {
sdata_info(sdata,
"Invalid advertised T2L mapping presence indicator\n");
return -EINVAL;
}
ttlm_info->map = ieee80211_get_ttlm(map_size, pos);
if (!ttlm_info->map) {
sdata_info(sdata,
"Invalid advertised T2L map for TID 0\n");
return -EINVAL;
}
pos += map_size;
for (tid = 1; tid < 8; tid++) {
u16 map = ieee80211_get_ttlm(map_size, pos);
if (map != ttlm_info->map) {
sdata_info(sdata, "Invalid advertised T2L map for tid %d\n",
tid);
return -EINVAL;
}
pos += map_size;
}
return 0;
}
static void ieee80211_process_adv_ttlm(struct ieee80211_sub_if_data *sdata,
struct ieee802_11_elems *elems,
u64 beacon_ts)
{
u8 i;
int ret;
if (!ieee80211_vif_is_mld(&sdata->vif))
return;
if (!elems->ttlm_num) {
if (sdata->u.mgd.ttlm_info.switch_time) {
/* if a planned TID-to-link mapping was cancelled -
* abort it
*/
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&sdata->u.mgd.ttlm_work);
} else if (sdata->u.mgd.ttlm_info.active) {
/* if no TID-to-link element, set to default mapping in
* which all TIDs are mapped to all setup links
*/
ret = ieee80211_vif_set_links(sdata,
sdata->vif.valid_links,
0);
if (ret) {
sdata_info(sdata, "Failed setting valid/dormant links\n");
return;
}
ieee80211_vif_cfg_change_notify(sdata,
BSS_CHANGED_MLD_VALID_LINKS);
}
memset(&sdata->u.mgd.ttlm_info, 0,
sizeof(sdata->u.mgd.ttlm_info));
return;
}
for (i = 0; i < elems->ttlm_num; i++) {
struct ieee80211_adv_ttlm_info ttlm_info;
u32 res;
res = ieee80211_parse_adv_t2l(sdata, elems->ttlm[i],
&ttlm_info);
if (res) {
__ieee80211_disconnect(sdata);
return;
}
if (ttlm_info.switch_time) {
u16 beacon_ts_tu, st_tu, delay;
u32 delay_jiffies;
u64 mask;
/* The t2l map switch time is indicated with a partial
* TSF value (bits 10 to 25), get the partial beacon TS
* as well, and calc the delay to the start time.
*/
mask = GENMASK_ULL(25, 10);
beacon_ts_tu = (beacon_ts & mask) >> 10;
st_tu = ttlm_info.switch_time;
delay = st_tu - beacon_ts_tu;
/*
* If the switch time is far in the future, then it
* could also be the previous switch still being
* announced.
* We can simply ignore it for now, if it is a future
* switch the AP will continue to announce it anyway.
*/
if (delay > IEEE80211_ADV_TTLM_ST_UNDERFLOW)
return;
delay_jiffies = TU_TO_JIFFIES(delay);
/* Link switching can take time, so schedule it
* 100ms before to be ready on time
*/
if (delay_jiffies > IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS)
delay_jiffies -=
IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS;
else
delay_jiffies = 0;
sdata->u.mgd.ttlm_info = ttlm_info;
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&sdata->u.mgd.ttlm_work);
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.ttlm_work,
delay_jiffies);
return;
}
}
}
static void ieee80211_rx_mgmt_beacon(struct ieee80211_link_data *link,
struct ieee80211_hdr *hdr, size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf;
struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg;
struct ieee80211_mgmt *mgmt = (void *) hdr;
size_t baselen;
struct ieee802_11_elems *elems;
struct ieee80211_local *local = sdata->local;
struct ieee80211_chanctx_conf *chanctx_conf;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *chan;
struct link_sta_info *link_sta;
struct sta_info *sta;
u64 changed = 0;
bool erp_valid;
u8 erp_value = 0;
u32 ncrc = 0;
u8 *bssid, *variable = mgmt->u.beacon.variable;
u8 deauth_buf[IEEE80211_DEAUTH_FRAME_LEN];
struct ieee80211_elems_parse_params parse_params = {
.mode = link->u.mgd.conn.mode,
.link_id = -1,
.from_ap = true,
};
lockdep_assert_wiphy(local->hw.wiphy);
/* Process beacon from the current BSS */
bssid = ieee80211_get_bssid(hdr, len, sdata->vif.type);
if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
struct ieee80211_ext *ext = (void *) mgmt;
if (ieee80211_is_s1g_short_beacon(ext->frame_control))
variable = ext->u.s1g_short_beacon.variable;
else
variable = ext->u.s1g_beacon.variable;
}
baselen = (u8 *) variable - (u8 *) mgmt;
if (baselen > len)
return;
parse_params.start = variable;
parse_params.len = len - baselen;
rcu_read_lock();
chanctx_conf = rcu_dereference(link->conf->chanctx_conf);
if (!chanctx_conf) {
rcu_read_unlock();
return;
}
if (ieee80211_rx_status_to_khz(rx_status) !=
ieee80211_channel_to_khz(chanctx_conf->def.chan)) {
rcu_read_unlock();
return;
}
chan = chanctx_conf->def.chan;
rcu_read_unlock();
if (ifmgd->assoc_data && ifmgd->assoc_data->need_beacon &&
!WARN_ON(ieee80211_vif_is_mld(&sdata->vif)) &&
ieee80211_rx_our_beacon(bssid, ifmgd->assoc_data->link[0].bss)) {
parse_params.bss = ifmgd->assoc_data->link[0].bss;
elems = ieee802_11_parse_elems_full(&parse_params);
if (!elems)
return;
ieee80211_rx_bss_info(link, mgmt, len, rx_status);
if (elems->dtim_period)
link->u.mgd.dtim_period = elems->dtim_period;
link->u.mgd.have_beacon = true;
ifmgd->assoc_data->need_beacon = false;
if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) {
link->conf->sync_tsf =
le64_to_cpu(mgmt->u.beacon.timestamp);
link->conf->sync_device_ts =
rx_status->device_timestamp;
link->conf->sync_dtim_count = elems->dtim_count;
}
if (elems->mbssid_config_ie)
bss_conf->profile_periodicity =
elems->mbssid_config_ie->profile_periodicity;
else
bss_conf->profile_periodicity = 0;
if (elems->ext_capab_len >= 11 &&
(elems->ext_capab[10] & WLAN_EXT_CAPA11_EMA_SUPPORT))
bss_conf->ema_ap = true;
else
bss_conf->ema_ap = false;
/* continue assoc process */
ifmgd->assoc_data->timeout = jiffies;
ifmgd->assoc_data->timeout_started = true;
run_again(sdata, ifmgd->assoc_data->timeout);
kfree(elems);
return;
}
if (!ifmgd->associated ||
!ieee80211_rx_our_beacon(bssid, link->u.mgd.bss))
return;
bssid = link->u.mgd.bssid;
if (!(rx_status->flag & RX_FLAG_NO_SIGNAL_VAL))
ieee80211_handle_beacon_sig(link, ifmgd, bss_conf,
local, rx_status);
if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) {
mlme_dbg_ratelimited(sdata,
"cancelling AP probe due to a received beacon\n");
ieee80211_reset_ap_probe(sdata);
}
/*
* Push the beacon loss detection into the future since
* we are processing a beacon from the AP just now.
*/
ieee80211_sta_reset_beacon_monitor(sdata);
/* TODO: CRC urrently not calculated on S1G Beacon Compatibility
* element (which carries the beacon interval). Don't forget to add a
* bit to care_about_ies[] above if mac80211 is interested in a
* changing S1G element.
*/
if (!ieee80211_is_s1g_beacon(hdr->frame_control))
ncrc = crc32_be(0, (void *)&mgmt->u.beacon.beacon_int, 4);
parse_params.bss = link->u.mgd.bss;
parse_params.filter = care_about_ies;
parse_params.crc = ncrc;
elems = ieee802_11_parse_elems_full(&parse_params);
if (!elems)
return;
ncrc = elems->crc;
if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) &&
ieee80211_check_tim(elems->tim, elems->tim_len, vif_cfg->aid)) {
if (local->hw.conf.dynamic_ps_timeout > 0) {
if (local->hw.conf.flags & IEEE80211_CONF_PS) {
local->hw.conf.flags &= ~IEEE80211_CONF_PS;
ieee80211_hw_config(local,
IEEE80211_CONF_CHANGE_PS);
}
ieee80211_send_nullfunc(local, sdata, false);
} else if (!local->pspolling && sdata->u.mgd.powersave) {
local->pspolling = true;
/*
* Here is assumed that the driver will be
* able to send ps-poll frame and receive a
* response even though power save mode is
* enabled, but some drivers might require
* to disable power save here. This needs
* to be investigated.
*/
ieee80211_send_pspoll(local, sdata);
}
}
if (sdata->vif.p2p ||
sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) {
struct ieee80211_p2p_noa_attr noa = {};
int ret;
ret = cfg80211_get_p2p_attr(variable,
len - baselen,
IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
(u8 *) &noa, sizeof(noa));
if (ret >= 2) {
if (link->u.mgd.p2p_noa_index != noa.index) {
/* valid noa_attr and index changed */
link->u.mgd.p2p_noa_index = noa.index;
memcpy(&bss_conf->p2p_noa_attr, &noa, sizeof(noa));
changed |= BSS_CHANGED_P2P_PS;
/*
* make sure we update all information, the CRC
* mechanism doesn't look at P2P attributes.
*/
link->u.mgd.beacon_crc_valid = false;
}
} else if (link->u.mgd.p2p_noa_index != -1) {
/* noa_attr not found and we had valid noa_attr before */
link->u.mgd.p2p_noa_index = -1;
memset(&bss_conf->p2p_noa_attr, 0, sizeof(bss_conf->p2p_noa_attr));
changed |= BSS_CHANGED_P2P_PS;
link->u.mgd.beacon_crc_valid = false;
}
}
if (link->u.mgd.csa_waiting_bcn)
ieee80211_chswitch_post_beacon(link);
/*
* Update beacon timing and dtim count on every beacon appearance. This
* will allow the driver to use the most updated values. Do it before
* comparing this one with last received beacon.
* IMPORTANT: These parameters would possibly be out of sync by the time
* the driver will use them. The synchronized view is currently
* guaranteed only in certain callbacks.
*/
if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) &&
!ieee80211_is_s1g_beacon(hdr->frame_control)) {
link->conf->sync_tsf =
le64_to_cpu(mgmt->u.beacon.timestamp);
link->conf->sync_device_ts =
rx_status->device_timestamp;
link->conf->sync_dtim_count = elems->dtim_count;
}
if ((ncrc == link->u.mgd.beacon_crc && link->u.mgd.beacon_crc_valid) ||
ieee80211_is_s1g_short_beacon(mgmt->frame_control))
goto free;
link->u.mgd.beacon_crc = ncrc;
link->u.mgd.beacon_crc_valid = true;
ieee80211_rx_bss_info(link, mgmt, len, rx_status);
ieee80211_sta_process_chanswitch(link, rx_status->mactime,
rx_status->device_timestamp,
elems, true);
if (!link->u.mgd.disable_wmm_tracking &&
ieee80211_sta_wmm_params(local, link, elems->wmm_param,
elems->wmm_param_len,
elems->mu_edca_param_set))
changed |= BSS_CHANGED_QOS;
/*
* If we haven't had a beacon before, tell the driver about the
* DTIM period (and beacon timing if desired) now.
*/
if (!link->u.mgd.have_beacon) {
/* a few bogus AP send dtim_period = 0 or no TIM IE */
bss_conf->dtim_period = elems->dtim_period ?: 1;
changed |= BSS_CHANGED_BEACON_INFO;
link->u.mgd.have_beacon = true;
ieee80211_recalc_ps(local);
ieee80211_recalc_ps_vif(sdata);
}
if (elems->erp_info) {
erp_valid = true;
erp_value = elems->erp_info[0];
} else {
erp_valid = false;
}
if (!ieee80211_is_s1g_beacon(hdr->frame_control))
changed |= ieee80211_handle_bss_capability(link,
le16_to_cpu(mgmt->u.beacon.capab_info),
erp_valid, erp_value);
sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr);
if (WARN_ON(!sta)) {
goto free;
}
link_sta = rcu_dereference_protected(sta->link[link->link_id],
lockdep_is_held(&local->hw.wiphy->mtx));
if (WARN_ON(!link_sta)) {
goto free;
}
if (WARN_ON(!link->conf->chanreq.oper.chan))
goto free;
sband = local->hw.wiphy->bands[link->conf->chanreq.oper.chan->band];
changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems);
if (ieee80211_config_bw(link, elems, true, &changed)) {
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH,
WLAN_REASON_DEAUTH_LEAVING,
true, deauth_buf);
ieee80211_report_disconnect(sdata, deauth_buf,
sizeof(deauth_buf), true,
WLAN_REASON_DEAUTH_LEAVING,
false);
goto free;
}
if (elems->opmode_notif)
ieee80211_vht_handle_opmode(sdata, link_sta,
*elems->opmode_notif,
rx_status->band);
changed |= ieee80211_handle_pwr_constr(link, chan, mgmt,
elems->country_elem,
elems->country_elem_len,
elems->pwr_constr_elem,
elems->cisco_dtpc_elem);
ieee80211_ml_reconfiguration(sdata, elems);
ieee80211_process_adv_ttlm(sdata, elems,
le64_to_cpu(mgmt->u.beacon.timestamp));
ieee80211_link_info_change_notify(sdata, link, changed);
free:
kfree(elems);
}
static void ieee80211_apply_neg_ttlm(struct ieee80211_sub_if_data *sdata,
struct ieee80211_neg_ttlm neg_ttlm)
{
u16 new_active_links, new_dormant_links, new_suspended_links, map = 0;
u8 i;
for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++)
map |= neg_ttlm.downlink[i] | neg_ttlm.uplink[i];
/* If there is an active TTLM, unset previously suspended links */
if (sdata->vif.neg_ttlm.valid)
sdata->vif.dormant_links &= ~sdata->vif.suspended_links;
/* exclude links that are already disabled by advertised TTLM */
new_active_links =
map & sdata->vif.valid_links & ~sdata->vif.dormant_links;
new_suspended_links =
(~map & sdata->vif.valid_links) & ~sdata->vif.dormant_links;
new_dormant_links = sdata->vif.dormant_links | new_suspended_links;
if (ieee80211_ttlm_set_links(sdata, new_active_links,
new_dormant_links, new_suspended_links))
return;
sdata->vif.neg_ttlm = neg_ttlm;
sdata->vif.neg_ttlm.valid = true;
}
static void ieee80211_neg_ttlm_timeout_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.neg_ttlm_timeout_work.work);
sdata_info(sdata,
"No negotiated TTLM response from AP, disconnecting.\n");
__ieee80211_disconnect(sdata);
}
static void
ieee80211_neg_ttlm_add_suggested_map(struct sk_buff *skb,
struct ieee80211_neg_ttlm *neg_ttlm)
{
u8 i, direction[IEEE80211_TTLM_MAX_CNT];
if (memcmp(neg_ttlm->downlink, neg_ttlm->uplink,
sizeof(neg_ttlm->downlink))) {
direction[0] = IEEE80211_TTLM_DIRECTION_DOWN;
direction[1] = IEEE80211_TTLM_DIRECTION_UP;
} else {
direction[0] = IEEE80211_TTLM_DIRECTION_BOTH;
}
for (i = 0; i < ARRAY_SIZE(direction); i++) {
u8 tid, len, map_ind = 0, *len_pos, *map_ind_pos, *pos;
__le16 map;
len = sizeof(struct ieee80211_ttlm_elem) + 1 + 1;
pos = skb_put(skb, len + 2);
*pos++ = WLAN_EID_EXTENSION;
len_pos = pos++;
*pos++ = WLAN_EID_EXT_TID_TO_LINK_MAPPING;
*pos++ = direction[i];
map_ind_pos = pos++;
for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) {
map = direction[i] == IEEE80211_TTLM_DIRECTION_UP ?
cpu_to_le16(neg_ttlm->uplink[tid]) :
cpu_to_le16(neg_ttlm->downlink[tid]);
if (!map)
continue;
len += 2;
map_ind |= BIT(tid);
skb_put_data(skb, &map, sizeof(map));
}
*map_ind_pos = map_ind;
*len_pos = len;
if (direction[i] == IEEE80211_TTLM_DIRECTION_BOTH)
break;
}
}
static void
ieee80211_send_neg_ttlm_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_neg_ttlm *neg_ttlm,
u8 dialog_token)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_req);
int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 +
2 * 2 * IEEE80211_TTLM_NUM_TIDS;
skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len);
if (!skb)
return;
skb_reserve(skb, local->tx_headroom);
mgmt = skb_put_zero(skb, hdr_len);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN);
mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT;
mgmt->u.action.u.ttlm_req.action_code =
WLAN_PROTECTED_EHT_ACTION_TTLM_REQ;
mgmt->u.action.u.ttlm_req.dialog_token = dialog_token;
ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm);
ieee80211_tx_skb(sdata, skb);
}
int ieee80211_req_neg_ttlm(struct ieee80211_sub_if_data *sdata,
struct cfg80211_ttlm_params *params)
{
struct ieee80211_neg_ttlm neg_ttlm = {};
u8 i;
if (!ieee80211_vif_is_mld(&sdata->vif) ||
!(sdata->vif.cfg.mld_capa_op &
IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP))
return -EINVAL;
for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) {
if ((params->dlink[i] & ~sdata->vif.valid_links) ||
(params->ulink[i] & ~sdata->vif.valid_links))
return -EINVAL;
neg_ttlm.downlink[i] = params->dlink[i];
neg_ttlm.uplink[i] = params->ulink[i];
}
if (drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm) !=
NEG_TTLM_RES_ACCEPT)
return -EINVAL;
ieee80211_apply_neg_ttlm(sdata, neg_ttlm);
sdata->u.mgd.dialog_token_alloc++;
ieee80211_send_neg_ttlm_req(sdata, &sdata->vif.neg_ttlm,
sdata->u.mgd.dialog_token_alloc);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&sdata->u.mgd.neg_ttlm_timeout_work);
wiphy_delayed_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.neg_ttlm_timeout_work,
IEEE80211_NEG_TTLM_REQ_TIMEOUT);
return 0;
}
static void
ieee80211_send_neg_ttlm_res(struct ieee80211_sub_if_data *sdata,
enum ieee80211_neg_ttlm_res ttlm_res,
u8 dialog_token,
struct ieee80211_neg_ttlm *neg_ttlm)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_res);
int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 +
2 * 2 * IEEE80211_TTLM_NUM_TIDS;
skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len);
if (!skb)
return;
skb_reserve(skb, local->tx_headroom);
mgmt = skb_put_zero(skb, hdr_len);
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN);
memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN);
mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT;
mgmt->u.action.u.ttlm_res.action_code =
WLAN_PROTECTED_EHT_ACTION_TTLM_RES;
mgmt->u.action.u.ttlm_res.dialog_token = dialog_token;
switch (ttlm_res) {
default:
WARN_ON(1);
fallthrough;
case NEG_TTLM_RES_REJECT:
mgmt->u.action.u.ttlm_res.status_code =
WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING;
break;
case NEG_TTLM_RES_ACCEPT:
mgmt->u.action.u.ttlm_res.status_code = WLAN_STATUS_SUCCESS;
break;
case NEG_TTLM_RES_SUGGEST_PREFERRED:
mgmt->u.action.u.ttlm_res.status_code =
WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED;
ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm);
break;
}
ieee80211_tx_skb(sdata, skb);
}
static int
ieee80211_parse_neg_ttlm(struct ieee80211_sub_if_data *sdata,
const struct ieee80211_ttlm_elem *ttlm,
struct ieee80211_neg_ttlm *neg_ttlm,
u8 *direction)
{
u8 control, link_map_presence, map_size, tid;
u8 *pos;
/* The element size was already validated in
* ieee80211_tid_to_link_map_size_ok()
*/
pos = (void *)ttlm->optional;
control = ttlm->control;
/* mapping switch time and expected duration fields are not expected
* in case of negotiated TTLM
*/
if (control & (IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT |
IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)) {
mlme_dbg(sdata,
"Invalid TTLM element in negotiated TTLM request\n");
return -EINVAL;
}
if (control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) {
for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) {
neg_ttlm->downlink[tid] = sdata->vif.valid_links;
neg_ttlm->uplink[tid] = sdata->vif.valid_links;
}
*direction = IEEE80211_TTLM_DIRECTION_BOTH;
return 0;
}
*direction = u8_get_bits(control, IEEE80211_TTLM_CONTROL_DIRECTION);
if (*direction != IEEE80211_TTLM_DIRECTION_DOWN &&
*direction != IEEE80211_TTLM_DIRECTION_UP &&
*direction != IEEE80211_TTLM_DIRECTION_BOTH)
return -EINVAL;
link_map_presence = *pos;
pos++;
if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE)
map_size = 1;
else
map_size = 2;
for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) {
u16 map;
if (link_map_presence & BIT(tid)) {
map = ieee80211_get_ttlm(map_size, pos);
if (!map) {
mlme_dbg(sdata,
"No active links for TID %d", tid);
return -EINVAL;
}
} else {
map = 0;
}
switch (*direction) {
case IEEE80211_TTLM_DIRECTION_BOTH:
neg_ttlm->downlink[tid] = map;
neg_ttlm->uplink[tid] = map;
break;
case IEEE80211_TTLM_DIRECTION_DOWN:
neg_ttlm->downlink[tid] = map;
break;
case IEEE80211_TTLM_DIRECTION_UP:
neg_ttlm->uplink[tid] = map;
break;
default:
return -EINVAL;
}
pos += map_size;
}
return 0;
}
void ieee80211_process_neg_ttlm_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
u8 dialog_token, direction[IEEE80211_TTLM_MAX_CNT] = {}, i;
size_t ies_len;
enum ieee80211_neg_ttlm_res ttlm_res = NEG_TTLM_RES_ACCEPT;
struct ieee802_11_elems *elems = NULL;
struct ieee80211_neg_ttlm neg_ttlm = {};
BUILD_BUG_ON(ARRAY_SIZE(direction) != ARRAY_SIZE(elems->ttlm));
if (!ieee80211_vif_is_mld(&sdata->vif))
return;
dialog_token = mgmt->u.action.u.ttlm_req.dialog_token;
ies_len = len - offsetof(struct ieee80211_mgmt,
u.action.u.ttlm_req.variable);
elems = ieee802_11_parse_elems(mgmt->u.action.u.ttlm_req.variable,
ies_len, true, NULL);
if (!elems) {
ttlm_res = NEG_TTLM_RES_REJECT;
goto out;
}
for (i = 0; i < elems->ttlm_num; i++) {
if (ieee80211_parse_neg_ttlm(sdata, elems->ttlm[i],
&neg_ttlm, &direction[i]) ||
(direction[i] == IEEE80211_TTLM_DIRECTION_BOTH &&
elems->ttlm_num != 1)) {
ttlm_res = NEG_TTLM_RES_REJECT;
goto out;
}
}
if (!elems->ttlm_num ||
(elems->ttlm_num == 2 && direction[0] == direction[1])) {
ttlm_res = NEG_TTLM_RES_REJECT;
goto out;
}
for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) {
if ((neg_ttlm.downlink[i] &&
(neg_ttlm.downlink[i] & ~sdata->vif.valid_links)) ||
(neg_ttlm.uplink[i] &&
(neg_ttlm.uplink[i] & ~sdata->vif.valid_links))) {
ttlm_res = NEG_TTLM_RES_REJECT;
goto out;
}
}
ttlm_res = drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm);
if (ttlm_res != NEG_TTLM_RES_ACCEPT)
goto out;
ieee80211_apply_neg_ttlm(sdata, neg_ttlm);
out:
kfree(elems);
ieee80211_send_neg_ttlm_res(sdata, ttlm_res, dialog_token, &neg_ttlm);
}
void ieee80211_process_neg_ttlm_res(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt, size_t len)
{
if (!ieee80211_vif_is_mld(&sdata->vif) ||
mgmt->u.action.u.ttlm_req.dialog_token !=
sdata->u.mgd.dialog_token_alloc)
return;
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&sdata->u.mgd.neg_ttlm_timeout_work);
/* MLD station sends a TID to link mapping request, mainly to handle
* BTM (BSS transition management) request, in which case it needs to
* restrict the active links set.
* In this case it's not expected that the MLD AP will reject the
* negotiated TTLM request.
* This can be better implemented in the future, to handle request
* rejections.
*/
if (mgmt->u.action.u.ttlm_res.status_code != WLAN_STATUS_SUCCESS)
__ieee80211_disconnect(sdata);
}
void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb)
{
struct ieee80211_link_data *link = &sdata->deflink;
struct ieee80211_rx_status *rx_status;
struct ieee80211_hdr *hdr;
u16 fc;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
rx_status = (struct ieee80211_rx_status *) skb->cb;
hdr = (struct ieee80211_hdr *) skb->data;
fc = le16_to_cpu(hdr->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_S1G_BEACON:
ieee80211_rx_mgmt_beacon(link, hdr, skb->len, rx_status);
break;
}
}
void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata,
struct sk_buff *skb)
{
struct ieee80211_link_data *link = &sdata->deflink;
struct ieee80211_rx_status *rx_status;
struct ieee80211_mgmt *mgmt;
u16 fc;
int ies_len;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
rx_status = (struct ieee80211_rx_status *) skb->cb;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
if (rx_status->link_valid) {
link = sdata_dereference(sdata->link[rx_status->link_id],
sdata);
if (!link)
return;
}
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_BEACON:
ieee80211_rx_mgmt_beacon(link, (void *)mgmt,
skb->len, rx_status);
break;
case IEEE80211_STYPE_PROBE_RESP:
ieee80211_rx_mgmt_probe_resp(link, skb);
break;
case IEEE80211_STYPE_AUTH:
ieee80211_rx_mgmt_auth(sdata, mgmt, skb->len);
break;
case IEEE80211_STYPE_DEAUTH:
ieee80211_rx_mgmt_deauth(sdata, mgmt, skb->len);
break;
case IEEE80211_STYPE_DISASSOC:
ieee80211_rx_mgmt_disassoc(sdata, mgmt, skb->len);
break;
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(sdata, mgmt, skb->len);
break;
case IEEE80211_STYPE_ACTION:
if (!sdata->u.mgd.associated ||
!ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr))
break;
if (mgmt->u.action.category == WLAN_CATEGORY_SPECTRUM_MGMT) {
struct ieee802_11_elems *elems;
ies_len = skb->len -
offsetof(struct ieee80211_mgmt,
u.action.u.chan_switch.variable);
if (ies_len < 0)
break;
/* CSA IE cannot be overridden, no need for BSSID */
elems = ieee802_11_parse_elems(
mgmt->u.action.u.chan_switch.variable,
ies_len, true, NULL);
if (elems && !elems->parse_error)
ieee80211_sta_process_chanswitch(link,
rx_status->mactime,
rx_status->device_timestamp,
elems, false);
kfree(elems);
} else if (mgmt->u.action.category == WLAN_CATEGORY_PUBLIC) {
struct ieee802_11_elems *elems;
ies_len = skb->len -
offsetof(struct ieee80211_mgmt,
u.action.u.ext_chan_switch.variable);
if (ies_len < 0)
break;
/*
* extended CSA IE can't be overridden, no need for
* BSSID
*/
elems = ieee802_11_parse_elems(
mgmt->u.action.u.ext_chan_switch.variable,
ies_len, true, NULL);
if (elems && !elems->parse_error) {
/* for the handling code pretend it was an IE */
elems->ext_chansw_ie =
&mgmt->u.action.u.ext_chan_switch.data;
ieee80211_sta_process_chanswitch(link,
rx_status->mactime,
rx_status->device_timestamp,
elems, false);
}
kfree(elems);
}
break;
}
}
static void ieee80211_sta_timer(struct timer_list *t)
{
struct ieee80211_sub_if_data *sdata =
from_timer(sdata, t, u.mgd.timer);
wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work);
}
void ieee80211_sta_connection_lost(struct ieee80211_sub_if_data *sdata,
u8 reason, bool tx)
{
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, reason,
tx, frame_buf);
ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true,
reason, false);
}
static int ieee80211_auth(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_auth_data *auth_data = ifmgd->auth_data;
u32 tx_flags = 0;
u16 trans = 1;
u16 status = 0;
struct ieee80211_prep_tx_info info = {
.subtype = IEEE80211_STYPE_AUTH,
};
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (WARN_ON_ONCE(!auth_data))
return -EINVAL;
auth_data->tries++;
if (auth_data->tries > IEEE80211_AUTH_MAX_TRIES) {
sdata_info(sdata, "authentication with %pM timed out\n",
auth_data->ap_addr);
/*
* Most likely AP is not in the range so remove the
* bss struct for that AP.
*/
cfg80211_unlink_bss(local->hw.wiphy, auth_data->bss);
return -ETIMEDOUT;
}
if (auth_data->algorithm == WLAN_AUTH_SAE)
info.duration = jiffies_to_msecs(IEEE80211_AUTH_TIMEOUT_SAE);
info.link_id = auth_data->link_id;
drv_mgd_prepare_tx(local, sdata, &info);
sdata_info(sdata, "send auth to %pM (try %d/%d)\n",
auth_data->ap_addr, auth_data->tries,
IEEE80211_AUTH_MAX_TRIES);
auth_data->expected_transaction = 2;
if (auth_data->algorithm == WLAN_AUTH_SAE) {
trans = auth_data->sae_trans;
status = auth_data->sae_status;
auth_data->expected_transaction = trans;
}
if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS |
IEEE80211_TX_INTFL_MLME_CONN_TX;
ieee80211_send_auth(sdata, trans, auth_data->algorithm, status,
auth_data->data, auth_data->data_len,
auth_data->ap_addr, auth_data->ap_addr,
NULL, 0, 0, tx_flags);
if (tx_flags == 0) {
if (auth_data->algorithm == WLAN_AUTH_SAE)
auth_data->timeout = jiffies +
IEEE80211_AUTH_TIMEOUT_SAE;
else
auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT;
} else {
auth_data->timeout =
round_jiffies_up(jiffies + IEEE80211_AUTH_TIMEOUT_LONG);
}
auth_data->timeout_started = true;
run_again(sdata, auth_data->timeout);
return 0;
}
static int ieee80211_do_assoc(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data;
struct ieee80211_local *local = sdata->local;
int ret;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
assoc_data->tries++;
if (assoc_data->tries > IEEE80211_ASSOC_MAX_TRIES) {
sdata_info(sdata, "association with %pM timed out\n",
assoc_data->ap_addr);
/*
* Most likely AP is not in the range so remove the
* bss struct for that AP.
*/
cfg80211_unlink_bss(local->hw.wiphy,
assoc_data->link[assoc_data->assoc_link_id].bss);
return -ETIMEDOUT;
}
sdata_info(sdata, "associate with %pM (try %d/%d)\n",
assoc_data->ap_addr, assoc_data->tries,
IEEE80211_ASSOC_MAX_TRIES);
ret = ieee80211_send_assoc(sdata);
if (ret)
return ret;
if (!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT;
assoc_data->timeout_started = true;
run_again(sdata, assoc_data->timeout);
} else {
assoc_data->timeout =
round_jiffies_up(jiffies +
IEEE80211_ASSOC_TIMEOUT_LONG);
assoc_data->timeout_started = true;
run_again(sdata, assoc_data->timeout);
}
return 0;
}
void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata,
__le16 fc, bool acked)
{
struct ieee80211_local *local = sdata->local;
sdata->u.mgd.status_fc = fc;
sdata->u.mgd.status_acked = acked;
sdata->u.mgd.status_received = true;
wiphy_work_queue(local->hw.wiphy, &sdata->work);
}
void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (ifmgd->status_received) {
__le16 fc = ifmgd->status_fc;
bool status_acked = ifmgd->status_acked;
ifmgd->status_received = false;
if (ifmgd->auth_data && ieee80211_is_auth(fc)) {
if (status_acked) {
if (ifmgd->auth_data->algorithm ==
WLAN_AUTH_SAE)
ifmgd->auth_data->timeout =
jiffies +
IEEE80211_AUTH_TIMEOUT_SAE;
else
ifmgd->auth_data->timeout =
jiffies +
IEEE80211_AUTH_TIMEOUT_SHORT;
run_again(sdata, ifmgd->auth_data->timeout);
} else {
ifmgd->auth_data->timeout = jiffies - 1;
}
ifmgd->auth_data->timeout_started = true;
} else if (ifmgd->assoc_data &&
!ifmgd->assoc_data->comeback &&
(ieee80211_is_assoc_req(fc) ||
ieee80211_is_reassoc_req(fc))) {
/*
* Update association timeout based on the TX status
* for the (Re)Association Request frame. Skip this if
* we have already processed a (Re)Association Response
* frame that indicated need for association comeback
* at a specific time in the future. This could happen
* if the TX status information is delayed enough for
* the response to be received and processed first.
*/
if (status_acked) {
ifmgd->assoc_data->timeout =
jiffies + IEEE80211_ASSOC_TIMEOUT_SHORT;
run_again(sdata, ifmgd->assoc_data->timeout);
} else {
ifmgd->assoc_data->timeout = jiffies - 1;
}
ifmgd->assoc_data->timeout_started = true;
}
}
if (ifmgd->auth_data && ifmgd->auth_data->timeout_started &&
time_after(jiffies, ifmgd->auth_data->timeout)) {
if (ifmgd->auth_data->done || ifmgd->auth_data->waiting) {
/*
* ok ... we waited for assoc or continuation but
* userspace didn't do it, so kill the auth data
*/
ieee80211_destroy_auth_data(sdata, false);
} else if (ieee80211_auth(sdata)) {
u8 ap_addr[ETH_ALEN];
struct ieee80211_event event = {
.type = MLME_EVENT,
.u.mlme.data = AUTH_EVENT,
.u.mlme.status = MLME_TIMEOUT,
};
memcpy(ap_addr, ifmgd->auth_data->ap_addr, ETH_ALEN);
ieee80211_destroy_auth_data(sdata, false);
cfg80211_auth_timeout(sdata->dev, ap_addr);
drv_event_callback(sdata->local, sdata, &event);
}
} else if (ifmgd->auth_data && ifmgd->auth_data->timeout_started)
run_again(sdata, ifmgd->auth_data->timeout);
if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started &&
time_after(jiffies, ifmgd->assoc_data->timeout)) {
if ((ifmgd->assoc_data->need_beacon &&
!sdata->deflink.u.mgd.have_beacon) ||
ieee80211_do_assoc(sdata)) {
struct ieee80211_event event = {
.type = MLME_EVENT,
.u.mlme.data = ASSOC_EVENT,
.u.mlme.status = MLME_TIMEOUT,
};
ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT);
drv_event_callback(sdata->local, sdata, &event);
}
} else if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started)
run_again(sdata, ifmgd->assoc_data->timeout);
if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL &&
ifmgd->associated) {
u8 *bssid = sdata->deflink.u.mgd.bssid;
int max_tries;
if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS))
max_tries = max_nullfunc_tries;
else
max_tries = max_probe_tries;
/* ACK received for nullfunc probing frame */
if (!ifmgd->probe_send_count)
ieee80211_reset_ap_probe(sdata);
else if (ifmgd->nullfunc_failed) {
if (ifmgd->probe_send_count < max_tries) {
mlme_dbg(sdata,
"No ack for nullfunc frame to AP %pM, try %d/%i\n",
bssid, ifmgd->probe_send_count,
max_tries);
ieee80211_mgd_probe_ap_send(sdata);
} else {
mlme_dbg(sdata,
"No ack for nullfunc frame to AP %pM, disconnecting.\n",
bssid);
ieee80211_sta_connection_lost(sdata,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY,
false);
}
} else if (time_is_after_jiffies(ifmgd->probe_timeout))
run_again(sdata, ifmgd->probe_timeout);
else if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
mlme_dbg(sdata,
"Failed to send nullfunc to AP %pM after %dms, disconnecting\n",
bssid, probe_wait_ms);
ieee80211_sta_connection_lost(sdata,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false);
} else if (ifmgd->probe_send_count < max_tries) {
mlme_dbg(sdata,
"No probe response from AP %pM after %dms, try %d/%i\n",
bssid, probe_wait_ms,
ifmgd->probe_send_count, max_tries);
ieee80211_mgd_probe_ap_send(sdata);
} else {
/*
* We actually lost the connection ... or did we?
* Let's make sure!
*/
mlme_dbg(sdata,
"No probe response from AP %pM after %dms, disconnecting.\n",
bssid, probe_wait_ms);
ieee80211_sta_connection_lost(sdata,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false);
}
}
}
static void ieee80211_sta_bcn_mon_timer(struct timer_list *t)
{
struct ieee80211_sub_if_data *sdata =
from_timer(sdata, t, u.mgd.bcn_mon_timer);
if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif)))
return;
if (sdata->vif.bss_conf.csa_active &&
!sdata->deflink.u.mgd.csa_waiting_bcn)
return;
if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)
return;
sdata->u.mgd.connection_loss = false;
wiphy_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.beacon_connection_loss_work);
}
static void ieee80211_sta_conn_mon_timer(struct timer_list *t)
{
struct ieee80211_sub_if_data *sdata =
from_timer(sdata, t, u.mgd.conn_mon_timer);
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_local *local = sdata->local;
struct sta_info *sta;
unsigned long timeout;
if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif)))
return;
if (sdata->vif.bss_conf.csa_active &&
!sdata->deflink.u.mgd.csa_waiting_bcn)
return;
sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr);
if (!sta)
return;
timeout = sta->deflink.status_stats.last_ack;
if (time_before(sta->deflink.status_stats.last_ack, sta->deflink.rx_stats.last_rx))
timeout = sta->deflink.rx_stats.last_rx;
timeout += IEEE80211_CONNECTION_IDLE_TIME;
/* If timeout is after now, then update timer to fire at
* the later date, but do not actually probe at this time.
*/
if (time_is_after_jiffies(timeout)) {
mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(timeout));
return;
}
wiphy_work_queue(local->hw.wiphy, &sdata->u.mgd.monitor_work);
}
static void ieee80211_sta_monitor_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data,
u.mgd.monitor_work);
ieee80211_mgd_probe_ap(sdata, false);
}
static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
{
if (sdata->vif.type == NL80211_IFTYPE_STATION) {
__ieee80211_stop_poll(sdata);
/* let's probe the connection once */
if (!ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR))
wiphy_work_queue(sdata->local->hw.wiphy,
&sdata->u.mgd.monitor_work);
}
}
#ifdef CONFIG_PM
void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (ifmgd->auth_data || ifmgd->assoc_data) {
const u8 *ap_addr = ifmgd->auth_data ?
ifmgd->auth_data->ap_addr :
ifmgd->assoc_data->ap_addr;
/*
* If we are trying to authenticate / associate while suspending,
* cfg80211 won't know and won't actually abort those attempts,
* thus we need to do that ourselves.
*/
ieee80211_send_deauth_disassoc(sdata, ap_addr, ap_addr,
IEEE80211_STYPE_DEAUTH,
WLAN_REASON_DEAUTH_LEAVING,
false, frame_buf);
if (ifmgd->assoc_data)
ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON);
if (ifmgd->auth_data)
ieee80211_destroy_auth_data(sdata, false);
cfg80211_tx_mlme_mgmt(sdata->dev, frame_buf,
IEEE80211_DEAUTH_FRAME_LEN,
false);
}
/* This is a bit of a hack - we should find a better and more generic
* solution to this. Normally when suspending, cfg80211 will in fact
* deauthenticate. However, it doesn't (and cannot) stop an ongoing
* auth (not so important) or assoc (this is the problem) process.
*
* As a consequence, it can happen that we are in the process of both
* associating and suspending, and receive an association response
* after cfg80211 has checked if it needs to disconnect, but before
* we actually set the flag to drop incoming frames. This will then
* cause the workqueue flush to process the association response in
* the suspend, resulting in a successful association just before it
* tries to remove the interface from the driver, which now though
* has a channel context assigned ... this results in issues.
*
* To work around this (for now) simply deauth here again if we're
* now connected.
*/
if (ifmgd->associated && !sdata->local->wowlan) {
u8 bssid[ETH_ALEN];
struct cfg80211_deauth_request req = {
.reason_code = WLAN_REASON_DEAUTH_LEAVING,
.bssid = bssid,
};
memcpy(bssid, sdata->vif.cfg.ap_addr, ETH_ALEN);
ieee80211_mgd_deauth(sdata, &req);
}
}
#endif
void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
if (!ifmgd->associated)
return;
if (sdata->flags & IEEE80211_SDATA_DISCONNECT_RESUME) {
sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_RESUME;
mlme_dbg(sdata, "driver requested disconnect after resume\n");
ieee80211_sta_connection_lost(sdata,
WLAN_REASON_UNSPECIFIED,
true);
return;
}
if (sdata->flags & IEEE80211_SDATA_DISCONNECT_HW_RESTART) {
sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_HW_RESTART;
mlme_dbg(sdata, "driver requested disconnect after hardware restart\n");
ieee80211_sta_connection_lost(sdata,
WLAN_REASON_UNSPECIFIED,
true);
return;
}
}
static void ieee80211_request_smps_mgd_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_link_data *link =
container_of(work, struct ieee80211_link_data,
u.mgd.request_smps_work);
__ieee80211_request_smps_mgd(link->sdata, link,
link->u.mgd.driver_smps_mode);
}
/* interface setup */
void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
wiphy_work_init(&ifmgd->monitor_work, ieee80211_sta_monitor_work);
wiphy_work_init(&ifmgd->beacon_connection_loss_work,
ieee80211_beacon_connection_loss_work);
wiphy_work_init(&ifmgd->csa_connection_drop_work,
ieee80211_csa_connection_drop_work);
wiphy_delayed_work_init(&ifmgd->tdls_peer_del_work,
ieee80211_tdls_peer_del_work);
wiphy_delayed_work_init(&ifmgd->ml_reconf_work,
ieee80211_ml_reconf_work);
timer_setup(&ifmgd->timer, ieee80211_sta_timer, 0);
timer_setup(&ifmgd->bcn_mon_timer, ieee80211_sta_bcn_mon_timer, 0);
timer_setup(&ifmgd->conn_mon_timer, ieee80211_sta_conn_mon_timer, 0);
wiphy_delayed_work_init(&ifmgd->tx_tspec_wk,
ieee80211_sta_handle_tspec_ac_params_wk);
wiphy_delayed_work_init(&ifmgd->ttlm_work,
ieee80211_tid_to_link_map_work);
wiphy_delayed_work_init(&ifmgd->neg_ttlm_timeout_work,
ieee80211_neg_ttlm_timeout_work);
ifmgd->flags = 0;
ifmgd->powersave = sdata->wdev.ps;
ifmgd->uapsd_queues = sdata->local->hw.uapsd_queues;
ifmgd->uapsd_max_sp_len = sdata->local->hw.uapsd_max_sp_len;
/* Setup TDLS data */
spin_lock_init(&ifmgd->teardown_lock);
ifmgd->teardown_skb = NULL;
ifmgd->orig_teardown_skb = NULL;
}
static void ieee80211_recalc_smps_work(struct wiphy *wiphy,
struct wiphy_work *work)
{
struct ieee80211_link_data *link =
container_of(work, struct ieee80211_link_data,
u.mgd.recalc_smps);
ieee80211_recalc_smps(link->sdata, link);
}
void ieee80211_mgd_setup_link(struct ieee80211_link_data *link)
{
struct ieee80211_sub_if_data *sdata = link->sdata;
struct ieee80211_local *local = sdata->local;
unsigned int link_id = link->link_id;
link->u.mgd.p2p_noa_index = -1;
link->conf->bssid = link->u.mgd.bssid;
link->smps_mode = IEEE80211_SMPS_OFF;
wiphy_work_init(&link->u.mgd.request_smps_work,
ieee80211_request_smps_mgd_work);
wiphy_work_init(&link->u.mgd.recalc_smps,
ieee80211_recalc_smps_work);
if (local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS)
link->u.mgd.req_smps = IEEE80211_SMPS_AUTOMATIC;
else
link->u.mgd.req_smps = IEEE80211_SMPS_OFF;
wiphy_delayed_work_init(&link->u.mgd.chswitch_work,
ieee80211_chswitch_work);
if (sdata->u.mgd.assoc_data)
ether_addr_copy(link->conf->addr,
sdata->u.mgd.assoc_data->link[link_id].addr);
else if (!is_valid_ether_addr(link->conf->addr))
eth_random_addr(link->conf->addr);
}
/* scan finished notification */
void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local)
{
struct ieee80211_sub_if_data *sdata;
/* Restart STA timers */
rcu_read_lock();
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (ieee80211_sdata_running(sdata))
ieee80211_restart_sta_timer(sdata);
}
rcu_read_unlock();
}
static int ieee80211_prep_connection(struct ieee80211_sub_if_data *sdata,
struct cfg80211_bss *cbss, s8 link_id,
const u8 *ap_mld_addr, bool assoc,
struct ieee80211_conn_settings *conn,
bool override)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_bss *bss = (void *)cbss->priv;
struct sta_info *new_sta = NULL;
struct ieee80211_link_data *link;
bool have_sta = false;
bool mlo;
int err;
if (link_id >= 0) {
mlo = true;
if (WARN_ON(!ap_mld_addr))
return -EINVAL;
err = ieee80211_vif_set_links(sdata, BIT(link_id), 0);
} else {
if (WARN_ON(ap_mld_addr))
return -EINVAL;
ap_mld_addr = cbss->bssid;
err = ieee80211_vif_set_links(sdata, 0, 0);
link_id = 0;
mlo = false;
}
if (err)
return err;
link = sdata_dereference(sdata->link[link_id], sdata);
if (WARN_ON(!link)) {
err = -ENOLINK;
goto out_err;
}
if (WARN_ON(!ifmgd->auth_data && !ifmgd->assoc_data)) {
err = -EINVAL;
goto out_err;
}
/* If a reconfig is happening, bail out */
if (local->in_reconfig) {
err = -EBUSY;
goto out_err;
}
if (assoc) {
rcu_read_lock();
have_sta = sta_info_get(sdata, ap_mld_addr);
rcu_read_unlock();
}
if (!have_sta) {
if (mlo)
new_sta = sta_info_alloc_with_link(sdata, ap_mld_addr,
link_id, cbss->bssid,
GFP_KERNEL);
else
new_sta = sta_info_alloc(sdata, ap_mld_addr, GFP_KERNEL);
if (!new_sta) {
err = -ENOMEM;
goto out_err;
}
new_sta->sta.mlo = mlo;
}
/*
* Set up the information for the new channel before setting the
* new channel. We can't - completely race-free - change the basic
* rates bitmap and the channel (sband) that it refers to, but if
* we set it up before we at least avoid calling into the driver's
* bss_info_changed() method with invalid information (since we do
* call that from changing the channel - only for IDLE and perhaps
* some others, but ...).
*
* So to avoid that, just set up all the new information before the
* channel, but tell the driver to apply it only afterwards, since
* it might need the new channel for that.
*/
if (new_sta) {
const struct cfg80211_bss_ies *ies;
struct link_sta_info *link_sta;
rcu_read_lock();
link_sta = rcu_dereference(new_sta->link[link_id]);
if (WARN_ON(!link_sta)) {
rcu_read_unlock();
sta_info_free(local, new_sta);
err = -EINVAL;
goto out_err;
}
err = ieee80211_mgd_setup_link_sta(link, new_sta,
link_sta, cbss);
if (err) {
rcu_read_unlock();
sta_info_free(local, new_sta);
goto out_err;
}
memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN);
/* set timing information */
link->conf->beacon_int = cbss->beacon_interval;
ies = rcu_dereference(cbss->beacon_ies);
if (ies) {
link->conf->sync_tsf = ies->tsf;
link->conf->sync_device_ts =
bss->device_ts_beacon;
ieee80211_get_dtim(ies,
&link->conf->sync_dtim_count,
NULL);
} else if (!ieee80211_hw_check(&sdata->local->hw,
TIMING_BEACON_ONLY)) {
ies = rcu_dereference(cbss->proberesp_ies);
/* must be non-NULL since beacon IEs were NULL */
link->conf->sync_tsf = ies->tsf;
link->conf->sync_device_ts =
bss->device_ts_presp;
link->conf->sync_dtim_count = 0;
} else {
link->conf->sync_tsf = 0;
link->conf->sync_device_ts = 0;
link->conf->sync_dtim_count = 0;
}
rcu_read_unlock();
}
if (new_sta || override) {
/*
* Only set this if we're also going to calculate the AP
* settings etc., otherwise this was set before in a
* previous call. Note override is set to %true in assoc
* if the settings were changed.
*/
link->u.mgd.conn = *conn;
err = ieee80211_prep_channel(sdata, link, link->link_id, cbss,
mlo, &link->u.mgd.conn);
if (err) {
if (new_sta)
sta_info_free(local, new_sta);
goto out_err;
}
/* pass out for use in assoc */
*conn = link->u.mgd.conn;
}
if (new_sta) {
/*
* tell driver about BSSID, basic rates and timing
* this was set up above, before setting the channel
*/
ieee80211_link_info_change_notify(sdata, link,
BSS_CHANGED_BSSID |
BSS_CHANGED_BASIC_RATES |
BSS_CHANGED_BEACON_INT);
if (assoc)
sta_info_pre_move_state(new_sta, IEEE80211_STA_AUTH);
err = sta_info_insert(new_sta);
new_sta = NULL;
if (err) {
sdata_info(sdata,
"failed to insert STA entry for the AP (error %d)\n",
err);
goto out_err;
}
} else
WARN_ON_ONCE(!ether_addr_equal(link->u.mgd.bssid, cbss->bssid));
/* Cancel scan to ensure that nothing interferes with connection */
if (local->scanning)
ieee80211_scan_cancel(local);
return 0;
out_err:
ieee80211_link_release_channel(&sdata->deflink);
ieee80211_vif_set_links(sdata, 0, 0);
return err;
}
static bool ieee80211_mgd_csa_present(struct ieee80211_sub_if_data *sdata,
const struct cfg80211_bss_ies *ies,
u8 cur_channel, bool ignore_ecsa)
{
const struct element *csa_elem, *ecsa_elem;
struct ieee80211_channel_sw_ie *csa = NULL;
struct ieee80211_ext_chansw_ie *ecsa = NULL;
if (!ies)
return false;
csa_elem = cfg80211_find_elem(WLAN_EID_CHANNEL_SWITCH,
ies->data, ies->len);
if (csa_elem && csa_elem->datalen == sizeof(*csa))
csa = (void *)csa_elem->data;
ecsa_elem = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
ies->data, ies->len);
if (ecsa_elem && ecsa_elem->datalen == sizeof(*ecsa))
ecsa = (void *)ecsa_elem->data;
if (csa && csa->count == 0)
csa = NULL;
if (csa && !csa->mode && csa->new_ch_num == cur_channel)
csa = NULL;
if (ecsa && ecsa->count == 0)
ecsa = NULL;
if (ecsa && !ecsa->mode && ecsa->new_ch_num == cur_channel)
ecsa = NULL;
if (ignore_ecsa && ecsa) {
sdata_info(sdata,
"Ignoring ECSA in probe response - was considered stuck!\n");
return csa;
}
return csa || ecsa;
}
static bool ieee80211_mgd_csa_in_process(struct ieee80211_sub_if_data *sdata,
struct cfg80211_bss *bss)
{
u8 cur_channel;
bool ret;
cur_channel = ieee80211_frequency_to_channel(bss->channel->center_freq);
rcu_read_lock();
if (ieee80211_mgd_csa_present(sdata,
rcu_dereference(bss->beacon_ies),
cur_channel, false)) {
ret = true;
goto out;
}
if (ieee80211_mgd_csa_present(sdata,
rcu_dereference(bss->proberesp_ies),
cur_channel, bss->proberesp_ecsa_stuck)) {
ret = true;
goto out;
}
ret = false;
out:
rcu_read_unlock();
return ret;
}
/* config hooks */
int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata,
struct cfg80211_auth_request *req)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_auth_data *auth_data;
struct ieee80211_conn_settings conn;
struct ieee80211_link_data *link;
struct ieee80211_supported_band *sband;
struct ieee80211_bss *bss;
u16 auth_alg;
int err;
bool cont_auth, wmm_used;
lockdep_assert_wiphy(sdata->local->hw.wiphy);
/* prepare auth data structure */
switch (req->auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
auth_alg = WLAN_AUTH_OPEN;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
if (fips_enabled)
return -EOPNOTSUPP;
auth_alg = WLAN_AUTH_SHARED_KEY;
break;
case NL80211_AUTHTYPE_FT:
auth_alg = WLAN_AUTH_FT;
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
auth_alg = WLAN_AUTH_LEAP;
break;
case NL80211_AUTHTYPE_SAE:
auth_alg = WLAN_AUTH_SAE;
break;
case NL80211_AUTHTYPE_FILS_SK:
auth_alg = WLAN_AUTH_FILS_SK;
break;
case NL80211_AUTHTYPE_FILS_SK_PFS:
auth_alg = WLAN_AUTH_FILS_SK_PFS;
break;
case NL80211_AUTHTYPE_FILS_PK:
auth_alg = WLAN_AUTH_FILS_PK;
break;
default:
return -EOPNOTSUPP;
}
if (ifmgd->assoc_data)
return -EBUSY;
if (ieee80211_mgd_csa_in_process(sdata, req->bss)) {
sdata_info(sdata, "AP is in CSA process, reject auth\n");
return -EINVAL;
}
auth_data = kzalloc(sizeof(*auth_data) + req->auth_data_len +
req->ie_len, GFP_KERNEL);
if (!auth_data)
return -ENOMEM;
memcpy(auth_data->ap_addr,
req->ap_mld_addr ?: req->bss->bssid,
ETH_ALEN);
auth_data->bss = req->bss;
auth_data->link_id = req->link_id;
if (req->auth_data_len >= 4) {
if (req->auth_type == NL80211_AUTHTYPE_SAE) {
__le16 *pos = (__le16 *) req->auth_data;
auth_data->sae_trans = le16_to_cpu(pos[0]);
auth_data->sae_status = le16_to_cpu(pos[1]);
}
memcpy(auth_data->data, req->auth_data + 4,
req->auth_data_len - 4);
auth_data->data_len += req->auth_data_len - 4;
}
/* Check if continuing authentication or trying to authenticate with the
* same BSS that we were in the process of authenticating with and avoid
* removal and re-addition of the STA entry in
* ieee80211_prep_connection().
*/
cont_auth = ifmgd->auth_data && req->bss == ifmgd->auth_data->bss &&
ifmgd->auth_data->link_id == req->link_id;
if (req->ie && req->ie_len) {
memcpy(&auth_data->data[auth_data->data_len],
req->ie, req->ie_len);
auth_data->data_len += req->ie_len;
}
if (req->key && req->key_len) {
auth_data->key_len = req->key_len;
auth_data->key_idx = req->key_idx;
memcpy(auth_data->key, req->key, req->key_len);
}
auth_data->algorithm = auth_alg;
/* try to authenticate/probe */
if (ifmgd->auth_data) {
if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE) {
auth_data->peer_confirmed =
ifmgd->auth_data->peer_confirmed;
}
ieee80211_destroy_auth_data(sdata, cont_auth);
}
/* prep auth_data so we don't go into idle on disassoc */
ifmgd->auth_data = auth_data;
/* If this is continuation of an ongoing SAE authentication exchange
* (i.e., request to send SAE Confirm) and the peer has already
* confirmed, mark authentication completed since we are about to send
* out SAE Confirm.
*/
if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE &&
auth_data->peer_confirmed && auth_data->sae_trans == 2)
ieee80211_mark_sta_auth(sdata);
if (ifmgd->associated) {
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
sdata_info(sdata,
"disconnect from AP %pM for new auth to %pM\n",
sdata->vif.cfg.ap_addr, auth_data->ap_addr);
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH,
WLAN_REASON_UNSPECIFIED,
false, frame_buf);
ieee80211_report_disconnect(sdata, frame_buf,
sizeof(frame_buf), true,
WLAN_REASON_UNSPECIFIED,
false);
}
/* needed for transmitting the auth frame(s) properly */
memcpy(sdata->vif.cfg.ap_addr, auth_data->ap_addr, ETH_ALEN);
bss = (void *)req->bss->priv;
wmm_used = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS);
sband = local->hw.wiphy->bands[req->bss->channel->band];
ieee80211_determine_our_sta_mode_auth(sdata, sband, req, wmm_used,
&conn);
err = ieee80211_prep_connection(sdata, req->bss, req->link_id,
req->ap_mld_addr, cont_auth,
&conn, false);
if (err)
goto err_clear;
if (req->link_id >= 0)
link = sdata_dereference(sdata->link[req->link_id], sdata);
else
link = &sdata->deflink;
if (WARN_ON(!link)) {
err = -ENOLINK;
goto err_clear;
}
sdata_info(sdata, "authenticate with %pM (local address=%pM)\n",
auth_data->ap_addr, link->conf->addr);
err = ieee80211_auth(sdata);
if (err) {
sta_info_destroy_addr(sdata, auth_data->ap_addr);
goto err_clear;
}
/* hold our own reference */
cfg80211_ref_bss(local->hw.wiphy, auth_data->bss);
return 0;
err_clear:
if (!ieee80211_vif_is_mld(&sdata->vif)) {
eth_zero_addr(sdata->deflink.u.mgd.bssid);
ieee80211_link_info_change_notify(sdata, &sdata->deflink,
BSS_CHANGED_BSSID);
ieee80211_link_release_channel(&sdata->deflink);
}
ifmgd->auth_data = NULL;
kfree(auth_data);
return err;
}
static void
ieee80211_setup_assoc_link(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgd_assoc_data *assoc_data,
struct cfg80211_assoc_request *req,
struct ieee80211_conn_settings *conn,
unsigned int link_id)
{
struct ieee80211_local *local = sdata->local;
const struct cfg80211_bss_ies *bss_ies;
struct ieee80211_supported_band *sband;
struct ieee80211_link_data *link;
struct cfg80211_bss *cbss;
struct ieee80211_bss *bss;
cbss = assoc_data->link[link_id].bss;
if (WARN_ON(!cbss))
return;
bss = (void *)cbss->priv;
sband = local->hw.wiphy->bands[cbss->channel->band];
if (WARN_ON(!sband))
return;
link = sdata_dereference(sdata->link[link_id], sdata);
if (WARN_ON(!link))
return;
/* for MLO connections assume advertising all rates is OK */
if (!req->ap_mld_addr) {
assoc_data->supp_rates = bss->supp_rates;
assoc_data->supp_rates_len = bss->supp_rates_len;
}
/* copy and link elems for the STA profile */
if (req->links[link_id].elems_len) {
memcpy(assoc_data->ie_pos, req->links[link_id].elems,
req->links[link_id].elems_len);
assoc_data->link[link_id].elems = assoc_data->ie_pos;
assoc_data->link[link_id].elems_len = req->links[link_id].elems_len;
assoc_data->ie_pos += req->links[link_id].elems_len;
}
link->u.mgd.beacon_crc_valid = false;
link->u.mgd.dtim_period = 0;
link->u.mgd.have_beacon = false;
/* override HT configuration only if the AP and we support it */
if (conn->mode >= IEEE80211_CONN_MODE_HT) {
struct ieee80211_sta_ht_cap sta_ht_cap;
memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap));
ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap);
}
rcu_read_lock();
bss_ies = rcu_dereference(cbss->beacon_ies);
if (bss_ies) {
u8 dtim_count = 0;
ieee80211_get_dtim(bss_ies, &dtim_count,
&link->u.mgd.dtim_period);
sdata->deflink.u.mgd.have_beacon = true;
if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) {
link->conf->sync_tsf = bss_ies->tsf;
link->conf->sync_device_ts = bss->device_ts_beacon;
link->conf->sync_dtim_count = dtim_count;
}
} else {
bss_ies = rcu_dereference(cbss->ies);
}
if (bss_ies) {
const struct element *elem;
elem = cfg80211_find_ext_elem(WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION,
bss_ies->data, bss_ies->len);
if (elem && elem->datalen >= 3)
link->conf->profile_periodicity = elem->data[2];
else
link->conf->profile_periodicity = 0;
elem = cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY,
bss_ies->data, bss_ies->len);
if (elem && elem->datalen >= 11 &&
(elem->data[10] & WLAN_EXT_CAPA11_EMA_SUPPORT))
link->conf->ema_ap = true;
else
link->conf->ema_ap = false;
}
rcu_read_unlock();
if (bss->corrupt_data) {
char *corrupt_type = "data";
if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_BEACON) {
if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP)
corrupt_type = "beacon and probe response";
else
corrupt_type = "beacon";
} else if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) {
corrupt_type = "probe response";
}
sdata_info(sdata, "associating to AP %pM with corrupt %s\n",
cbss->bssid, corrupt_type);
}
if (link->u.mgd.req_smps == IEEE80211_SMPS_AUTOMATIC) {
if (sdata->u.mgd.powersave)
link->smps_mode = IEEE80211_SMPS_DYNAMIC;
else
link->smps_mode = IEEE80211_SMPS_OFF;
} else {
link->smps_mode = link->u.mgd.req_smps;
}
}
int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata,
struct cfg80211_assoc_request *req)
{
unsigned int assoc_link_id = req->link_id < 0 ? 0 : req->link_id;
struct ieee80211_local *local = sdata->local;
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
struct ieee80211_mgd_assoc_data *assoc_data;
const struct element *ssid_elem;
struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg;
struct ieee80211_link_data *link;
struct cfg80211_bss *cbss;
bool override, uapsd_supported;
bool match_auth;
int i, err;
size_t size = sizeof(*assoc_data) + req->ie_len;
for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++)
size += req->links[i].elems_len;
/* FIXME: no support for 4-addr MLO yet */
if (sdata->u.mgd.use_4addr && req->link_id >= 0)
return -EOPNOTSUPP;
assoc_data = kzalloc(size, GFP_KERNEL);
if (!assoc_data)
return -ENOMEM;
cbss = req->link_id < 0 ? req->bss : req->links[req->link_id].bss;
if (ieee80211_mgd_csa_in_process(sdata, cbss)) {
sdata_info(sdata, "AP is in CSA process, reject assoc\n");
err = -EINVAL;
goto err_free;
}
rcu_read_lock();
ssid_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID);
if (!ssid_elem || ssid_elem->datalen > sizeof(assoc_data->ssid)) {
rcu_read_unlock();
err = -EINVAL;
goto err_free;
}
memcpy(assoc_data->ssid, ssid_elem->data, ssid_elem->datalen);
assoc_data->ssid_len = ssid_elem->datalen;
rcu_read_unlock();
if (req->ap_mld_addr)
memcpy(assoc_data->ap_addr, req->ap_mld_addr, ETH_ALEN);
else
memcpy(assoc_data->ap_addr, cbss->bssid, ETH_ALEN);
if (ifmgd->associated) {
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
sdata_info(sdata,
"disconnect from AP %pM for new assoc to %pM\n",
sdata->vif.cfg.ap_addr, assoc_data->ap_addr);
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH,
WLAN_REASON_UNSPECIFIED,
false, frame_buf);
ieee80211_report_disconnect(sdata, frame_buf,
sizeof(frame_buf), true,
WLAN_REASON_UNSPECIFIED,
false);
}
memcpy(&ifmgd->ht_capa, &req->ht_capa, sizeof(ifmgd->ht_capa));
memcpy(&ifmgd->ht_capa_mask, &req->ht_capa_mask,
sizeof(ifmgd->ht_capa_mask));
memcpy(&ifmgd->vht_capa, &req->vht_capa, sizeof(ifmgd->vht_capa));
memcpy(&ifmgd->vht_capa_mask, &req->vht_capa_mask,
sizeof(ifmgd->vht_capa_mask));
memcpy(&ifmgd->s1g_capa, &req->s1g_capa, sizeof(ifmgd->s1g_capa));
memcpy(&ifmgd->s1g_capa_mask, &req->s1g_capa_mask,
sizeof(ifmgd->s1g_capa_mask));
/* keep some setup (AP STA, channel, ...) if matching */
if (ifmgd->auth_data)
match_auth = ether_addr_equal(ifmgd->auth_data->ap_addr,
assoc_data->ap_addr) &&
ifmgd->auth_data->link_id == req->link_id;
if (req->ap_mld_addr) {
uapsd_supported = true;
for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) {
struct ieee80211_supported_band *sband;
struct cfg80211_bss *link_cbss = req->links[i].bss;
struct ieee80211_bss *bss;
if (!link_cbss)
continue;
bss = (void *)link_cbss->priv;
if (!bss->wmm_used) {
err = -EINVAL;
goto err_free;
}
if (req->flags & (ASSOC_REQ_DISABLE_HT |
ASSOC_REQ_DISABLE_VHT |
ASSOC_REQ_DISABLE_HE |
ASSOC_REQ_DISABLE_EHT)) {
err = -EINVAL;
goto err_free;
}
if (link_cbss->channel->band == NL80211_BAND_S1GHZ) {
err = -EINVAL;
goto err_free;
}
link = sdata_dereference(sdata->link[i], sdata);
if (link)
ether_addr_copy(assoc_data->link[i].addr,
link->conf->addr);
else
eth_random_addr(assoc_data->link[i].addr);
sband = local->hw.wiphy->bands[link_cbss->channel->band];
if (match_auth && i == assoc_link_id)
assoc_data->link[i].conn = link->u.mgd.conn;
else
assoc_data->link[i].conn =
ieee80211_conn_settings_unlimited;
ieee80211_determine_our_sta_mode_assoc(sdata, sband,
req, true, i,
&assoc_data->link[i].conn);
assoc_data->link[i].bss = link_cbss;
assoc_data->link[i].disabled = req->links[i].disabled;
if (!bss->uapsd_supported)
uapsd_supported = false;
if (assoc_data->link[i].conn.mode < IEEE80211_CONN_MODE_EHT) {
err = -EINVAL;
req->links[i].error = err;
goto err_free;
}
}
assoc_data->wmm = true;
} else {
struct ieee80211_supported_band *sband;
struct ieee80211_bss *bss = (void *)cbss->priv;
memcpy(assoc_data->link[0].addr, sdata->vif.addr, ETH_ALEN);
assoc_data->s1g = cbss->channel->band == NL80211_BAND_S1GHZ;
assoc_data->wmm = bss->wmm_used &&
(local->hw.queues >= IEEE80211_NUM_ACS);
if (cbss->channel->band == NL80211_BAND_6GHZ &&
req->flags & (ASSOC_REQ_DISABLE_HT |
ASSOC_REQ_DISABLE_VHT |
ASSOC_REQ_DISABLE_HE)) {
err = -EINVAL;
goto err_free;
}
sband = local->hw.wiphy->bands[cbss->channel->band];
assoc_data->link[0].bss = cbss;
if (match_auth)
assoc_data->link[0].conn = sdata->deflink.u.mgd.conn;
else
assoc_data->link[0].conn =
ieee80211_conn_settings_unlimited;
ieee80211_determine_our_sta_mode_assoc(sdata, sband, req,
assoc_data->wmm, 0,
&assoc_data->link[0].conn);
uapsd_supported = bss->uapsd_supported;
}
assoc_data->spp_amsdu = req->flags & ASSOC_REQ_SPP_AMSDU;
if (ifmgd->auth_data && !ifmgd->auth_data->done) {
err = -EBUSY;
goto err_free;
}
if (ifmgd->assoc_data) {
err = -EBUSY;
goto err_free;
}
/* Cleanup is delayed if auth_data matches */
if (ifmgd->auth_data && !match_auth)
ieee80211_destroy_auth_data(sdata, false);
if (req->ie && req->ie_len) {
memcpy(assoc_data->ie, req->ie, req->ie_len);
assoc_data->ie_len = req->ie_len;
assoc_data->ie_pos = assoc_data->ie + assoc_data->ie_len;
} else {
assoc_data->ie_pos = assoc_data->ie;
}
if (req->fils_kek) {
/* should already be checked in cfg80211 - so warn */
if (WARN_ON(req->fils_kek_len > FILS_MAX_KEK_LEN)) {
err = -EINVAL;
goto err_free;
}
memcpy(assoc_data->fils_kek, req->fils_kek,
req->fils_kek_len);
assoc_data->fils_kek_len = req->fils_kek_len;
}
if (req->fils_nonces)
memcpy(assoc_data->fils_nonces, req->fils_nonces,
2 * FILS_NONCE_LEN);
/* default timeout */
assoc_data->timeout = jiffies;
assoc_data->timeout_started = true;
assoc_data->assoc_link_id = assoc_link_id;
if (req->ap_mld_addr) {
/* if there was no authentication, set up the link */
err = ieee80211_vif_set_links(sdata, BIT(assoc_link_id), 0);
if (err)
goto err_clear;
}
link = sdata_dereference(sdata->link[assoc_link_id], sdata);
if (WARN_ON(!link)) {
err = -EINVAL;
goto err_clear;
}
override = link->u.mgd.conn.mode !=
assoc_data->link[assoc_link_id].conn.mode ||
link->u.mgd.conn.bw_limit !=
assoc_data->link[assoc_link_id].conn.bw_limit;
link->u.mgd.conn = assoc_data->link[assoc_link_id].conn;
ieee80211_setup_assoc_link(sdata, assoc_data, req, &link->u.mgd.conn,
assoc_link_id);
if (WARN((sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD) &&
ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK),
"U-APSD not supported with HW_PS_NULLFUNC_STACK\n"))
sdata->vif.driver_flags &= ~IEEE80211_VIF_SUPPORTS_UAPSD;
if (assoc_data->wmm && uapsd_supported &&
(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD)) {
assoc_data->uapsd = true;
ifmgd->flags |= IEEE80211_STA_UAPSD_ENABLED;
} else {
assoc_data->uapsd = false;
ifmgd->flags &= ~IEEE80211_STA_UAPSD_ENABLED;
}
if (req->prev_bssid)
memcpy(assoc_data->prev_ap_addr, req->prev_bssid, ETH_ALEN);
if (req->use_mfp) {
ifmgd->mfp = IEEE80211_MFP_REQUIRED;
ifmgd->flags |= IEEE80211_STA_MFP_ENABLED;
} else {
ifmgd->mfp = IEEE80211_MFP_DISABLED;
ifmgd->flags &= ~IEEE80211_STA_MFP_ENABLED;
}
if (req->flags & ASSOC_REQ_USE_RRM)
ifmgd->flags |= IEEE80211_STA_ENABLE_RRM;
else
ifmgd->flags &= ~IEEE80211_STA_ENABLE_RRM;
if (req->crypto.control_port)
ifmgd->flags |= IEEE80211_STA_CONTROL_PORT;
else
ifmgd->flags &= ~IEEE80211_STA_CONTROL_PORT;
sdata->control_port_protocol = req->crypto.control_port_ethertype;
sdata->control_port_no_encrypt = req->crypto.control_port_no_encrypt;
sdata->control_port_over_nl80211 =
req->crypto.control_port_over_nl80211;
sdata->control_port_no_preauth = req->crypto.control_port_no_preauth;
/* kick off associate process */
ifmgd->assoc_data = assoc_data;
for (i = 0; i < ARRAY_SIZE(assoc_data->link); i++) {
if (!assoc_data->link[i].bss)
continue;
if (i == assoc_data->assoc_link_id)
continue;
/* only calculate the mode, hence link == NULL */
err = ieee80211_prep_channel(sdata, NULL, i,
assoc_data->link[i].bss, true,
&assoc_data->link[i].conn);
if (err) {
req->links[i].error = err;
goto err_clear;
}
}
memcpy(vif_cfg->ssid, assoc_data->ssid, assoc_data->ssid_len);
vif_cfg->ssid_len = assoc_data->ssid_len;
/* needed for transmitting the assoc frames properly */
memcpy(sdata->vif.cfg.ap_addr, assoc_data->ap_addr, ETH_ALEN);
err = ieee80211_prep_connection(sdata, cbss, req->link_id,
req->ap_mld_addr, true,
&assoc_data->link[assoc_link_id].conn,
override);
if (err)
goto err_clear;
if (ieee80211_hw_check(&sdata->local->hw, NEED_DTIM_BEFORE_ASSOC)) {
const struct cfg80211_bss_ies *beacon_ies;
rcu_read_lock();
beacon_ies = rcu_dereference(req->bss->beacon_ies);
if (!beacon_ies) {
/*
* Wait up to one beacon interval ...
* should this be more if we miss one?
*/
sdata_info(sdata, "waiting for beacon from %pM\n",
link->u.mgd.bssid);
assoc_data->timeout = TU_TO_EXP_TIME(req->bss->beacon_interval);
assoc_data->timeout_started = true;
assoc_data->need_beacon = true;
}
rcu_read_unlock();
}
run_again(sdata, assoc_data->timeout);
/* We are associating, clean up auth_data */
if (ifmgd->auth_data)
ieee80211_destroy_auth_data(sdata, true);
return 0;
err_clear:
if (!ifmgd->auth_data) {
eth_zero_addr(sdata->deflink.u.mgd.bssid);
ieee80211_link_info_change_notify(sdata, &sdata->deflink,
BSS_CHANGED_BSSID);
}
ifmgd->assoc_data = NULL;
err_free:
kfree(assoc_data);
return err;
}
int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata,
struct cfg80211_deauth_request *req)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
bool tx = !req->local_state_change;
struct ieee80211_prep_tx_info info = {
.subtype = IEEE80211_STYPE_DEAUTH,
};
if (ifmgd->auth_data &&
ether_addr_equal(ifmgd->auth_data->ap_addr, req->bssid)) {
sdata_info(sdata,
"aborting authentication with %pM by local choice (Reason: %u=%s)\n",
req->bssid, req->reason_code,
ieee80211_get_reason_code_string(req->reason_code));
info.link_id = ifmgd->auth_data->link_id;
drv_mgd_prepare_tx(sdata->local, sdata, &info);
ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid,
IEEE80211_STYPE_DEAUTH,
req->reason_code, tx,
frame_buf);
ieee80211_destroy_auth_data(sdata, false);
ieee80211_report_disconnect(sdata, frame_buf,
sizeof(frame_buf), true,
req->reason_code, false);
drv_mgd_complete_tx(sdata->local, sdata, &info);
return 0;
}
if (ifmgd->assoc_data &&
ether_addr_equal(ifmgd->assoc_data->ap_addr, req->bssid)) {
sdata_info(sdata,
"aborting association with %pM by local choice (Reason: %u=%s)\n",
req->bssid, req->reason_code,
ieee80211_get_reason_code_string(req->reason_code));
info.link_id = ifmgd->assoc_data->assoc_link_id;
drv_mgd_prepare_tx(sdata->local, sdata, &info);
ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid,
IEEE80211_STYPE_DEAUTH,
req->reason_code, tx,
frame_buf);
ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON);
ieee80211_report_disconnect(sdata, frame_buf,
sizeof(frame_buf), true,
req->reason_code, false);
drv_mgd_complete_tx(sdata->local, sdata, &info);
return 0;
}
if (ifmgd->associated &&
ether_addr_equal(sdata->vif.cfg.ap_addr, req->bssid)) {
sdata_info(sdata,
"deauthenticating from %pM by local choice (Reason: %u=%s)\n",
req->bssid, req->reason_code,
ieee80211_get_reason_code_string(req->reason_code));
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH,
req->reason_code, tx, frame_buf);
ieee80211_report_disconnect(sdata, frame_buf,
sizeof(frame_buf), true,
req->reason_code, false);
drv_mgd_complete_tx(sdata->local, sdata, &info);
return 0;
}
return -ENOTCONN;
}
int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata,
struct cfg80211_disassoc_request *req)
{
u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN];
if (!sdata->u.mgd.associated ||
memcmp(sdata->vif.cfg.ap_addr, req->ap_addr, ETH_ALEN))
return -ENOTCONN;
sdata_info(sdata,
"disassociating from %pM by local choice (Reason: %u=%s)\n",
req->ap_addr, req->reason_code,
ieee80211_get_reason_code_string(req->reason_code));
ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DISASSOC,
req->reason_code, !req->local_state_change,
frame_buf);
ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true,
req->reason_code, false);
return 0;
}
void ieee80211_mgd_stop_link(struct ieee80211_link_data *link)
{
wiphy_work_cancel(link->sdata->local->hw.wiphy,
&link->u.mgd.request_smps_work);
wiphy_work_cancel(link->sdata->local->hw.wiphy,
&link->u.mgd.recalc_smps);
wiphy_delayed_work_cancel(link->sdata->local->hw.wiphy,
&link->u.mgd.chswitch_work);
}
void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
/*
* Make sure some work items will not run after this,
* they will not do anything but might not have been
* cancelled when disconnecting.
*/
wiphy_work_cancel(sdata->local->hw.wiphy,
&ifmgd->monitor_work);
wiphy_work_cancel(sdata->local->hw.wiphy,
&ifmgd->beacon_connection_loss_work);
wiphy_work_cancel(sdata->local->hw.wiphy,
&ifmgd->csa_connection_drop_work);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&ifmgd->tdls_peer_del_work);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&ifmgd->ml_reconf_work);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->ttlm_work);
wiphy_delayed_work_cancel(sdata->local->hw.wiphy,
&ifmgd->neg_ttlm_timeout_work);
if (ifmgd->assoc_data)
ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT);
if (ifmgd->auth_data)
ieee80211_destroy_auth_data(sdata, false);
spin_lock_bh(&ifmgd->teardown_lock);
if (ifmgd->teardown_skb) {
kfree_skb(ifmgd->teardown_skb);
ifmgd->teardown_skb = NULL;
ifmgd->orig_teardown_skb = NULL;
}
kfree(ifmgd->assoc_req_ies);
ifmgd->assoc_req_ies = NULL;
ifmgd->assoc_req_ies_len = 0;
spin_unlock_bh(&ifmgd->teardown_lock);
del_timer_sync(&ifmgd->timer);
}
void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
enum nl80211_cqm_rssi_threshold_event rssi_event,
s32 rssi_level,
gfp_t gfp)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
trace_api_cqm_rssi_notify(sdata, rssi_event, rssi_level);
cfg80211_cqm_rssi_notify(sdata->dev, rssi_event, rssi_level, gfp);
}
EXPORT_SYMBOL(ieee80211_cqm_rssi_notify);
void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
trace_api_cqm_beacon_loss_notify(sdata->local, sdata);
cfg80211_cqm_beacon_loss_notify(sdata->dev, gfp);
}
EXPORT_SYMBOL(ieee80211_cqm_beacon_loss_notify);
static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
int rssi_min_thold,
int rssi_max_thold)
{
trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
return;
/*
* Scale up threshold values before storing it, as the RSSI averaging
* algorithm uses a scaled up value as well. Change this scaling
* factor if the RSSI averaging algorithm changes.
*/
sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
}
void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
int rssi_min_thold,
int rssi_max_thold)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
WARN_ON(rssi_min_thold == rssi_max_thold ||
rssi_min_thold > rssi_max_thold);
_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
rssi_max_thold);
}
EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
_ieee80211_enable_rssi_reports(sdata, 0, 0);
}
EXPORT_SYMBOL(ieee80211_disable_rssi_reports);