linux/tools/testing/selftests/sgx/main.c
Reinette Chatre 5626de65f9 selftests/sgx: Remove extra newlines in test output
The TH_LOG() macro is an optional debug logging function made
available by kselftest itself. When TH_LOG_ENABLED is set it
prints the provided message with additional information and
formatting that already includes a newline.

Providing a newline to the message printed by TH_LOG() results
in a double newline that produces irregular test output.

Remove the unnecessary newlines from the text provided to
TH_LOG().

Fixes: 1b35eb7195 ("selftests/sgx: Encpsulate the test enclave creation")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Shuah Khan <skhan@linuxfoundation.org>
Link: https://lkml.kernel.org/r/6fd171ba622aed172a7c5b129d34d50bd0482f24.1644355600.git.reinette.chatre@intel.com
2022-02-11 13:52:48 -08:00

559 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2016-20 Intel Corporation. */
#include <cpuid.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/auxv.h>
#include "defines.h"
#include "../kselftest_harness.h"
#include "main.h"
static const uint64_t MAGIC = 0x1122334455667788ULL;
static const uint64_t MAGIC2 = 0x8877665544332211ULL;
vdso_sgx_enter_enclave_t vdso_sgx_enter_enclave;
struct vdso_symtab {
Elf64_Sym *elf_symtab;
const char *elf_symstrtab;
Elf64_Word *elf_hashtab;
};
static Elf64_Dyn *vdso_get_dyntab(void *addr)
{
Elf64_Ehdr *ehdr = addr;
Elf64_Phdr *phdrtab = addr + ehdr->e_phoff;
int i;
for (i = 0; i < ehdr->e_phnum; i++)
if (phdrtab[i].p_type == PT_DYNAMIC)
return addr + phdrtab[i].p_offset;
return NULL;
}
static void *vdso_get_dyn(void *addr, Elf64_Dyn *dyntab, Elf64_Sxword tag)
{
int i;
for (i = 0; dyntab[i].d_tag != DT_NULL; i++)
if (dyntab[i].d_tag == tag)
return addr + dyntab[i].d_un.d_ptr;
return NULL;
}
static bool vdso_get_symtab(void *addr, struct vdso_symtab *symtab)
{
Elf64_Dyn *dyntab = vdso_get_dyntab(addr);
symtab->elf_symtab = vdso_get_dyn(addr, dyntab, DT_SYMTAB);
if (!symtab->elf_symtab)
return false;
symtab->elf_symstrtab = vdso_get_dyn(addr, dyntab, DT_STRTAB);
if (!symtab->elf_symstrtab)
return false;
symtab->elf_hashtab = vdso_get_dyn(addr, dyntab, DT_HASH);
if (!symtab->elf_hashtab)
return false;
return true;
}
static unsigned long elf_sym_hash(const char *name)
{
unsigned long h = 0, high;
while (*name) {
h = (h << 4) + *name++;
high = h & 0xf0000000;
if (high)
h ^= high >> 24;
h &= ~high;
}
return h;
}
static Elf64_Sym *vdso_symtab_get(struct vdso_symtab *symtab, const char *name)
{
Elf64_Word bucketnum = symtab->elf_hashtab[0];
Elf64_Word *buckettab = &symtab->elf_hashtab[2];
Elf64_Word *chaintab = &symtab->elf_hashtab[2 + bucketnum];
Elf64_Sym *sym;
Elf64_Word i;
for (i = buckettab[elf_sym_hash(name) % bucketnum]; i != STN_UNDEF;
i = chaintab[i]) {
sym = &symtab->elf_symtab[i];
if (!strcmp(name, &symtab->elf_symstrtab[sym->st_name]))
return sym;
}
return NULL;
}
/*
* Return the offset in the enclave where the data segment can be found.
* The first RW segment loaded is the TCS, skip that to get info on the
* data segment.
*/
static off_t encl_get_data_offset(struct encl *encl)
{
int i;
for (i = 1; i < encl->nr_segments; i++) {
struct encl_segment *seg = &encl->segment_tbl[i];
if (seg->prot == (PROT_READ | PROT_WRITE))
return seg->offset;
}
return -1;
}
FIXTURE(enclave) {
struct encl encl;
struct sgx_enclave_run run;
};
static bool setup_test_encl(unsigned long heap_size, struct encl *encl,
struct __test_metadata *_metadata)
{
Elf64_Sym *sgx_enter_enclave_sym = NULL;
struct vdso_symtab symtab;
struct encl_segment *seg;
char maps_line[256];
FILE *maps_file;
unsigned int i;
void *addr;
if (!encl_load("test_encl.elf", encl, heap_size)) {
encl_delete(encl);
TH_LOG("Failed to load the test enclave.");
return false;
}
if (!encl_measure(encl))
goto err;
if (!encl_build(encl))
goto err;
/*
* An enclave consumer only must do this.
*/
for (i = 0; i < encl->nr_segments; i++) {
struct encl_segment *seg = &encl->segment_tbl[i];
addr = mmap((void *)encl->encl_base + seg->offset, seg->size,
seg->prot, MAP_SHARED | MAP_FIXED, encl->fd, 0);
EXPECT_NE(addr, MAP_FAILED);
if (addr == MAP_FAILED)
goto err;
}
/* Get vDSO base address */
addr = (void *)getauxval(AT_SYSINFO_EHDR);
if (!addr)
goto err;
if (!vdso_get_symtab(addr, &symtab))
goto err;
sgx_enter_enclave_sym = vdso_symtab_get(&symtab, "__vdso_sgx_enter_enclave");
if (!sgx_enter_enclave_sym)
goto err;
vdso_sgx_enter_enclave = addr + sgx_enter_enclave_sym->st_value;
return true;
err:
for (i = 0; i < encl->nr_segments; i++) {
seg = &encl->segment_tbl[i];
TH_LOG("0x%016lx 0x%016lx 0x%02x", seg->offset, seg->size, seg->prot);
}
maps_file = fopen("/proc/self/maps", "r");
if (maps_file != NULL) {
while (fgets(maps_line, sizeof(maps_line), maps_file) != NULL) {
maps_line[strlen(maps_line) - 1] = '\0';
if (strstr(maps_line, "/dev/sgx_enclave"))
TH_LOG("%s", maps_line);
}
fclose(maps_file);
}
TH_LOG("Failed to initialize the test enclave.");
encl_delete(encl);
return false;
}
FIXTURE_SETUP(enclave)
{
}
FIXTURE_TEARDOWN(enclave)
{
encl_delete(&self->encl);
}
#define ENCL_CALL(op, run, clobbered) \
({ \
int ret; \
if ((clobbered)) \
ret = vdso_sgx_enter_enclave((unsigned long)(op), 0, 0, \
EENTER, 0, 0, (run)); \
else \
ret = sgx_enter_enclave((void *)(op), NULL, 0, EENTER, NULL, NULL, \
(run)); \
ret; \
})
#define EXPECT_EEXIT(run) \
do { \
EXPECT_EQ((run)->function, EEXIT); \
if ((run)->function != EEXIT) \
TH_LOG("0x%02x 0x%02x 0x%016llx", (run)->exception_vector, \
(run)->exception_error_code, (run)->exception_addr); \
} while (0)
TEST_F(enclave, unclobbered_vdso)
{
struct encl_op_get_from_buf get_op;
struct encl_op_put_to_buf put_op;
ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
put_op.value = MAGIC;
EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
get_op.value = 0;
EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0);
EXPECT_EQ(get_op.value, MAGIC);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
}
/*
* A section metric is concatenated in a way that @low bits 12-31 define the
* bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
* metric.
*/
static unsigned long sgx_calc_section_metric(unsigned int low,
unsigned int high)
{
return (low & GENMASK_ULL(31, 12)) +
((high & GENMASK_ULL(19, 0)) << 32);
}
/*
* Sum total available physical SGX memory across all EPC sections
*
* Return: total available physical SGX memory available on system
*/
static unsigned long get_total_epc_mem(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned long total_size = 0;
unsigned int type;
int section = 0;
while (true) {
__cpuid_count(SGX_CPUID, section + SGX_CPUID_EPC, eax, ebx, ecx, edx);
type = eax & SGX_CPUID_EPC_MASK;
if (type == SGX_CPUID_EPC_INVALID)
break;
if (type != SGX_CPUID_EPC_SECTION)
break;
total_size += sgx_calc_section_metric(ecx, edx);
section++;
}
return total_size;
}
TEST_F(enclave, unclobbered_vdso_oversubscribed)
{
struct encl_op_get_from_buf get_op;
struct encl_op_put_to_buf put_op;
unsigned long total_mem;
total_mem = get_total_epc_mem();
ASSERT_NE(total_mem, 0);
ASSERT_TRUE(setup_test_encl(total_mem, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
put_op.value = MAGIC;
EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
get_op.value = 0;
EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0);
EXPECT_EQ(get_op.value, MAGIC);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
}
TEST_F(enclave, clobbered_vdso)
{
struct encl_op_get_from_buf get_op;
struct encl_op_put_to_buf put_op;
ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
put_op.value = MAGIC;
EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
get_op.value = 0;
EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0);
EXPECT_EQ(get_op.value, MAGIC);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
}
static int test_handler(long rdi, long rsi, long rdx, long ursp, long r8, long r9,
struct sgx_enclave_run *run)
{
run->user_data = 0;
return 0;
}
TEST_F(enclave, clobbered_vdso_and_user_function)
{
struct encl_op_get_from_buf get_op;
struct encl_op_put_to_buf put_op;
ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
self->run.user_handler = (__u64)test_handler;
self->run.user_data = 0xdeadbeef;
put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
put_op.value = MAGIC;
EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
get_op.value = 0;
EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0);
EXPECT_EQ(get_op.value, MAGIC);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.user_data, 0);
}
/*
* Sanity check that it is possible to enter either of the two hardcoded TCS
*/
TEST_F(enclave, tcs_entry)
{
struct encl_op_header op;
ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
op.type = ENCL_OP_NOP;
EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
/* Move to the next TCS. */
self->run.tcs = self->encl.encl_base + PAGE_SIZE;
EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
}
/*
* Second page of .data segment is used to test changing PTE permissions.
* This spans the local encl_buffer within the test enclave.
*
* 1) Start with a sanity check: a value is written to the target page within
* the enclave and read back to ensure target page can be written to.
* 2) Change PTE permissions (RW -> RO) of target page within enclave.
* 3) Repeat (1) - this time expecting a regular #PF communicated via the
* vDSO.
* 4) Change PTE permissions of target page within enclave back to be RW.
* 5) Repeat (1) by resuming enclave, now expected to be possible to write to
* and read from target page within enclave.
*/
TEST_F(enclave, pte_permissions)
{
struct encl_op_get_from_addr get_addr_op;
struct encl_op_put_to_addr put_addr_op;
unsigned long data_start;
int ret;
ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));
memset(&self->run, 0, sizeof(self->run));
self->run.tcs = self->encl.encl_base;
data_start = self->encl.encl_base +
encl_get_data_offset(&self->encl) +
PAGE_SIZE;
/*
* Sanity check to ensure it is possible to write to page that will
* have its permissions manipulated.
*/
/* Write MAGIC to page */
put_addr_op.value = MAGIC;
put_addr_op.addr = data_start;
put_addr_op.header.type = ENCL_OP_PUT_TO_ADDRESS;
EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
/*
* Read memory that was just written to, confirming that it is the
* value previously written (MAGIC).
*/
get_addr_op.value = 0;
get_addr_op.addr = data_start;
get_addr_op.header.type = ENCL_OP_GET_FROM_ADDRESS;
EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0);
EXPECT_EQ(get_addr_op.value, MAGIC);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
/* Change PTE permissions of target page within the enclave */
ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ);
if (ret)
perror("mprotect");
/*
* PTE permissions of target page changed to read-only, EPCM
* permissions unchanged (EPCM permissions are RW), attempt to
* write to the page, expecting a regular #PF.
*/
put_addr_op.value = MAGIC2;
EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0);
EXPECT_EQ(self->run.exception_vector, 14);
EXPECT_EQ(self->run.exception_error_code, 0x7);
EXPECT_EQ(self->run.exception_addr, data_start);
self->run.exception_vector = 0;
self->run.exception_error_code = 0;
self->run.exception_addr = 0;
/*
* Change PTE permissions back to enable enclave to write to the
* target page and resume enclave - do not expect any exceptions this
* time.
*/
ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ | PROT_WRITE);
if (ret)
perror("mprotect");
EXPECT_EQ(vdso_sgx_enter_enclave((unsigned long)&put_addr_op, 0,
0, ERESUME, 0, 0, &self->run),
0);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
get_addr_op.value = 0;
EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0);
EXPECT_EQ(get_addr_op.value, MAGIC2);
EXPECT_EEXIT(&self->run);
EXPECT_EQ(self->run.exception_vector, 0);
EXPECT_EQ(self->run.exception_error_code, 0);
EXPECT_EQ(self->run.exception_addr, 0);
}
TEST_HARNESS_MAIN