linux/drivers/media/dvb/frontends/tda18271-fe.c
Michael Krufky b92bf0f6a9 V4L/DVB (6928): tda18271: break calculation functions out of tda18271_tune
Break out the following new functions from tda18271_tune:

tda18271_calc_bp_filter
tda18271_calc_km
tda18271_calc_rf_band
tda18271_calc_gain_taper
tda18271_calc_ir_measure
tda18271_calc_rf_cal

Signed-off-by: Michael Krufky <mkrufky@linuxtv.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
2008-01-25 19:04:26 -02:00

887 lines
20 KiB
C

/*
tda18271-fe.c - driver for the Philips / NXP TDA18271 silicon tuner
Copyright (C) 2007 Michael Krufky (mkrufky@linuxtv.org)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/delay.h>
#include <linux/videodev2.h>
#include "tda18271-priv.h"
int tda18271_debug;
module_param_named(debug, tda18271_debug, int, 0644);
MODULE_PARM_DESC(debug, "set debug level (info=1, map=2, reg=4 (or-able))");
/*---------------------------------------------------------------------*/
static int tda18271_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct tda18271_priv *priv = fe->tuner_priv;
enum tda18271_i2c_gate gate;
int ret = 0;
switch (priv->gate) {
case TDA18271_GATE_DIGITAL:
case TDA18271_GATE_ANALOG:
gate = priv->gate;
break;
case TDA18271_GATE_AUTO:
default:
switch (priv->mode) {
case TDA18271_DIGITAL:
gate = TDA18271_GATE_DIGITAL;
break;
case TDA18271_ANALOG:
default:
gate = TDA18271_GATE_ANALOG;
break;
}
}
switch (gate) {
case TDA18271_GATE_ANALOG:
if (fe->ops.analog_ops.i2c_gate_ctrl)
ret = fe->ops.analog_ops.i2c_gate_ctrl(fe, enable);
break;
case TDA18271_GATE_DIGITAL:
if (fe->ops.i2c_gate_ctrl)
ret = fe->ops.i2c_gate_ctrl(fe, enable);
break;
default:
ret = -EINVAL;
break;
}
return ret;
};
/*---------------------------------------------------------------------*/
static void tda18271_dump_regs(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
tda_reg("=== TDA18271 REG DUMP ===\n");
tda_reg("ID_BYTE = 0x%02x\n", 0xff & regs[R_ID]);
tda_reg("THERMO_BYTE = 0x%02x\n", 0xff & regs[R_TM]);
tda_reg("POWER_LEVEL_BYTE = 0x%02x\n", 0xff & regs[R_PL]);
tda_reg("EASY_PROG_BYTE_1 = 0x%02x\n", 0xff & regs[R_EP1]);
tda_reg("EASY_PROG_BYTE_2 = 0x%02x\n", 0xff & regs[R_EP2]);
tda_reg("EASY_PROG_BYTE_3 = 0x%02x\n", 0xff & regs[R_EP3]);
tda_reg("EASY_PROG_BYTE_4 = 0x%02x\n", 0xff & regs[R_EP4]);
tda_reg("EASY_PROG_BYTE_5 = 0x%02x\n", 0xff & regs[R_EP5]);
tda_reg("CAL_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_CPD]);
tda_reg("CAL_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_CD1]);
tda_reg("CAL_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_CD2]);
tda_reg("CAL_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_CD3]);
tda_reg("MAIN_POST_DIV_BYTE = 0x%02x\n", 0xff & regs[R_MPD]);
tda_reg("MAIN_DIV_BYTE_1 = 0x%02x\n", 0xff & regs[R_MD1]);
tda_reg("MAIN_DIV_BYTE_2 = 0x%02x\n", 0xff & regs[R_MD2]);
tda_reg("MAIN_DIV_BYTE_3 = 0x%02x\n", 0xff & regs[R_MD3]);
}
static void tda18271_read_regs(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
unsigned char buf = 0x00;
int ret;
struct i2c_msg msg[] = {
{ .addr = priv->i2c_addr, .flags = 0,
.buf = &buf, .len = 1 },
{ .addr = priv->i2c_addr, .flags = I2C_M_RD,
.buf = regs, .len = 16 }
};
tda18271_i2c_gate_ctrl(fe, 1);
/* read all registers */
ret = i2c_transfer(priv->i2c_adap, msg, 2);
tda18271_i2c_gate_ctrl(fe, 0);
if (ret != 2)
tda_err("ERROR: i2c_transfer returned: %d\n", ret);
if (tda18271_debug & DBG_REG)
tda18271_dump_regs(fe);
}
static void tda18271_write_regs(struct dvb_frontend *fe, int idx, int len)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
unsigned char buf[TDA18271_NUM_REGS+1];
struct i2c_msg msg = { .addr = priv->i2c_addr, .flags = 0,
.buf = buf, .len = len+1 };
int i, ret;
BUG_ON((len == 0) || (idx+len > sizeof(buf)));
buf[0] = idx;
for (i = 1; i <= len; i++) {
buf[i] = regs[idx-1+i];
}
tda18271_i2c_gate_ctrl(fe, 1);
/* write registers */
ret = i2c_transfer(priv->i2c_adap, &msg, 1);
tda18271_i2c_gate_ctrl(fe, 0);
if (ret != 1)
tda_err("ERROR: i2c_transfer returned: %d\n", ret);
}
/*---------------------------------------------------------------------*/
static int tda18271_init_regs(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
tda_dbg("initializing registers for device @ %d-%04x\n",
i2c_adapter_id(priv->i2c_adap), priv->i2c_addr);
/* initialize registers */
regs[R_ID] = 0x83;
regs[R_TM] = 0x08;
regs[R_PL] = 0x80;
regs[R_EP1] = 0xc6;
regs[R_EP2] = 0xdf;
regs[R_EP3] = 0x16;
regs[R_EP4] = 0x60;
regs[R_EP5] = 0x80;
regs[R_CPD] = 0x80;
regs[R_CD1] = 0x00;
regs[R_CD2] = 0x00;
regs[R_CD3] = 0x00;
regs[R_MPD] = 0x00;
regs[R_MD1] = 0x00;
regs[R_MD2] = 0x00;
regs[R_MD3] = 0x00;
regs[R_EB1] = 0xff;
regs[R_EB2] = 0x01;
regs[R_EB3] = 0x84;
regs[R_EB4] = 0x41;
regs[R_EB5] = 0x01;
regs[R_EB6] = 0x84;
regs[R_EB7] = 0x40;
regs[R_EB8] = 0x07;
regs[R_EB9] = 0x00;
regs[R_EB10] = 0x00;
regs[R_EB11] = 0x96;
regs[R_EB12] = 0x0f;
regs[R_EB13] = 0xc1;
regs[R_EB14] = 0x00;
regs[R_EB15] = 0x8f;
regs[R_EB16] = 0x00;
regs[R_EB17] = 0x00;
regs[R_EB18] = 0x00;
regs[R_EB19] = 0x00;
regs[R_EB20] = 0x20;
regs[R_EB21] = 0x33;
regs[R_EB22] = 0x48;
regs[R_EB23] = 0xb0;
tda18271_write_regs(fe, 0x00, TDA18271_NUM_REGS);
/* setup AGC1 & AGC2 */
regs[R_EB17] = 0x00;
tda18271_write_regs(fe, R_EB17, 1);
regs[R_EB17] = 0x03;
tda18271_write_regs(fe, R_EB17, 1);
regs[R_EB17] = 0x43;
tda18271_write_regs(fe, R_EB17, 1);
regs[R_EB17] = 0x4c;
tda18271_write_regs(fe, R_EB17, 1);
regs[R_EB20] = 0xa0;
tda18271_write_regs(fe, R_EB20, 1);
regs[R_EB20] = 0xa7;
tda18271_write_regs(fe, R_EB20, 1);
regs[R_EB20] = 0xe7;
tda18271_write_regs(fe, R_EB20, 1);
regs[R_EB20] = 0xec;
tda18271_write_regs(fe, R_EB20, 1);
/* image rejection calibration */
/* low-band */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x81;
regs[R_CPD] = 0xcc;
regs[R_CD1] = 0x6c;
regs[R_CD2] = 0x00;
regs[R_CD3] = 0x00;
regs[R_MPD] = 0xcd;
regs[R_MD1] = 0x77;
regs[R_MD2] = 0x08;
regs[R_MD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 11);
msleep(5); /* pll locking */
regs[R_EP1] = 0xc6;
tda18271_write_regs(fe, R_EP1, 1);
msleep(5); /* wanted low measurement */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x85;
regs[R_CPD] = 0xcb;
regs[R_CD1] = 0x66;
regs[R_CD2] = 0x70;
regs[R_CD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 7);
msleep(5); /* pll locking */
regs[R_EP2] = 0xdf;
tda18271_write_regs(fe, R_EP2, 1);
msleep(30); /* image low optimization completion */
/* mid-band */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x82;
regs[R_CPD] = 0xa8;
regs[R_CD1] = 0x66;
regs[R_CD2] = 0x00;
regs[R_CD3] = 0x00;
regs[R_MPD] = 0xa9;
regs[R_MD1] = 0x73;
regs[R_MD2] = 0x1a;
regs[R_MD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 11);
msleep(5); /* pll locking */
regs[R_EP1] = 0xc6;
tda18271_write_regs(fe, R_EP1, 1);
msleep(5); /* wanted mid measurement */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x86;
regs[R_CPD] = 0xa8;
regs[R_CD1] = 0x66;
regs[R_CD2] = 0xa0;
regs[R_CD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 7);
msleep(5); /* pll locking */
regs[R_EP2] = 0xdf;
tda18271_write_regs(fe, R_EP2, 1);
msleep(30); /* image mid optimization completion */
/* high-band */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x83;
regs[R_CPD] = 0x98;
regs[R_CD1] = 0x65;
regs[R_CD2] = 0x00;
regs[R_CD3] = 0x00;
regs[R_MPD] = 0x99;
regs[R_MD1] = 0x71;
regs[R_MD2] = 0xcd;
regs[R_MD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 11);
msleep(5); /* pll locking */
regs[R_EP1] = 0xc6;
tda18271_write_regs(fe, R_EP1, 1);
msleep(5); /* wanted high measurement */
regs[R_EP3] = 0x1f;
regs[R_EP4] = 0x66;
regs[R_EP5] = 0x87;
regs[R_CPD] = 0x98;
regs[R_CD1] = 0x65;
regs[R_CD2] = 0x50;
regs[R_CD3] = 0x00;
tda18271_write_regs(fe, R_EP3, 7);
msleep(5); /* pll locking */
regs[R_EP2] = 0xdf;
tda18271_write_regs(fe, R_EP2, 1);
msleep(30); /* image high optimization completion */
regs[R_EP4] = 0x64;
tda18271_write_regs(fe, R_EP4, 1);
regs[R_EP1] = 0xc6;
tda18271_write_regs(fe, R_EP1, 1);
return 0;
}
static int tda18271_init(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
tda18271_read_regs(fe);
/* test IR_CAL_OK to see if we need init */
if ((regs[R_EP1] & 0x08) == 0)
tda18271_init_regs(fe);
return 0;
}
static int tda18271_calc_main_pll(struct dvb_frontend *fe, u32 freq)
{
/* Sets Main Post-Divider & Divider bytes, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 d, pd;
u32 div;
int ret = tda18271_lookup_pll_map(MAIN_PLL, &freq, &pd, &d);
if (ret < 0)
goto fail;
regs[R_MPD] = (0x77 & pd);
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_MPD] &= ~0x08;
break;
case TDA18271_DIGITAL:
regs[R_MPD] |= 0x08;
break;
}
div = ((d * (freq / 1000)) << 7) / 125;
regs[R_MD1] = 0x7f & (div >> 16);
regs[R_MD2] = 0xff & (div >> 8);
regs[R_MD3] = 0xff & div;
fail:
return ret;
}
static int tda18271_calc_cal_pll(struct dvb_frontend *fe, u32 freq)
{
/* Sets Cal Post-Divider & Divider bytes, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 d, pd;
u32 div;
int ret = tda18271_lookup_pll_map(CAL_PLL, &freq, &pd, &d);
if (ret < 0)
goto fail;
regs[R_CPD] = pd;
div = ((d * (freq / 1000)) << 7) / 125;
regs[R_CD1] = 0x7f & (div >> 16);
regs[R_CD2] = 0xff & (div >> 8);
regs[R_CD3] = 0xff & div;
fail:
return ret;
}
static int tda18271_calc_bp_filter(struct dvb_frontend *fe, u32 *freq)
{
/* Sets BP filter bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(BP_FILTER, freq, &val);
if (ret < 0)
goto fail;
regs[R_EP1] &= ~0x07; /* clear bp filter bits */
regs[R_EP1] |= (0x07 & val);
fail:
return ret;
}
static int tda18271_calc_km(struct dvb_frontend *fe, u32 *freq)
{
/* Sets K & M bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(RF_CAL_KMCO, freq, &val);
if (ret < 0)
goto fail;
regs[R_EB13] &= ~0x7c; /* clear k & m bits */
regs[R_EB13] |= (0x7c & val);
fail:
return ret;
}
static int tda18271_calc_rf_band(struct dvb_frontend *fe, u32 *freq)
{
/* Sets RF Band bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(RF_BAND, freq, &val);
if (ret < 0)
goto fail;
regs[R_EP2] &= ~0xe0; /* clear rf band bits */
regs[R_EP2] |= (0xe0 & (val << 5));
fail:
return ret;
}
static int tda18271_calc_gain_taper(struct dvb_frontend *fe, u32 *freq)
{
/* Sets Gain Taper bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(GAIN_TAPER, freq, &val);
if (ret < 0)
goto fail;
regs[R_EP2] &= ~0x1f; /* clear gain taper bits */
regs[R_EP2] |= (0x1f & val);
fail:
return ret;
}
static int tda18271_calc_ir_measure(struct dvb_frontend *fe, u32 *freq)
{
/* Sets IR Meas bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(IR_MEASURE, freq, &val);
if (ret < 0)
goto fail;
regs[R_EP5] &= ~0x07;
regs[R_EP5] |= (0x07 & val);
fail:
return ret;
}
static int tda18271_calc_rf_cal(struct dvb_frontend *fe, u32 *freq)
{
/* Sets RF Cal bits, but does not write them */
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u8 val;
int ret = tda18271_lookup_map(RF_CAL, freq, &val);
if (ret < 0)
goto fail;
/* VHF_Low band only */
if (0 == val) {
ret = -ERANGE;
goto fail;
}
regs[R_EB14] = val;
fail:
return ret;
}
static int tda18271_tune(struct dvb_frontend *fe,
u32 ifc, u32 freq, u32 bw, u8 std)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
u32 N = 0;
tda18271_init(fe);
tda_dbg("freq = %d, ifc = %d\n", freq, ifc);
/* RF tracking filter calibration */
/* calculate BP_Filter */
tda18271_calc_bp_filter(fe, &freq);
tda18271_write_regs(fe, R_EP1, 1);
regs[R_EB4] &= 0x07;
regs[R_EB4] |= 0x60;
tda18271_write_regs(fe, R_EB4, 1);
regs[R_EB7] = 0x60;
tda18271_write_regs(fe, R_EB7, 1);
regs[R_EB14] = 0x00;
tda18271_write_regs(fe, R_EB14, 1);
regs[R_EB20] = 0xcc;
tda18271_write_regs(fe, R_EB20, 1);
/* set CAL mode to RF tracking filter calibration */
regs[R_EP4] |= 0x03;
/* calculate CAL PLL */
switch (priv->mode) {
case TDA18271_ANALOG:
N = freq - 1250000;
break;
case TDA18271_DIGITAL:
N = freq + bw / 2;
break;
}
tda18271_calc_cal_pll(fe, N);
/* calculate MAIN PLL */
switch (priv->mode) {
case TDA18271_ANALOG:
N = freq - 250000;
break;
case TDA18271_DIGITAL:
N = freq + bw / 2 + 1000000;
break;
}
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_EP3, 11);
msleep(5); /* RF tracking filter calibration initialization */
/* search for K,M,CO for RF Calibration */
tda18271_calc_km(fe, &freq);
tda18271_write_regs(fe, R_EB13, 1);
/* search for RF_BAND */
tda18271_calc_rf_band(fe, &freq);
/* search for Gain_Taper */
tda18271_calc_gain_taper(fe, &freq);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
tda18271_write_regs(fe, R_EP2, 1);
tda18271_write_regs(fe, R_EP1, 1);
regs[R_EB4] &= 0x07;
regs[R_EB4] |= 0x40;
tda18271_write_regs(fe, R_EB4, 1);
regs[R_EB7] = 0x40;
tda18271_write_regs(fe, R_EB7, 1);
msleep(10);
regs[R_EB20] = 0xec;
tda18271_write_regs(fe, R_EB20, 1);
msleep(60); /* RF tracking filter calibration completion */
regs[R_EP4] &= ~0x03; /* set cal mode to normal */
tda18271_write_regs(fe, R_EP4, 1);
tda18271_write_regs(fe, R_EP1, 1);
/* RF tracking filter correction for VHF_Low band */
if (0 == tda18271_calc_rf_cal(fe, &freq))
tda18271_write_regs(fe, R_EB14, 1);
/* Channel Configuration */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_EB22] = 0x2c;
break;
case TDA18271_DIGITAL:
regs[R_EB22] = 0x37;
break;
}
tda18271_write_regs(fe, R_EB22, 1);
regs[R_EP1] |= 0x40; /* set dis power level on */
/* set standard */
regs[R_EP3] &= ~0x1f; /* clear std bits */
/* see table 22 */
regs[R_EP3] |= std;
regs[R_EP4] &= ~0x03; /* set cal mode to normal */
regs[R_EP4] &= ~0x1c; /* clear if level bits */
switch (priv->mode) {
case TDA18271_ANALOG:
regs[R_MPD] &= ~0x80; /* IF notch = 0 */
break;
case TDA18271_DIGITAL:
regs[R_EP4] |= 0x04;
regs[R_MPD] |= 0x80;
break;
}
regs[R_EP4] &= ~0x80; /* turn this bit on only for fm */
/* image rejection validity */
tda18271_calc_ir_measure(fe, &freq);
/* calculate MAIN PLL */
N = freq + ifc;
tda18271_calc_main_pll(fe, N);
tda18271_write_regs(fe, R_TM, 15);
msleep(5);
return 0;
}
/* ------------------------------------------------------------------ */
static int tda18271_set_params(struct dvb_frontend *fe,
struct dvb_frontend_parameters *params)
{
struct tda18271_priv *priv = fe->tuner_priv;
u8 std;
u32 bw, sgIF = 0;
u32 freq = params->frequency;
priv->mode = TDA18271_DIGITAL;
/* see table 22 */
if (fe->ops.info.type == FE_ATSC) {
switch (params->u.vsb.modulation) {
case VSB_8:
case VSB_16:
std = 0x1b; /* device-specific (spec says 0x1c) */
sgIF = 5380000;
break;
case QAM_64:
case QAM_256:
std = 0x18; /* device-specific (spec says 0x1d) */
sgIF = 4000000;
break;
default:
tda_warn("modulation not set!\n");
return -EINVAL;
}
#if 0
/* userspace request is already center adjusted */
freq += 1750000; /* Adjust to center (+1.75MHZ) */
#endif
bw = 6000000;
} else if (fe->ops.info.type == FE_OFDM) {
switch (params->u.ofdm.bandwidth) {
case BANDWIDTH_6_MHZ:
std = 0x1b; /* device-specific (spec says 0x1c) */
bw = 6000000;
sgIF = 3300000;
break;
case BANDWIDTH_7_MHZ:
std = 0x19; /* device-specific (spec says 0x1d) */
bw = 7000000;
sgIF = 3800000;
break;
case BANDWIDTH_8_MHZ:
std = 0x1a; /* device-specific (spec says 0x1e) */
bw = 8000000;
sgIF = 4300000;
break;
default:
tda_warn("bandwidth not set!\n");
return -EINVAL;
}
} else {
tda_warn("modulation type not supported!\n");
return -EINVAL;
}
return tda18271_tune(fe, sgIF, freq, bw, std);
}
static int tda18271_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct tda18271_priv *priv = fe->tuner_priv;
u8 std;
unsigned int sgIF;
char *mode;
priv->mode = TDA18271_ANALOG;
/* see table 22 */
if (params->std & V4L2_STD_MN) {
std = 0x0d;
sgIF = 92;
mode = "MN";
} else if (params->std & V4L2_STD_B) {
std = 0x0e;
sgIF = 108;
mode = "B";
} else if (params->std & V4L2_STD_GH) {
std = 0x0f;
sgIF = 124;
mode = "GH";
} else if (params->std & V4L2_STD_PAL_I) {
std = 0x0f;
sgIF = 124;
mode = "I";
} else if (params->std & V4L2_STD_DK) {
std = 0x0f;
sgIF = 124;
mode = "DK";
} else if (params->std & V4L2_STD_SECAM_L) {
std = 0x0f;
sgIF = 124;
mode = "L";
} else if (params->std & V4L2_STD_SECAM_LC) {
std = 0x0f;
sgIF = 20;
mode = "LC";
} else {
std = 0x0f;
sgIF = 124;
mode = "xx";
}
if (params->mode == V4L2_TUNER_RADIO)
sgIF = 88; /* if frequency is 5.5 MHz */
tda_dbg("setting tda18271 to system %s\n", mode);
return tda18271_tune(fe, sgIF * 62500, params->frequency * 62500,
0, std);
}
static int tda18271_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int tda18271_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct tda18271_priv *priv = fe->tuner_priv;
*frequency = priv->frequency;
return 0;
}
static int tda18271_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
struct tda18271_priv *priv = fe->tuner_priv;
*bandwidth = priv->bandwidth;
return 0;
}
static int tda18271_get_id(struct dvb_frontend *fe)
{
struct tda18271_priv *priv = fe->tuner_priv;
unsigned char *regs = priv->tda18271_regs;
char *name;
int ret = 0;
tda18271_read_regs(fe);
switch (regs[R_ID] & 0x7f) {
case 3:
name = "TDA18271HD/C1";
break;
case 4:
name = "TDA18271HD/C2";
ret = -EPROTONOSUPPORT;
break;
default:
name = "Unknown device";
ret = -EINVAL;
break;
}
tda_info("%s detected @ %d-%04x%s\n", name,
i2c_adapter_id(priv->i2c_adap), priv->i2c_addr,
(0 == ret) ? "" : ", device not supported.");
return ret;
}
static struct dvb_tuner_ops tda18271_tuner_ops = {
.info = {
.name = "NXP TDA18271HD",
.frequency_min = 45000000,
.frequency_max = 864000000,
.frequency_step = 62500
},
.init = tda18271_init,
.set_params = tda18271_set_params,
.set_analog_params = tda18271_set_analog_params,
.release = tda18271_release,
.get_frequency = tda18271_get_frequency,
.get_bandwidth = tda18271_get_bandwidth,
};
struct dvb_frontend *tda18271_attach(struct dvb_frontend *fe, u8 addr,
struct i2c_adapter *i2c,
enum tda18271_i2c_gate gate)
{
struct tda18271_priv *priv = NULL;
priv = kzalloc(sizeof(struct tda18271_priv), GFP_KERNEL);
if (priv == NULL)
return NULL;
priv->i2c_addr = addr;
priv->i2c_adap = i2c;
priv->gate = gate;
fe->tuner_priv = priv;
if (tda18271_get_id(fe) < 0)
goto fail;
memcpy(&fe->ops.tuner_ops, &tda18271_tuner_ops,
sizeof(struct dvb_tuner_ops));
tda18271_init_regs(fe);
return fe;
fail:
tda18271_release(fe);
return NULL;
}
EXPORT_SYMBOL_GPL(tda18271_attach);
MODULE_DESCRIPTION("NXP TDA18271HD analog / digital tuner driver");
MODULE_AUTHOR("Michael Krufky <mkrufky@linuxtv.org>");
MODULE_LICENSE("GPL");
/*
* Overrides for Emacs so that we follow Linus's tabbing style.
* ---------------------------------------------------------------------------
* Local variables:
* c-basic-offset: 8
* End:
*/