[Changes from V1: - The __compat_break has been abandoned in favor of a more readable can_loop macro that can be used anywhere, including loop conditions.] The macro list_for_each_entry is defined in bpf_arena_list.h as follows: #define list_for_each_entry(pos, head, member) \ for (void * ___tmp = (pos = list_entry_safe((head)->first, \ typeof(*(pos)), member), \ (void *)0); \ pos && ({ ___tmp = (void *)pos->member.next; 1; }); \ cond_break, \ pos = list_entry_safe((void __arena *)___tmp, typeof(*(pos)), member)) The macro cond_break, in turn, expands to a statement expression that contains a `break' statement. Compound statement expressions, and the subsequent ability of placing statements in the header of a `for' loop, are GNU extensions. Unfortunately, clang implements this GNU extension differently than GCC: - In GCC the `break' statement is bound to the containing "breakable" context in which the defining `for' appears. If there is no such context, GCC emits a warning: break statement without enclosing `for' o `switch' statement. - In clang the `break' statement is bound to the defining `for'. If the defining `for' is itself inside some breakable construct, then clang emits a -Wgcc-compat warning. This patch adds a new macro can_loop to bpf_experimental, that implements the same logic than cond_break but evaluates to a boolean expression. The patch also changes all the current instances of usage of cond_break withing the header of loop accordingly. Tested in bpf-next master. No regressions. Signed-off-by: Jose E. Marchesi <jose.marchesi@oracle.com> Cc: david.faust@oracle.com Cc: cupertino.miranda@oracle.com Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Link: https://lore.kernel.org/r/20240511212243.23477-1-jose.marchesi@oracle.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
409 lines
7.8 KiB
C
409 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include "bpf_misc.h"
|
|
#include "bpf_experimental.h"
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_ARRAY);
|
|
__uint(max_entries, 8);
|
|
__type(key, __u32);
|
|
__type(value, __u64);
|
|
} map SEC(".maps");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_USER_RINGBUF);
|
|
__uint(max_entries, 8);
|
|
} ringbuf SEC(".maps");
|
|
|
|
struct vm_area_struct;
|
|
struct bpf_map;
|
|
|
|
struct buf_context {
|
|
char *buf;
|
|
};
|
|
|
|
struct num_context {
|
|
__u64 i;
|
|
__u64 j;
|
|
};
|
|
|
|
__u8 choice_arr[2] = { 0, 1 };
|
|
|
|
static int unsafe_on_2nd_iter_cb(__u32 idx, struct buf_context *ctx)
|
|
{
|
|
if (idx == 0) {
|
|
ctx->buf = (char *)(0xDEAD);
|
|
return 0;
|
|
}
|
|
|
|
if (bpf_probe_read_user(ctx->buf, 8, (void *)(0xBADC0FFEE)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("R1 type=scalar expected=fp")
|
|
int unsafe_on_2nd_iter(void *unused)
|
|
{
|
|
char buf[4];
|
|
struct buf_context loop_ctx = { .buf = buf };
|
|
|
|
bpf_loop(100, unsafe_on_2nd_iter_cb, &loop_ctx, 0);
|
|
return 0;
|
|
}
|
|
|
|
static int unsafe_on_zero_iter_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
ctx->i = 0;
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid access to map value, value_size=2 off=32 size=1")
|
|
int unsafe_on_zero_iter(void *unused)
|
|
{
|
|
struct num_context loop_ctx = { .i = 32 };
|
|
|
|
bpf_loop(100, unsafe_on_zero_iter_cb, &loop_ctx, 0);
|
|
return choice_arr[loop_ctx.i];
|
|
}
|
|
|
|
static int widening_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
++ctx->i;
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__success
|
|
int widening(void *unused)
|
|
{
|
|
struct num_context loop_ctx = { .i = 0, .j = 1 };
|
|
|
|
bpf_loop(100, widening_cb, &loop_ctx, 0);
|
|
/* loop_ctx.j is not changed during callback iteration,
|
|
* verifier should not apply widening to it.
|
|
*/
|
|
return choice_arr[loop_ctx.j];
|
|
}
|
|
|
|
static int loop_detection_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
for (;;) {}
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("infinite loop detected")
|
|
int loop_detection(void *unused)
|
|
{
|
|
struct num_context loop_ctx = { .i = 0 };
|
|
|
|
bpf_loop(100, loop_detection_cb, &loop_ctx, 0);
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline __u64 oob_state_machine(struct num_context *ctx)
|
|
{
|
|
switch (ctx->i) {
|
|
case 0:
|
|
ctx->i = 1;
|
|
break;
|
|
case 1:
|
|
ctx->i = 32;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __u64 for_each_map_elem_cb(struct bpf_map *map, __u32 *key, __u64 *val, void *data)
|
|
{
|
|
return oob_state_machine(data);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid access to map value, value_size=2 off=32 size=1")
|
|
int unsafe_for_each_map_elem(void *unused)
|
|
{
|
|
struct num_context loop_ctx = { .i = 0 };
|
|
|
|
bpf_for_each_map_elem(&map, for_each_map_elem_cb, &loop_ctx, 0);
|
|
return choice_arr[loop_ctx.i];
|
|
}
|
|
|
|
static __u64 ringbuf_drain_cb(struct bpf_dynptr *dynptr, void *data)
|
|
{
|
|
return oob_state_machine(data);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid access to map value, value_size=2 off=32 size=1")
|
|
int unsafe_ringbuf_drain(void *unused)
|
|
{
|
|
struct num_context loop_ctx = { .i = 0 };
|
|
|
|
bpf_user_ringbuf_drain(&ringbuf, ringbuf_drain_cb, &loop_ctx, 0);
|
|
return choice_arr[loop_ctx.i];
|
|
}
|
|
|
|
static __u64 find_vma_cb(struct task_struct *task, struct vm_area_struct *vma, void *data)
|
|
{
|
|
return oob_state_machine(data);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid access to map value, value_size=2 off=32 size=1")
|
|
int unsafe_find_vma(void *unused)
|
|
{
|
|
struct task_struct *task = bpf_get_current_task_btf();
|
|
struct num_context loop_ctx = { .i = 0 };
|
|
|
|
bpf_find_vma(task, 0, find_vma_cb, &loop_ctx, 0);
|
|
return choice_arr[loop_ctx.i];
|
|
}
|
|
|
|
static int iter_limit_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
ctx->i++;
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__success
|
|
int bpf_loop_iter_limit_ok(void *unused)
|
|
{
|
|
struct num_context ctx = { .i = 0 };
|
|
|
|
bpf_loop(1, iter_limit_cb, &ctx, 0);
|
|
return choice_arr[ctx.i];
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid access to map value, value_size=2 off=2 size=1")
|
|
int bpf_loop_iter_limit_overflow(void *unused)
|
|
{
|
|
struct num_context ctx = { .i = 0 };
|
|
|
|
bpf_loop(2, iter_limit_cb, &ctx, 0);
|
|
return choice_arr[ctx.i];
|
|
}
|
|
|
|
static int iter_limit_level2a_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
ctx->i += 100;
|
|
return 0;
|
|
}
|
|
|
|
static int iter_limit_level2b_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
ctx->i += 10;
|
|
return 0;
|
|
}
|
|
|
|
static int iter_limit_level1_cb(__u32 idx, struct num_context *ctx)
|
|
{
|
|
ctx->i += 1;
|
|
bpf_loop(1, iter_limit_level2a_cb, ctx, 0);
|
|
bpf_loop(1, iter_limit_level2b_cb, ctx, 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Check that path visiting every callback function once had been
|
|
* reached by verifier. Variables 'ctx{1,2}i' below serve as flags,
|
|
* with each decimal digit corresponding to a callback visit marker.
|
|
*/
|
|
SEC("socket")
|
|
__success __retval(111111)
|
|
int bpf_loop_iter_limit_nested(void *unused)
|
|
{
|
|
struct num_context ctx1 = { .i = 0 };
|
|
struct num_context ctx2 = { .i = 0 };
|
|
__u64 a, b, c;
|
|
|
|
bpf_loop(1, iter_limit_level1_cb, &ctx1, 0);
|
|
bpf_loop(1, iter_limit_level1_cb, &ctx2, 0);
|
|
a = ctx1.i;
|
|
b = ctx2.i;
|
|
/* Force 'ctx1.i' and 'ctx2.i' precise. */
|
|
c = choice_arr[(a + b) % 2];
|
|
/* This makes 'c' zero, but neither clang nor verifier know it. */
|
|
c /= 10;
|
|
/* Make sure that verifier does not visit 'impossible' states:
|
|
* enumerate all possible callback visit masks.
|
|
*/
|
|
if (a != 0 && a != 1 && a != 11 && a != 101 && a != 111 &&
|
|
b != 0 && b != 1 && b != 11 && b != 101 && b != 111)
|
|
asm volatile ("r0 /= 0;" ::: "r0");
|
|
return 1000 * a + b + c;
|
|
}
|
|
|
|
struct iter_limit_bug_ctx {
|
|
__u64 a;
|
|
__u64 b;
|
|
__u64 c;
|
|
};
|
|
|
|
static __naked void iter_limit_bug_cb(void)
|
|
{
|
|
/* This is the same as C code below, but written
|
|
* in assembly to control which branches are fall-through.
|
|
*
|
|
* switch (bpf_get_prandom_u32()) {
|
|
* case 1: ctx->a = 42; break;
|
|
* case 2: ctx->b = 42; break;
|
|
* default: ctx->c = 42; break;
|
|
* }
|
|
*/
|
|
asm volatile (
|
|
"r9 = r2;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"r1 = r0;"
|
|
"r2 = 42;"
|
|
"r0 = 0;"
|
|
"if r1 == 0x1 goto 1f;"
|
|
"if r1 == 0x2 goto 2f;"
|
|
"*(u64 *)(r9 + 16) = r2;"
|
|
"exit;"
|
|
"1: *(u64 *)(r9 + 0) = r2;"
|
|
"exit;"
|
|
"2: *(u64 *)(r9 + 8) = r2;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("tc")
|
|
__failure
|
|
__flag(BPF_F_TEST_STATE_FREQ)
|
|
int iter_limit_bug(struct __sk_buff *skb)
|
|
{
|
|
struct iter_limit_bug_ctx ctx = { 7, 7, 7 };
|
|
|
|
bpf_loop(2, iter_limit_bug_cb, &ctx, 0);
|
|
|
|
/* This is the same as C code below,
|
|
* written in assembly to guarantee checks order.
|
|
*
|
|
* if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7)
|
|
* asm volatile("r1 /= 0;":::"r1");
|
|
*/
|
|
asm volatile (
|
|
"r1 = *(u64 *)%[ctx_a];"
|
|
"if r1 != 42 goto 1f;"
|
|
"r1 = *(u64 *)%[ctx_b];"
|
|
"if r1 != 42 goto 1f;"
|
|
"r1 = *(u64 *)%[ctx_c];"
|
|
"if r1 != 7 goto 1f;"
|
|
"r1 /= 0;"
|
|
"1:"
|
|
:
|
|
: [ctx_a]"m"(ctx.a),
|
|
[ctx_b]"m"(ctx.b),
|
|
[ctx_c]"m"(ctx.c)
|
|
: "r1"
|
|
);
|
|
return 0;
|
|
}
|
|
|
|
#define ARR_SZ 1000000
|
|
int zero;
|
|
char arr[ARR_SZ];
|
|
|
|
SEC("socket")
|
|
__success __retval(0xd495cdc0)
|
|
int cond_break1(const void *ctx)
|
|
{
|
|
unsigned long i;
|
|
unsigned int sum = 0;
|
|
|
|
for (i = zero; i < ARR_SZ && can_loop; i++)
|
|
sum += i;
|
|
for (i = zero; i < ARR_SZ; i++) {
|
|
barrier_var(i);
|
|
sum += i + arr[i];
|
|
cond_break;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
SEC("socket")
|
|
__success __retval(999000000)
|
|
int cond_break2(const void *ctx)
|
|
{
|
|
int i, j;
|
|
int sum = 0;
|
|
|
|
for (i = zero; i < 1000 && can_loop; i++)
|
|
for (j = zero; j < 1000; j++) {
|
|
sum += i + j;
|
|
cond_break;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static __noinline int loop(void)
|
|
{
|
|
int i, sum = 0;
|
|
|
|
for (i = zero; i <= 1000000 && can_loop; i++)
|
|
sum += i;
|
|
|
|
return sum;
|
|
}
|
|
|
|
SEC("socket")
|
|
__success __retval(0x6a5a2920)
|
|
int cond_break3(const void *ctx)
|
|
{
|
|
return loop();
|
|
}
|
|
|
|
SEC("socket")
|
|
__success __retval(1)
|
|
int cond_break4(const void *ctx)
|
|
{
|
|
int cnt = zero;
|
|
|
|
for (;;) {
|
|
/* should eventually break out of the loop */
|
|
cond_break;
|
|
cnt++;
|
|
}
|
|
/* if we looped a bit, it's a success */
|
|
return cnt > 1 ? 1 : 0;
|
|
}
|
|
|
|
static __noinline int static_subprog(void)
|
|
{
|
|
int cnt = zero;
|
|
|
|
for (;;) {
|
|
cond_break;
|
|
cnt++;
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
SEC("socket")
|
|
__success __retval(1)
|
|
int cond_break5(const void *ctx)
|
|
{
|
|
int cnt1 = zero, cnt2;
|
|
|
|
for (;;) {
|
|
cond_break;
|
|
cnt1++;
|
|
}
|
|
|
|
cnt2 = static_subprog();
|
|
|
|
/* main and subprog have to loop a bit */
|
|
return cnt1 > 1 && cnt2 > 1 ? 1 : 0;
|
|
}
|
|
|
|
char _license[] SEC("license") = "GPL";
|