b7c4f5730a
Prior to commit 1a074f7618e8 ("tls: also use init_prot_info in tls_set_device_offload"), setting TLS_HW on TX didn't touch prot->aad_size and prot->tail_size. They are set to 0 during context allocation (tls_prot_info is embedded in tls_context, kzalloc'd by tls_ctx_create). When the RX key is configured, tls_set_sw_offload is called (for both TLS_SW and TLS_HW). If the TX key is configured in TLS_HW mode after the RX key has been installed, init_prot_info will now overwrite the correct values of aad_size and tail_size, breaking SW decryption and causing -EBADMSG errors to be returned to userspace. Since TLS_HW doesn't use aad_size and tail_size at all (for TLS1.2, tail_size is always 0, and aad_size is equal to TLS_HEADER_SIZE + rec_seq_size), we can simply drop this hunk. Fixes: 1a074f7618e8 ("tls: also use init_prot_info in tls_set_device_offload") Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Acked-by: Jakub Kicinski <kuba@kernel.org> Tested-by: Ran Rozenstein <ranro@nvidia.com> Link: https://lore.kernel.org/r/979d2f89a6a994d5bb49cae49a80be54150d094d.1697653889.git.sd@queasysnail.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
1445 lines
37 KiB
C
1445 lines
37 KiB
C
/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <crypto/aead.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <net/dst.h>
|
|
#include <net/inet_connection_sock.h>
|
|
#include <net/tcp.h>
|
|
#include <net/tls.h>
|
|
|
|
#include "tls.h"
|
|
#include "trace.h"
|
|
|
|
/* device_offload_lock is used to synchronize tls_dev_add
|
|
* against NETDEV_DOWN notifications.
|
|
*/
|
|
static DECLARE_RWSEM(device_offload_lock);
|
|
|
|
static struct workqueue_struct *destruct_wq __read_mostly;
|
|
|
|
static LIST_HEAD(tls_device_list);
|
|
static LIST_HEAD(tls_device_down_list);
|
|
static DEFINE_SPINLOCK(tls_device_lock);
|
|
|
|
static struct page *dummy_page;
|
|
|
|
static void tls_device_free_ctx(struct tls_context *ctx)
|
|
{
|
|
if (ctx->tx_conf == TLS_HW)
|
|
kfree(tls_offload_ctx_tx(ctx));
|
|
|
|
if (ctx->rx_conf == TLS_HW)
|
|
kfree(tls_offload_ctx_rx(ctx));
|
|
|
|
tls_ctx_free(NULL, ctx);
|
|
}
|
|
|
|
static void tls_device_tx_del_task(struct work_struct *work)
|
|
{
|
|
struct tls_offload_context_tx *offload_ctx =
|
|
container_of(work, struct tls_offload_context_tx, destruct_work);
|
|
struct tls_context *ctx = offload_ctx->ctx;
|
|
struct net_device *netdev;
|
|
|
|
/* Safe, because this is the destroy flow, refcount is 0, so
|
|
* tls_device_down can't store this field in parallel.
|
|
*/
|
|
netdev = rcu_dereference_protected(ctx->netdev,
|
|
!refcount_read(&ctx->refcount));
|
|
|
|
netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
|
|
dev_put(netdev);
|
|
ctx->netdev = NULL;
|
|
tls_device_free_ctx(ctx);
|
|
}
|
|
|
|
static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
|
|
{
|
|
struct net_device *netdev;
|
|
unsigned long flags;
|
|
bool async_cleanup;
|
|
|
|
spin_lock_irqsave(&tls_device_lock, flags);
|
|
if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
|
|
spin_unlock_irqrestore(&tls_device_lock, flags);
|
|
return;
|
|
}
|
|
|
|
list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
|
|
|
|
/* Safe, because this is the destroy flow, refcount is 0, so
|
|
* tls_device_down can't store this field in parallel.
|
|
*/
|
|
netdev = rcu_dereference_protected(ctx->netdev,
|
|
!refcount_read(&ctx->refcount));
|
|
|
|
async_cleanup = netdev && ctx->tx_conf == TLS_HW;
|
|
if (async_cleanup) {
|
|
struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
|
|
|
|
/* queue_work inside the spinlock
|
|
* to make sure tls_device_down waits for that work.
|
|
*/
|
|
queue_work(destruct_wq, &offload_ctx->destruct_work);
|
|
}
|
|
spin_unlock_irqrestore(&tls_device_lock, flags);
|
|
|
|
if (!async_cleanup)
|
|
tls_device_free_ctx(ctx);
|
|
}
|
|
|
|
/* We assume that the socket is already connected */
|
|
static struct net_device *get_netdev_for_sock(struct sock *sk)
|
|
{
|
|
struct dst_entry *dst = sk_dst_get(sk);
|
|
struct net_device *netdev = NULL;
|
|
|
|
if (likely(dst)) {
|
|
netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
|
|
dev_hold(netdev);
|
|
}
|
|
|
|
dst_release(dst);
|
|
|
|
return netdev;
|
|
}
|
|
|
|
static void destroy_record(struct tls_record_info *record)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < record->num_frags; i++)
|
|
__skb_frag_unref(&record->frags[i], false);
|
|
kfree(record);
|
|
}
|
|
|
|
static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
|
|
{
|
|
struct tls_record_info *info, *temp;
|
|
|
|
list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
|
|
list_del(&info->list);
|
|
destroy_record(info);
|
|
}
|
|
|
|
offload_ctx->retransmit_hint = NULL;
|
|
}
|
|
|
|
static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_record_info *info, *temp;
|
|
struct tls_offload_context_tx *ctx;
|
|
u64 deleted_records = 0;
|
|
unsigned long flags;
|
|
|
|
if (!tls_ctx)
|
|
return;
|
|
|
|
ctx = tls_offload_ctx_tx(tls_ctx);
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
info = ctx->retransmit_hint;
|
|
if (info && !before(acked_seq, info->end_seq))
|
|
ctx->retransmit_hint = NULL;
|
|
|
|
list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
|
|
if (before(acked_seq, info->end_seq))
|
|
break;
|
|
list_del(&info->list);
|
|
|
|
destroy_record(info);
|
|
deleted_records++;
|
|
}
|
|
|
|
ctx->unacked_record_sn += deleted_records;
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
}
|
|
|
|
/* At this point, there should be no references on this
|
|
* socket and no in-flight SKBs associated with this
|
|
* socket, so it is safe to free all the resources.
|
|
*/
|
|
void tls_device_sk_destruct(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
|
|
|
|
tls_ctx->sk_destruct(sk);
|
|
|
|
if (tls_ctx->tx_conf == TLS_HW) {
|
|
if (ctx->open_record)
|
|
destroy_record(ctx->open_record);
|
|
delete_all_records(ctx);
|
|
crypto_free_aead(ctx->aead_send);
|
|
clean_acked_data_disable(inet_csk(sk));
|
|
}
|
|
|
|
tls_device_queue_ctx_destruction(tls_ctx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
|
|
|
|
void tls_device_free_resources_tx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
tls_free_partial_record(sk, tls_ctx);
|
|
}
|
|
|
|
void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
|
|
trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
|
|
WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
|
|
}
|
|
EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
|
|
|
|
static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
|
|
u32 seq)
|
|
{
|
|
struct net_device *netdev;
|
|
struct sk_buff *skb;
|
|
int err = 0;
|
|
u8 *rcd_sn;
|
|
|
|
skb = tcp_write_queue_tail(sk);
|
|
if (skb)
|
|
TCP_SKB_CB(skb)->eor = 1;
|
|
|
|
rcd_sn = tls_ctx->tx.rec_seq;
|
|
|
|
trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
|
|
down_read(&device_offload_lock);
|
|
netdev = rcu_dereference_protected(tls_ctx->netdev,
|
|
lockdep_is_held(&device_offload_lock));
|
|
if (netdev)
|
|
err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
|
|
rcd_sn,
|
|
TLS_OFFLOAD_CTX_DIR_TX);
|
|
up_read(&device_offload_lock);
|
|
if (err)
|
|
return;
|
|
|
|
clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
|
|
}
|
|
|
|
static void tls_append_frag(struct tls_record_info *record,
|
|
struct page_frag *pfrag,
|
|
int size)
|
|
{
|
|
skb_frag_t *frag;
|
|
|
|
frag = &record->frags[record->num_frags - 1];
|
|
if (skb_frag_page(frag) == pfrag->page &&
|
|
skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
|
|
skb_frag_size_add(frag, size);
|
|
} else {
|
|
++frag;
|
|
skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
|
|
size);
|
|
++record->num_frags;
|
|
get_page(pfrag->page);
|
|
}
|
|
|
|
pfrag->offset += size;
|
|
record->len += size;
|
|
}
|
|
|
|
static int tls_push_record(struct sock *sk,
|
|
struct tls_context *ctx,
|
|
struct tls_offload_context_tx *offload_ctx,
|
|
struct tls_record_info *record,
|
|
int flags)
|
|
{
|
|
struct tls_prot_info *prot = &ctx->prot_info;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
skb_frag_t *frag;
|
|
int i;
|
|
|
|
record->end_seq = tp->write_seq + record->len;
|
|
list_add_tail_rcu(&record->list, &offload_ctx->records_list);
|
|
offload_ctx->open_record = NULL;
|
|
|
|
if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
|
|
tls_device_resync_tx(sk, ctx, tp->write_seq);
|
|
|
|
tls_advance_record_sn(sk, prot, &ctx->tx);
|
|
|
|
for (i = 0; i < record->num_frags; i++) {
|
|
frag = &record->frags[i];
|
|
sg_unmark_end(&offload_ctx->sg_tx_data[i]);
|
|
sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
|
|
skb_frag_size(frag), skb_frag_off(frag));
|
|
sk_mem_charge(sk, skb_frag_size(frag));
|
|
get_page(skb_frag_page(frag));
|
|
}
|
|
sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
|
|
|
|
/* all ready, send */
|
|
return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
|
|
}
|
|
|
|
static void tls_device_record_close(struct sock *sk,
|
|
struct tls_context *ctx,
|
|
struct tls_record_info *record,
|
|
struct page_frag *pfrag,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_prot_info *prot = &ctx->prot_info;
|
|
struct page_frag dummy_tag_frag;
|
|
|
|
/* append tag
|
|
* device will fill in the tag, we just need to append a placeholder
|
|
* use socket memory to improve coalescing (re-using a single buffer
|
|
* increases frag count)
|
|
* if we can't allocate memory now use the dummy page
|
|
*/
|
|
if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
|
|
!skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
|
|
dummy_tag_frag.page = dummy_page;
|
|
dummy_tag_frag.offset = 0;
|
|
pfrag = &dummy_tag_frag;
|
|
}
|
|
tls_append_frag(record, pfrag, prot->tag_size);
|
|
|
|
/* fill prepend */
|
|
tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
|
|
record->len - prot->overhead_size,
|
|
record_type);
|
|
}
|
|
|
|
static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
|
|
struct page_frag *pfrag,
|
|
size_t prepend_size)
|
|
{
|
|
struct tls_record_info *record;
|
|
skb_frag_t *frag;
|
|
|
|
record = kmalloc(sizeof(*record), GFP_KERNEL);
|
|
if (!record)
|
|
return -ENOMEM;
|
|
|
|
frag = &record->frags[0];
|
|
skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
|
|
prepend_size);
|
|
|
|
get_page(pfrag->page);
|
|
pfrag->offset += prepend_size;
|
|
|
|
record->num_frags = 1;
|
|
record->len = prepend_size;
|
|
offload_ctx->open_record = record;
|
|
return 0;
|
|
}
|
|
|
|
static int tls_do_allocation(struct sock *sk,
|
|
struct tls_offload_context_tx *offload_ctx,
|
|
struct page_frag *pfrag,
|
|
size_t prepend_size)
|
|
{
|
|
int ret;
|
|
|
|
if (!offload_ctx->open_record) {
|
|
if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
|
|
sk->sk_allocation))) {
|
|
READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
|
|
sk_stream_moderate_sndbuf(sk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (pfrag->size > pfrag->offset)
|
|
return 0;
|
|
}
|
|
|
|
if (!sk_page_frag_refill(sk, pfrag))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
size_t pre_copy, nocache;
|
|
|
|
pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
|
|
if (pre_copy) {
|
|
pre_copy = min(pre_copy, bytes);
|
|
if (copy_from_iter(addr, pre_copy, i) != pre_copy)
|
|
return -EFAULT;
|
|
bytes -= pre_copy;
|
|
addr += pre_copy;
|
|
}
|
|
|
|
nocache = round_down(bytes, SMP_CACHE_BYTES);
|
|
if (copy_from_iter_nocache(addr, nocache, i) != nocache)
|
|
return -EFAULT;
|
|
bytes -= nocache;
|
|
addr += nocache;
|
|
|
|
if (bytes && copy_from_iter(addr, bytes, i) != bytes)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tls_push_data(struct sock *sk,
|
|
struct iov_iter *iter,
|
|
size_t size, int flags,
|
|
unsigned char record_type)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
|
|
struct tls_record_info *record;
|
|
int tls_push_record_flags;
|
|
struct page_frag *pfrag;
|
|
size_t orig_size = size;
|
|
u32 max_open_record_len;
|
|
bool more = false;
|
|
bool done = false;
|
|
int copy, rc = 0;
|
|
long timeo;
|
|
|
|
if (flags &
|
|
~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SPLICE_PAGES | MSG_EOR))
|
|
return -EOPNOTSUPP;
|
|
|
|
if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(sk->sk_err))
|
|
return -sk->sk_err;
|
|
|
|
flags |= MSG_SENDPAGE_DECRYPTED;
|
|
tls_push_record_flags = flags | MSG_MORE;
|
|
|
|
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
|
|
if (tls_is_partially_sent_record(tls_ctx)) {
|
|
rc = tls_push_partial_record(sk, tls_ctx, flags);
|
|
if (rc < 0)
|
|
return rc;
|
|
}
|
|
|
|
pfrag = sk_page_frag(sk);
|
|
|
|
/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
|
|
* we need to leave room for an authentication tag.
|
|
*/
|
|
max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
|
|
prot->prepend_size;
|
|
do {
|
|
rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
|
|
if (unlikely(rc)) {
|
|
rc = sk_stream_wait_memory(sk, &timeo);
|
|
if (!rc)
|
|
continue;
|
|
|
|
record = ctx->open_record;
|
|
if (!record)
|
|
break;
|
|
handle_error:
|
|
if (record_type != TLS_RECORD_TYPE_DATA) {
|
|
/* avoid sending partial
|
|
* record with type !=
|
|
* application_data
|
|
*/
|
|
size = orig_size;
|
|
destroy_record(record);
|
|
ctx->open_record = NULL;
|
|
} else if (record->len > prot->prepend_size) {
|
|
goto last_record;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
record = ctx->open_record;
|
|
|
|
copy = min_t(size_t, size, max_open_record_len - record->len);
|
|
if (copy && (flags & MSG_SPLICE_PAGES)) {
|
|
struct page_frag zc_pfrag;
|
|
struct page **pages = &zc_pfrag.page;
|
|
size_t off;
|
|
|
|
rc = iov_iter_extract_pages(iter, &pages,
|
|
copy, 1, 0, &off);
|
|
if (rc <= 0) {
|
|
if (rc == 0)
|
|
rc = -EIO;
|
|
goto handle_error;
|
|
}
|
|
copy = rc;
|
|
|
|
if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
|
|
iov_iter_revert(iter, copy);
|
|
rc = -EIO;
|
|
goto handle_error;
|
|
}
|
|
|
|
zc_pfrag.offset = off;
|
|
zc_pfrag.size = copy;
|
|
tls_append_frag(record, &zc_pfrag, copy);
|
|
} else if (copy) {
|
|
copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
|
|
|
|
rc = tls_device_copy_data(page_address(pfrag->page) +
|
|
pfrag->offset, copy,
|
|
iter);
|
|
if (rc)
|
|
goto handle_error;
|
|
tls_append_frag(record, pfrag, copy);
|
|
}
|
|
|
|
size -= copy;
|
|
if (!size) {
|
|
last_record:
|
|
tls_push_record_flags = flags;
|
|
if (flags & MSG_MORE) {
|
|
more = true;
|
|
break;
|
|
}
|
|
|
|
done = true;
|
|
}
|
|
|
|
if (done || record->len >= max_open_record_len ||
|
|
(record->num_frags >= MAX_SKB_FRAGS - 1)) {
|
|
tls_device_record_close(sk, tls_ctx, record,
|
|
pfrag, record_type);
|
|
|
|
rc = tls_push_record(sk,
|
|
tls_ctx,
|
|
ctx,
|
|
record,
|
|
tls_push_record_flags);
|
|
if (rc < 0)
|
|
break;
|
|
}
|
|
} while (!done);
|
|
|
|
tls_ctx->pending_open_record_frags = more;
|
|
|
|
if (orig_size - size > 0)
|
|
rc = orig_size - size;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
|
|
{
|
|
unsigned char record_type = TLS_RECORD_TYPE_DATA;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
int rc;
|
|
|
|
if (!tls_ctx->zerocopy_sendfile)
|
|
msg->msg_flags &= ~MSG_SPLICE_PAGES;
|
|
|
|
mutex_lock(&tls_ctx->tx_lock);
|
|
lock_sock(sk);
|
|
|
|
if (unlikely(msg->msg_controllen)) {
|
|
rc = tls_process_cmsg(sk, msg, &record_type);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
|
|
record_type);
|
|
|
|
out:
|
|
release_sock(sk);
|
|
mutex_unlock(&tls_ctx->tx_lock);
|
|
return rc;
|
|
}
|
|
|
|
void tls_device_splice_eof(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct iov_iter iter = {};
|
|
|
|
if (!tls_is_partially_sent_record(tls_ctx))
|
|
return;
|
|
|
|
mutex_lock(&tls_ctx->tx_lock);
|
|
lock_sock(sk);
|
|
|
|
if (tls_is_partially_sent_record(tls_ctx)) {
|
|
iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
|
|
tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
|
|
}
|
|
|
|
release_sock(sk);
|
|
mutex_unlock(&tls_ctx->tx_lock);
|
|
}
|
|
|
|
struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
|
|
u32 seq, u64 *p_record_sn)
|
|
{
|
|
u64 record_sn = context->hint_record_sn;
|
|
struct tls_record_info *info, *last;
|
|
|
|
info = context->retransmit_hint;
|
|
if (!info ||
|
|
before(seq, info->end_seq - info->len)) {
|
|
/* if retransmit_hint is irrelevant start
|
|
* from the beginning of the list
|
|
*/
|
|
info = list_first_entry_or_null(&context->records_list,
|
|
struct tls_record_info, list);
|
|
if (!info)
|
|
return NULL;
|
|
/* send the start_marker record if seq number is before the
|
|
* tls offload start marker sequence number. This record is
|
|
* required to handle TCP packets which are before TLS offload
|
|
* started.
|
|
* And if it's not start marker, look if this seq number
|
|
* belongs to the list.
|
|
*/
|
|
if (likely(!tls_record_is_start_marker(info))) {
|
|
/* we have the first record, get the last record to see
|
|
* if this seq number belongs to the list.
|
|
*/
|
|
last = list_last_entry(&context->records_list,
|
|
struct tls_record_info, list);
|
|
|
|
if (!between(seq, tls_record_start_seq(info),
|
|
last->end_seq))
|
|
return NULL;
|
|
}
|
|
record_sn = context->unacked_record_sn;
|
|
}
|
|
|
|
/* We just need the _rcu for the READ_ONCE() */
|
|
rcu_read_lock();
|
|
list_for_each_entry_from_rcu(info, &context->records_list, list) {
|
|
if (before(seq, info->end_seq)) {
|
|
if (!context->retransmit_hint ||
|
|
after(info->end_seq,
|
|
context->retransmit_hint->end_seq)) {
|
|
context->hint_record_sn = record_sn;
|
|
context->retransmit_hint = info;
|
|
}
|
|
*p_record_sn = record_sn;
|
|
goto exit_rcu_unlock;
|
|
}
|
|
record_sn++;
|
|
}
|
|
info = NULL;
|
|
|
|
exit_rcu_unlock:
|
|
rcu_read_unlock();
|
|
return info;
|
|
}
|
|
EXPORT_SYMBOL(tls_get_record);
|
|
|
|
static int tls_device_push_pending_record(struct sock *sk, int flags)
|
|
{
|
|
struct iov_iter iter;
|
|
|
|
iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
|
|
return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
|
|
}
|
|
|
|
void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
|
|
{
|
|
if (tls_is_partially_sent_record(ctx)) {
|
|
gfp_t sk_allocation = sk->sk_allocation;
|
|
|
|
WARN_ON_ONCE(sk->sk_write_pending);
|
|
|
|
sk->sk_allocation = GFP_ATOMIC;
|
|
tls_push_partial_record(sk, ctx,
|
|
MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_SENDPAGE_DECRYPTED);
|
|
sk->sk_allocation = sk_allocation;
|
|
}
|
|
}
|
|
|
|
static void tls_device_resync_rx(struct tls_context *tls_ctx,
|
|
struct sock *sk, u32 seq, u8 *rcd_sn)
|
|
{
|
|
struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
|
|
struct net_device *netdev;
|
|
|
|
trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
|
|
rcu_read_lock();
|
|
netdev = rcu_dereference(tls_ctx->netdev);
|
|
if (netdev)
|
|
netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
|
|
TLS_OFFLOAD_CTX_DIR_RX);
|
|
rcu_read_unlock();
|
|
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
|
|
}
|
|
|
|
static bool
|
|
tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
|
|
s64 resync_req, u32 *seq, u16 *rcd_delta)
|
|
{
|
|
u32 is_async = resync_req & RESYNC_REQ_ASYNC;
|
|
u32 req_seq = resync_req >> 32;
|
|
u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
|
|
u16 i;
|
|
|
|
*rcd_delta = 0;
|
|
|
|
if (is_async) {
|
|
/* shouldn't get to wraparound:
|
|
* too long in async stage, something bad happened
|
|
*/
|
|
if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
|
|
return false;
|
|
|
|
/* asynchronous stage: log all headers seq such that
|
|
* req_seq <= seq <= end_seq, and wait for real resync request
|
|
*/
|
|
if (before(*seq, req_seq))
|
|
return false;
|
|
if (!after(*seq, req_end) &&
|
|
resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
|
|
resync_async->log[resync_async->loglen++] = *seq;
|
|
|
|
resync_async->rcd_delta++;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* synchronous stage: check against the logged entries and
|
|
* proceed to check the next entries if no match was found
|
|
*/
|
|
for (i = 0; i < resync_async->loglen; i++)
|
|
if (req_seq == resync_async->log[i] &&
|
|
atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
|
|
*rcd_delta = resync_async->rcd_delta - i;
|
|
*seq = req_seq;
|
|
resync_async->loglen = 0;
|
|
resync_async->rcd_delta = 0;
|
|
return true;
|
|
}
|
|
|
|
resync_async->loglen = 0;
|
|
resync_async->rcd_delta = 0;
|
|
|
|
if (req_seq == *seq &&
|
|
atomic64_try_cmpxchg(&resync_async->req,
|
|
&resync_req, 0))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct tls_offload_context_rx *rx_ctx;
|
|
u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
|
|
u32 sock_data, is_req_pending;
|
|
struct tls_prot_info *prot;
|
|
s64 resync_req;
|
|
u16 rcd_delta;
|
|
u32 req_seq;
|
|
|
|
if (tls_ctx->rx_conf != TLS_HW)
|
|
return;
|
|
if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
|
|
return;
|
|
|
|
prot = &tls_ctx->prot_info;
|
|
rx_ctx = tls_offload_ctx_rx(tls_ctx);
|
|
memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
|
|
|
|
switch (rx_ctx->resync_type) {
|
|
case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
|
|
resync_req = atomic64_read(&rx_ctx->resync_req);
|
|
req_seq = resync_req >> 32;
|
|
seq += TLS_HEADER_SIZE - 1;
|
|
is_req_pending = resync_req;
|
|
|
|
if (likely(!is_req_pending) || req_seq != seq ||
|
|
!atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
|
|
return;
|
|
break;
|
|
case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
|
|
if (likely(!rx_ctx->resync_nh_do_now))
|
|
return;
|
|
|
|
/* head of next rec is already in, note that the sock_inq will
|
|
* include the currently parsed message when called from parser
|
|
*/
|
|
sock_data = tcp_inq(sk);
|
|
if (sock_data > rcd_len) {
|
|
trace_tls_device_rx_resync_nh_delay(sk, sock_data,
|
|
rcd_len);
|
|
return;
|
|
}
|
|
|
|
rx_ctx->resync_nh_do_now = 0;
|
|
seq += rcd_len;
|
|
tls_bigint_increment(rcd_sn, prot->rec_seq_size);
|
|
break;
|
|
case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
|
|
resync_req = atomic64_read(&rx_ctx->resync_async->req);
|
|
is_req_pending = resync_req;
|
|
if (likely(!is_req_pending))
|
|
return;
|
|
|
|
if (!tls_device_rx_resync_async(rx_ctx->resync_async,
|
|
resync_req, &seq, &rcd_delta))
|
|
return;
|
|
tls_bigint_subtract(rcd_sn, rcd_delta);
|
|
break;
|
|
}
|
|
|
|
tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
|
|
}
|
|
|
|
static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
|
|
struct tls_offload_context_rx *ctx,
|
|
struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct strp_msg *rxm;
|
|
|
|
/* device will request resyncs by itself based on stream scan */
|
|
if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
|
|
return;
|
|
/* already scheduled */
|
|
if (ctx->resync_nh_do_now)
|
|
return;
|
|
/* seen decrypted fragments since last fully-failed record */
|
|
if (ctx->resync_nh_reset) {
|
|
ctx->resync_nh_reset = 0;
|
|
ctx->resync_nh.decrypted_failed = 1;
|
|
ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
|
|
return;
|
|
}
|
|
|
|
if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
|
|
return;
|
|
|
|
/* doing resync, bump the next target in case it fails */
|
|
if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
|
|
ctx->resync_nh.decrypted_tgt *= 2;
|
|
else
|
|
ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
|
|
|
|
rxm = strp_msg(skb);
|
|
|
|
/* head of next rec is already in, parser will sync for us */
|
|
if (tcp_inq(sk) > rxm->full_len) {
|
|
trace_tls_device_rx_resync_nh_schedule(sk);
|
|
ctx->resync_nh_do_now = 1;
|
|
} else {
|
|
struct tls_prot_info *prot = &tls_ctx->prot_info;
|
|
u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
|
|
|
|
memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
|
|
tls_bigint_increment(rcd_sn, prot->rec_seq_size);
|
|
|
|
tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
|
|
rcd_sn);
|
|
}
|
|
}
|
|
|
|
static int
|
|
tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
|
|
const struct tls_cipher_desc *cipher_desc;
|
|
int err, offset, copy, data_len, pos;
|
|
struct sk_buff *skb, *skb_iter;
|
|
struct scatterlist sg[1];
|
|
struct strp_msg *rxm;
|
|
char *orig_buf, *buf;
|
|
|
|
cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
|
|
DEBUG_NET_WARN_ON_ONCE(!cipher_desc || !cipher_desc->offloadable);
|
|
|
|
rxm = strp_msg(tls_strp_msg(sw_ctx));
|
|
orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
|
|
sk->sk_allocation);
|
|
if (!orig_buf)
|
|
return -ENOMEM;
|
|
buf = orig_buf;
|
|
|
|
err = tls_strp_msg_cow(sw_ctx);
|
|
if (unlikely(err))
|
|
goto free_buf;
|
|
|
|
skb = tls_strp_msg(sw_ctx);
|
|
rxm = strp_msg(skb);
|
|
offset = rxm->offset;
|
|
|
|
sg_init_table(sg, 1);
|
|
sg_set_buf(&sg[0], buf,
|
|
rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
|
|
err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
|
|
if (err)
|
|
goto free_buf;
|
|
|
|
/* We are interested only in the decrypted data not the auth */
|
|
err = decrypt_skb(sk, sg);
|
|
if (err != -EBADMSG)
|
|
goto free_buf;
|
|
else
|
|
err = 0;
|
|
|
|
data_len = rxm->full_len - cipher_desc->tag;
|
|
|
|
if (skb_pagelen(skb) > offset) {
|
|
copy = min_t(int, skb_pagelen(skb) - offset, data_len);
|
|
|
|
if (skb->decrypted) {
|
|
err = skb_store_bits(skb, offset, buf, copy);
|
|
if (err)
|
|
goto free_buf;
|
|
}
|
|
|
|
offset += copy;
|
|
buf += copy;
|
|
}
|
|
|
|
pos = skb_pagelen(skb);
|
|
skb_walk_frags(skb, skb_iter) {
|
|
int frag_pos;
|
|
|
|
/* Practically all frags must belong to msg if reencrypt
|
|
* is needed with current strparser and coalescing logic,
|
|
* but strparser may "get optimized", so let's be safe.
|
|
*/
|
|
if (pos + skb_iter->len <= offset)
|
|
goto done_with_frag;
|
|
if (pos >= data_len + rxm->offset)
|
|
break;
|
|
|
|
frag_pos = offset - pos;
|
|
copy = min_t(int, skb_iter->len - frag_pos,
|
|
data_len + rxm->offset - offset);
|
|
|
|
if (skb_iter->decrypted) {
|
|
err = skb_store_bits(skb_iter, frag_pos, buf, copy);
|
|
if (err)
|
|
goto free_buf;
|
|
}
|
|
|
|
offset += copy;
|
|
buf += copy;
|
|
done_with_frag:
|
|
pos += skb_iter->len;
|
|
}
|
|
|
|
free_buf:
|
|
kfree(orig_buf);
|
|
return err;
|
|
}
|
|
|
|
int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
|
|
{
|
|
struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
|
|
struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
|
|
struct sk_buff *skb = tls_strp_msg(sw_ctx);
|
|
struct strp_msg *rxm = strp_msg(skb);
|
|
int is_decrypted, is_encrypted;
|
|
|
|
if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
|
|
is_decrypted = skb->decrypted;
|
|
is_encrypted = !is_decrypted;
|
|
} else {
|
|
is_decrypted = 0;
|
|
is_encrypted = 0;
|
|
}
|
|
|
|
trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
|
|
tls_ctx->rx.rec_seq, rxm->full_len,
|
|
is_encrypted, is_decrypted);
|
|
|
|
if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
|
|
if (likely(is_encrypted || is_decrypted))
|
|
return is_decrypted;
|
|
|
|
/* After tls_device_down disables the offload, the next SKB will
|
|
* likely have initial fragments decrypted, and final ones not
|
|
* decrypted. We need to reencrypt that single SKB.
|
|
*/
|
|
return tls_device_reencrypt(sk, tls_ctx);
|
|
}
|
|
|
|
/* Return immediately if the record is either entirely plaintext or
|
|
* entirely ciphertext. Otherwise handle reencrypt partially decrypted
|
|
* record.
|
|
*/
|
|
if (is_decrypted) {
|
|
ctx->resync_nh_reset = 1;
|
|
return is_decrypted;
|
|
}
|
|
if (is_encrypted) {
|
|
tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
|
|
return 0;
|
|
}
|
|
|
|
ctx->resync_nh_reset = 1;
|
|
return tls_device_reencrypt(sk, tls_ctx);
|
|
}
|
|
|
|
static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
|
|
struct net_device *netdev)
|
|
{
|
|
if (sk->sk_destruct != tls_device_sk_destruct) {
|
|
refcount_set(&ctx->refcount, 1);
|
|
dev_hold(netdev);
|
|
RCU_INIT_POINTER(ctx->netdev, netdev);
|
|
spin_lock_irq(&tls_device_lock);
|
|
list_add_tail(&ctx->list, &tls_device_list);
|
|
spin_unlock_irq(&tls_device_lock);
|
|
|
|
ctx->sk_destruct = sk->sk_destruct;
|
|
smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
|
|
}
|
|
}
|
|
|
|
static struct tls_offload_context_tx *alloc_offload_ctx_tx(struct tls_context *ctx)
|
|
{
|
|
struct tls_offload_context_tx *offload_ctx;
|
|
__be64 rcd_sn;
|
|
|
|
offload_ctx = kzalloc(sizeof(*offload_ctx), GFP_KERNEL);
|
|
if (!offload_ctx)
|
|
return NULL;
|
|
|
|
INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
|
|
INIT_LIST_HEAD(&offload_ctx->records_list);
|
|
spin_lock_init(&offload_ctx->lock);
|
|
sg_init_table(offload_ctx->sg_tx_data,
|
|
ARRAY_SIZE(offload_ctx->sg_tx_data));
|
|
|
|
/* start at rec_seq - 1 to account for the start marker record */
|
|
memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
|
|
offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
|
|
|
|
offload_ctx->ctx = ctx;
|
|
|
|
return offload_ctx;
|
|
}
|
|
|
|
int tls_set_device_offload(struct sock *sk)
|
|
{
|
|
struct tls_record_info *start_marker_record;
|
|
struct tls_offload_context_tx *offload_ctx;
|
|
const struct tls_cipher_desc *cipher_desc;
|
|
struct tls_crypto_info *crypto_info;
|
|
struct tls_prot_info *prot;
|
|
struct net_device *netdev;
|
|
struct tls_context *ctx;
|
|
struct sk_buff *skb;
|
|
char *iv, *rec_seq;
|
|
int rc;
|
|
|
|
ctx = tls_get_ctx(sk);
|
|
prot = &ctx->prot_info;
|
|
|
|
if (ctx->priv_ctx_tx)
|
|
return -EEXIST;
|
|
|
|
netdev = get_netdev_for_sock(sk);
|
|
if (!netdev) {
|
|
pr_err_ratelimited("%s: netdev not found\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
|
|
rc = -EOPNOTSUPP;
|
|
goto release_netdev;
|
|
}
|
|
|
|
crypto_info = &ctx->crypto_send.info;
|
|
if (crypto_info->version != TLS_1_2_VERSION) {
|
|
rc = -EOPNOTSUPP;
|
|
goto release_netdev;
|
|
}
|
|
|
|
cipher_desc = get_cipher_desc(crypto_info->cipher_type);
|
|
if (!cipher_desc || !cipher_desc->offloadable) {
|
|
rc = -EINVAL;
|
|
goto release_netdev;
|
|
}
|
|
|
|
rc = init_prot_info(prot, crypto_info, cipher_desc);
|
|
if (rc)
|
|
goto release_netdev;
|
|
|
|
iv = crypto_info_iv(crypto_info, cipher_desc);
|
|
rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
|
|
|
|
memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
|
|
memcpy(ctx->tx.rec_seq, rec_seq, cipher_desc->rec_seq);
|
|
|
|
start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
|
|
if (!start_marker_record) {
|
|
rc = -ENOMEM;
|
|
goto release_netdev;
|
|
}
|
|
|
|
offload_ctx = alloc_offload_ctx_tx(ctx);
|
|
if (!offload_ctx) {
|
|
rc = -ENOMEM;
|
|
goto free_marker_record;
|
|
}
|
|
|
|
rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
|
|
if (rc)
|
|
goto free_offload_ctx;
|
|
|
|
start_marker_record->end_seq = tcp_sk(sk)->write_seq;
|
|
start_marker_record->len = 0;
|
|
start_marker_record->num_frags = 0;
|
|
list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
|
|
|
|
clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
|
|
ctx->push_pending_record = tls_device_push_pending_record;
|
|
|
|
/* TLS offload is greatly simplified if we don't send
|
|
* SKBs where only part of the payload needs to be encrypted.
|
|
* So mark the last skb in the write queue as end of record.
|
|
*/
|
|
skb = tcp_write_queue_tail(sk);
|
|
if (skb)
|
|
TCP_SKB_CB(skb)->eor = 1;
|
|
|
|
/* Avoid offloading if the device is down
|
|
* We don't want to offload new flows after
|
|
* the NETDEV_DOWN event
|
|
*
|
|
* device_offload_lock is taken in tls_devices's NETDEV_DOWN
|
|
* handler thus protecting from the device going down before
|
|
* ctx was added to tls_device_list.
|
|
*/
|
|
down_read(&device_offload_lock);
|
|
if (!(netdev->flags & IFF_UP)) {
|
|
rc = -EINVAL;
|
|
goto release_lock;
|
|
}
|
|
|
|
ctx->priv_ctx_tx = offload_ctx;
|
|
rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
|
|
&ctx->crypto_send.info,
|
|
tcp_sk(sk)->write_seq);
|
|
trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
|
|
tcp_sk(sk)->write_seq, rec_seq, rc);
|
|
if (rc)
|
|
goto release_lock;
|
|
|
|
tls_device_attach(ctx, sk, netdev);
|
|
up_read(&device_offload_lock);
|
|
|
|
/* following this assignment tls_is_skb_tx_device_offloaded
|
|
* will return true and the context might be accessed
|
|
* by the netdev's xmit function.
|
|
*/
|
|
smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
|
|
dev_put(netdev);
|
|
|
|
return 0;
|
|
|
|
release_lock:
|
|
up_read(&device_offload_lock);
|
|
clean_acked_data_disable(inet_csk(sk));
|
|
crypto_free_aead(offload_ctx->aead_send);
|
|
free_offload_ctx:
|
|
kfree(offload_ctx);
|
|
ctx->priv_ctx_tx = NULL;
|
|
free_marker_record:
|
|
kfree(start_marker_record);
|
|
release_netdev:
|
|
dev_put(netdev);
|
|
return rc;
|
|
}
|
|
|
|
int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
|
|
{
|
|
struct tls12_crypto_info_aes_gcm_128 *info;
|
|
struct tls_offload_context_rx *context;
|
|
struct net_device *netdev;
|
|
int rc = 0;
|
|
|
|
if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
|
|
return -EOPNOTSUPP;
|
|
|
|
netdev = get_netdev_for_sock(sk);
|
|
if (!netdev) {
|
|
pr_err_ratelimited("%s: netdev not found\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
|
|
rc = -EOPNOTSUPP;
|
|
goto release_netdev;
|
|
}
|
|
|
|
/* Avoid offloading if the device is down
|
|
* We don't want to offload new flows after
|
|
* the NETDEV_DOWN event
|
|
*
|
|
* device_offload_lock is taken in tls_devices's NETDEV_DOWN
|
|
* handler thus protecting from the device going down before
|
|
* ctx was added to tls_device_list.
|
|
*/
|
|
down_read(&device_offload_lock);
|
|
if (!(netdev->flags & IFF_UP)) {
|
|
rc = -EINVAL;
|
|
goto release_lock;
|
|
}
|
|
|
|
context = kzalloc(sizeof(*context), GFP_KERNEL);
|
|
if (!context) {
|
|
rc = -ENOMEM;
|
|
goto release_lock;
|
|
}
|
|
context->resync_nh_reset = 1;
|
|
|
|
ctx->priv_ctx_rx = context;
|
|
rc = tls_set_sw_offload(sk, 0);
|
|
if (rc)
|
|
goto release_ctx;
|
|
|
|
rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
|
|
&ctx->crypto_recv.info,
|
|
tcp_sk(sk)->copied_seq);
|
|
info = (void *)&ctx->crypto_recv.info;
|
|
trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
|
|
tcp_sk(sk)->copied_seq, info->rec_seq, rc);
|
|
if (rc)
|
|
goto free_sw_resources;
|
|
|
|
tls_device_attach(ctx, sk, netdev);
|
|
up_read(&device_offload_lock);
|
|
|
|
dev_put(netdev);
|
|
|
|
return 0;
|
|
|
|
free_sw_resources:
|
|
up_read(&device_offload_lock);
|
|
tls_sw_free_resources_rx(sk);
|
|
down_read(&device_offload_lock);
|
|
release_ctx:
|
|
ctx->priv_ctx_rx = NULL;
|
|
release_lock:
|
|
up_read(&device_offload_lock);
|
|
release_netdev:
|
|
dev_put(netdev);
|
|
return rc;
|
|
}
|
|
|
|
void tls_device_offload_cleanup_rx(struct sock *sk)
|
|
{
|
|
struct tls_context *tls_ctx = tls_get_ctx(sk);
|
|
struct net_device *netdev;
|
|
|
|
down_read(&device_offload_lock);
|
|
netdev = rcu_dereference_protected(tls_ctx->netdev,
|
|
lockdep_is_held(&device_offload_lock));
|
|
if (!netdev)
|
|
goto out;
|
|
|
|
netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
|
|
TLS_OFFLOAD_CTX_DIR_RX);
|
|
|
|
if (tls_ctx->tx_conf != TLS_HW) {
|
|
dev_put(netdev);
|
|
rcu_assign_pointer(tls_ctx->netdev, NULL);
|
|
} else {
|
|
set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
|
|
}
|
|
out:
|
|
up_read(&device_offload_lock);
|
|
tls_sw_release_resources_rx(sk);
|
|
}
|
|
|
|
static int tls_device_down(struct net_device *netdev)
|
|
{
|
|
struct tls_context *ctx, *tmp;
|
|
unsigned long flags;
|
|
LIST_HEAD(list);
|
|
|
|
/* Request a write lock to block new offload attempts */
|
|
down_write(&device_offload_lock);
|
|
|
|
spin_lock_irqsave(&tls_device_lock, flags);
|
|
list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
|
|
struct net_device *ctx_netdev =
|
|
rcu_dereference_protected(ctx->netdev,
|
|
lockdep_is_held(&device_offload_lock));
|
|
|
|
if (ctx_netdev != netdev ||
|
|
!refcount_inc_not_zero(&ctx->refcount))
|
|
continue;
|
|
|
|
list_move(&ctx->list, &list);
|
|
}
|
|
spin_unlock_irqrestore(&tls_device_lock, flags);
|
|
|
|
list_for_each_entry_safe(ctx, tmp, &list, list) {
|
|
/* Stop offloaded TX and switch to the fallback.
|
|
* tls_is_skb_tx_device_offloaded will return false.
|
|
*/
|
|
WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
|
|
|
|
/* Stop the RX and TX resync.
|
|
* tls_dev_resync must not be called after tls_dev_del.
|
|
*/
|
|
rcu_assign_pointer(ctx->netdev, NULL);
|
|
|
|
/* Start skipping the RX resync logic completely. */
|
|
set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
|
|
|
|
/* Sync with inflight packets. After this point:
|
|
* TX: no non-encrypted packets will be passed to the driver.
|
|
* RX: resync requests from the driver will be ignored.
|
|
*/
|
|
synchronize_net();
|
|
|
|
/* Release the offload context on the driver side. */
|
|
if (ctx->tx_conf == TLS_HW)
|
|
netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
|
|
TLS_OFFLOAD_CTX_DIR_TX);
|
|
if (ctx->rx_conf == TLS_HW &&
|
|
!test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
|
|
netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
|
|
TLS_OFFLOAD_CTX_DIR_RX);
|
|
|
|
dev_put(netdev);
|
|
|
|
/* Move the context to a separate list for two reasons:
|
|
* 1. When the context is deallocated, list_del is called.
|
|
* 2. It's no longer an offloaded context, so we don't want to
|
|
* run offload-specific code on this context.
|
|
*/
|
|
spin_lock_irqsave(&tls_device_lock, flags);
|
|
list_move_tail(&ctx->list, &tls_device_down_list);
|
|
spin_unlock_irqrestore(&tls_device_lock, flags);
|
|
|
|
/* Device contexts for RX and TX will be freed in on sk_destruct
|
|
* by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
|
|
* Now release the ref taken above.
|
|
*/
|
|
if (refcount_dec_and_test(&ctx->refcount)) {
|
|
/* sk_destruct ran after tls_device_down took a ref, and
|
|
* it returned early. Complete the destruction here.
|
|
*/
|
|
list_del(&ctx->list);
|
|
tls_device_free_ctx(ctx);
|
|
}
|
|
}
|
|
|
|
up_write(&device_offload_lock);
|
|
|
|
flush_workqueue(destruct_wq);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static int tls_dev_event(struct notifier_block *this, unsigned long event,
|
|
void *ptr)
|
|
{
|
|
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
|
|
|
|
if (!dev->tlsdev_ops &&
|
|
!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
|
|
return NOTIFY_DONE;
|
|
|
|
switch (event) {
|
|
case NETDEV_REGISTER:
|
|
case NETDEV_FEAT_CHANGE:
|
|
if (netif_is_bond_master(dev))
|
|
return NOTIFY_DONE;
|
|
if ((dev->features & NETIF_F_HW_TLS_RX) &&
|
|
!dev->tlsdev_ops->tls_dev_resync)
|
|
return NOTIFY_BAD;
|
|
|
|
if (dev->tlsdev_ops &&
|
|
dev->tlsdev_ops->tls_dev_add &&
|
|
dev->tlsdev_ops->tls_dev_del)
|
|
return NOTIFY_DONE;
|
|
else
|
|
return NOTIFY_BAD;
|
|
case NETDEV_DOWN:
|
|
return tls_device_down(dev);
|
|
}
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block tls_dev_notifier = {
|
|
.notifier_call = tls_dev_event,
|
|
};
|
|
|
|
int __init tls_device_init(void)
|
|
{
|
|
int err;
|
|
|
|
dummy_page = alloc_page(GFP_KERNEL);
|
|
if (!dummy_page)
|
|
return -ENOMEM;
|
|
|
|
destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
|
|
if (!destruct_wq) {
|
|
err = -ENOMEM;
|
|
goto err_free_dummy;
|
|
}
|
|
|
|
err = register_netdevice_notifier(&tls_dev_notifier);
|
|
if (err)
|
|
goto err_destroy_wq;
|
|
|
|
return 0;
|
|
|
|
err_destroy_wq:
|
|
destroy_workqueue(destruct_wq);
|
|
err_free_dummy:
|
|
put_page(dummy_page);
|
|
return err;
|
|
}
|
|
|
|
void __exit tls_device_cleanup(void)
|
|
{
|
|
unregister_netdevice_notifier(&tls_dev_notifier);
|
|
destroy_workqueue(destruct_wq);
|
|
clean_acked_data_flush();
|
|
put_page(dummy_page);
|
|
}
|