linux/arch/arm64/kvm/fpsimd.c
Mark Brown baa8515281 arm64/fpsimd: Track the saved FPSIMD state type separately to TIF_SVE
When we save the state for the floating point registers this can be done
in the form visible through either the FPSIMD V registers or the SVE Z and
P registers. At present we track which format is currently used based on
TIF_SVE and the SME streaming mode state but particularly in the SVE case
this limits our options for optimising things, especially around syscalls.
Introduce a new enum which we place together with saved floating point
state in both thread_struct and the KVM guest state which explicitly
states which format is active and keep it up to date when we change it.

At present we do not use this state except to verify that it has the
expected value when loading the state, future patches will introduce
functional changes.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221115094640.112848-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
2022-11-29 15:01:56 +00:00

208 lines
6.1 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
*
* Copyright 2018 Arm Limited
* Author: Dave Martin <Dave.Martin@arm.com>
*/
#include <linux/irqflags.h>
#include <linux/sched.h>
#include <linux/kvm_host.h>
#include <asm/fpsimd.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/sysreg.h>
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
{
struct task_struct *p = vcpu->arch.parent_task;
struct user_fpsimd_state *fpsimd;
if (!is_protected_kvm_enabled() || !p)
return;
fpsimd = &p->thread.uw.fpsimd_state;
kvm_unshare_hyp(fpsimd, fpsimd + 1);
put_task_struct(p);
}
/*
* Called on entry to KVM_RUN unless this vcpu previously ran at least
* once and the most recent prior KVM_RUN for this vcpu was called from
* the same task as current (highly likely).
*
* This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
* such that on entering hyp the relevant parts of current are already
* mapped.
*/
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
{
int ret;
struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
kvm_vcpu_unshare_task_fp(vcpu);
/* Make sure the host task fpsimd state is visible to hyp: */
ret = kvm_share_hyp(fpsimd, fpsimd + 1);
if (ret)
return ret;
vcpu->arch.host_fpsimd_state = kern_hyp_va(fpsimd);
/*
* We need to keep current's task_struct pinned until its data has been
* unshared with the hypervisor to make sure it is not re-used by the
* kernel and donated to someone else while already shared -- see
* kvm_vcpu_unshare_task_fp() for the matching put_task_struct().
*/
if (is_protected_kvm_enabled()) {
get_task_struct(current);
vcpu->arch.parent_task = current;
}
return 0;
}
/*
* Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
* The actual loading is done by the FPSIMD access trap taken to hyp.
*
* Here, we just set the correct metadata to indicate that the FPSIMD
* state in the cpu regs (if any) belongs to current on the host.
*/
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
{
BUG_ON(!current->mm);
if (!system_supports_fpsimd())
return;
fpsimd_kvm_prepare();
vcpu->arch.fp_state = FP_STATE_HOST_OWNED;
vcpu_clear_flag(vcpu, HOST_SVE_ENABLED);
if (read_sysreg(cpacr_el1) & CPACR_EL1_ZEN_EL0EN)
vcpu_set_flag(vcpu, HOST_SVE_ENABLED);
/*
* We don't currently support SME guests but if we leave
* things in streaming mode then when the guest starts running
* FPSIMD or SVE code it may generate SME traps so as a
* special case if we are in streaming mode we force the host
* state to be saved now and exit streaming mode so that we
* don't have to handle any SME traps for valid guest
* operations. Do this for ZA as well for now for simplicity.
*/
if (system_supports_sme()) {
vcpu_clear_flag(vcpu, HOST_SME_ENABLED);
if (read_sysreg(cpacr_el1) & CPACR_EL1_SMEN_EL0EN)
vcpu_set_flag(vcpu, HOST_SME_ENABLED);
if (read_sysreg_s(SYS_SVCR) & (SVCR_SM_MASK | SVCR_ZA_MASK)) {
vcpu->arch.fp_state = FP_STATE_FREE;
fpsimd_save_and_flush_cpu_state();
}
}
}
/*
* Called just before entering the guest once we are no longer preemptable
* and interrupts are disabled. If we have managed to run anything using
* FP while we were preemptible (such as off the back of an interrupt),
* then neither the host nor the guest own the FP hardware (and it was the
* responsibility of the code that used FP to save the existing state).
*/
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
{
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
vcpu->arch.fp_state = FP_STATE_FREE;
}
/*
* Called just after exiting the guest. If the guest FPSIMD state
* was loaded, update the host's context tracking data mark the CPU
* FPSIMD regs as dirty and belonging to vcpu so that they will be
* written back if the kernel clobbers them due to kernel-mode NEON
* before re-entry into the guest.
*/
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
{
WARN_ON_ONCE(!irqs_disabled());
if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
/*
* Currently we do not support SME guests so SVCR is
* always 0 and we just need a variable to point to.
*/
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
vcpu->arch.sve_state,
vcpu->arch.sve_max_vl,
NULL, 0, &vcpu->arch.svcr,
&vcpu->arch.fp_type);
clear_thread_flag(TIF_FOREIGN_FPSTATE);
update_thread_flag(TIF_SVE, vcpu_has_sve(vcpu));
}
}
/*
* Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
* cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
* disappears and another task or vcpu appears that recycles the same
* struct fpsimd_state.
*/
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
{
unsigned long flags;
local_irq_save(flags);
/*
* If we have VHE then the Hyp code will reset CPACR_EL1 to
* CPACR_EL1_DEFAULT and we need to reenable SME.
*/
if (has_vhe() && system_supports_sme()) {
/* Also restore EL0 state seen on entry */
if (vcpu_get_flag(vcpu, HOST_SME_ENABLED))
sysreg_clear_set(CPACR_EL1, 0,
CPACR_EL1_SMEN_EL0EN |
CPACR_EL1_SMEN_EL1EN);
else
sysreg_clear_set(CPACR_EL1,
CPACR_EL1_SMEN_EL0EN,
CPACR_EL1_SMEN_EL1EN);
}
if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
if (vcpu_has_sve(vcpu)) {
__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR);
/* Restore the VL that was saved when bound to the CPU */
if (!has_vhe())
sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1,
SYS_ZCR_EL1);
}
fpsimd_save_and_flush_cpu_state();
} else if (has_vhe() && system_supports_sve()) {
/*
* The FPSIMD/SVE state in the CPU has not been touched, and we
* have SVE (and VHE): CPACR_EL1 (alias CPTR_EL2) has been
* reset to CPACR_EL1_DEFAULT by the Hyp code, disabling SVE
* for EL0. To avoid spurious traps, restore the trap state
* seen by kvm_arch_vcpu_load_fp():
*/
if (vcpu_get_flag(vcpu, HOST_SVE_ENABLED))
sysreg_clear_set(CPACR_EL1, 0, CPACR_EL1_ZEN_EL0EN);
else
sysreg_clear_set(CPACR_EL1, CPACR_EL1_ZEN_EL0EN, 0);
}
update_thread_flag(TIF_SVE, 0);
local_irq_restore(flags);
}