dfccd937de
Now that we have infoframes to report the pixel repeat flag, we can start using it. Fixes locking the 720x480i and 720x576i modes on my Dell 2408WFP. Like the 1920x1080i case, they don't fit properly on the screen, though. Signed-off-by: Eric Anholt <eric@anholt.net>
1064 lines
30 KiB
C
1064 lines
30 KiB
C
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 CRTC module
|
|
*
|
|
* In VC4, the Pixel Valve is what most closely corresponds to the
|
|
* DRM's concept of a CRTC. The PV generates video timings from the
|
|
* output's clock plus its configuration. It pulls scaled pixels from
|
|
* the HVS at that timing, and feeds it to the encoder.
|
|
*
|
|
* However, the DRM CRTC also collects the configuration of all the
|
|
* DRM planes attached to it. As a result, this file also manages
|
|
* setup of the VC4 HVS's display elements on the CRTC.
|
|
*
|
|
* The 2835 has 3 different pixel valves. pv0 in the audio power
|
|
* domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
|
|
* image domain can feed either HDMI or the SDTV controller. The
|
|
* pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
|
|
* SDTV, etc.) according to which output type is chosen in the mux.
|
|
*
|
|
* For power management, the pixel valve's registers are all clocked
|
|
* by the AXI clock, while the timings and FIFOs make use of the
|
|
* output-specific clock. Since the encoders also directly consume
|
|
* the CPRMAN clocks, and know what timings they need, they are the
|
|
* ones that set the clock.
|
|
*/
|
|
|
|
#include "drm_atomic.h"
|
|
#include "drm_atomic_helper.h"
|
|
#include "drm_crtc_helper.h"
|
|
#include "linux/clk.h"
|
|
#include "drm_fb_cma_helper.h"
|
|
#include "linux/component.h"
|
|
#include "linux/of_device.h"
|
|
#include "vc4_drv.h"
|
|
#include "vc4_regs.h"
|
|
|
|
struct vc4_crtc {
|
|
struct drm_crtc base;
|
|
const struct vc4_crtc_data *data;
|
|
void __iomem *regs;
|
|
|
|
/* Timestamp at start of vblank irq - unaffected by lock delays. */
|
|
ktime_t t_vblank;
|
|
|
|
/* Which HVS channel we're using for our CRTC. */
|
|
int channel;
|
|
|
|
u8 lut_r[256];
|
|
u8 lut_g[256];
|
|
u8 lut_b[256];
|
|
/* Size in pixels of the COB memory allocated to this CRTC. */
|
|
u32 cob_size;
|
|
|
|
struct drm_pending_vblank_event *event;
|
|
};
|
|
|
|
struct vc4_crtc_state {
|
|
struct drm_crtc_state base;
|
|
/* Dlist area for this CRTC configuration. */
|
|
struct drm_mm_node mm;
|
|
};
|
|
|
|
static inline struct vc4_crtc *
|
|
to_vc4_crtc(struct drm_crtc *crtc)
|
|
{
|
|
return (struct vc4_crtc *)crtc;
|
|
}
|
|
|
|
static inline struct vc4_crtc_state *
|
|
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
|
|
{
|
|
return (struct vc4_crtc_state *)crtc_state;
|
|
}
|
|
|
|
struct vc4_crtc_data {
|
|
/* Which channel of the HVS this pixelvalve sources from. */
|
|
int hvs_channel;
|
|
|
|
enum vc4_encoder_type encoder0_type;
|
|
enum vc4_encoder_type encoder1_type;
|
|
};
|
|
|
|
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
|
|
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
|
|
|
|
#define CRTC_REG(reg) { reg, #reg }
|
|
static const struct {
|
|
u32 reg;
|
|
const char *name;
|
|
} crtc_regs[] = {
|
|
CRTC_REG(PV_CONTROL),
|
|
CRTC_REG(PV_V_CONTROL),
|
|
CRTC_REG(PV_VSYNCD_EVEN),
|
|
CRTC_REG(PV_HORZA),
|
|
CRTC_REG(PV_HORZB),
|
|
CRTC_REG(PV_VERTA),
|
|
CRTC_REG(PV_VERTB),
|
|
CRTC_REG(PV_VERTA_EVEN),
|
|
CRTC_REG(PV_VERTB_EVEN),
|
|
CRTC_REG(PV_INTEN),
|
|
CRTC_REG(PV_INTSTAT),
|
|
CRTC_REG(PV_STAT),
|
|
CRTC_REG(PV_HACT_ACT),
|
|
};
|
|
|
|
static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
|
|
DRM_INFO("0x%04x (%s): 0x%08x\n",
|
|
crtc_regs[i].reg, crtc_regs[i].name,
|
|
CRTC_READ(crtc_regs[i].reg));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *)m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
int crtc_index = (uintptr_t)node->info_ent->data;
|
|
struct drm_crtc *crtc;
|
|
struct vc4_crtc *vc4_crtc;
|
|
int i;
|
|
|
|
i = 0;
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (i == crtc_index)
|
|
break;
|
|
i++;
|
|
}
|
|
if (!crtc)
|
|
return 0;
|
|
vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
|
|
seq_printf(m, "%s (0x%04x): 0x%08x\n",
|
|
crtc_regs[i].name, crtc_regs[i].reg,
|
|
CRTC_READ(crtc_regs[i].reg));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
|
|
unsigned int flags, int *vpos, int *hpos,
|
|
ktime_t *stime, ktime_t *etime,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
|
|
u32 val;
|
|
int fifo_lines;
|
|
int vblank_lines;
|
|
int ret = 0;
|
|
|
|
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
|
|
|
|
/* Get optional system timestamp before query. */
|
|
if (stime)
|
|
*stime = ktime_get();
|
|
|
|
/*
|
|
* Read vertical scanline which is currently composed for our
|
|
* pixelvalve by the HVS, and also the scaler status.
|
|
*/
|
|
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
|
|
|
|
/* Get optional system timestamp after query. */
|
|
if (etime)
|
|
*etime = ktime_get();
|
|
|
|
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
|
|
|
|
/* Vertical position of hvs composed scanline. */
|
|
*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
|
|
*hpos = 0;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
*vpos /= 2;
|
|
|
|
/* Use hpos to correct for field offset in interlaced mode. */
|
|
if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
|
|
*hpos += mode->crtc_htotal / 2;
|
|
}
|
|
|
|
/* This is the offset we need for translating hvs -> pv scanout pos. */
|
|
fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
|
|
|
|
if (fifo_lines > 0)
|
|
ret |= DRM_SCANOUTPOS_VALID;
|
|
|
|
/* HVS more than fifo_lines into frame for compositing? */
|
|
if (*vpos > fifo_lines) {
|
|
/*
|
|
* We are in active scanout and can get some meaningful results
|
|
* from HVS. The actual PV scanout can not trail behind more
|
|
* than fifo_lines as that is the fifo's capacity. Assume that
|
|
* in active scanout the HVS and PV work in lockstep wrt. HVS
|
|
* refilling the fifo and PV consuming from the fifo, ie.
|
|
* whenever the PV consumes and frees up a scanline in the
|
|
* fifo, the HVS will immediately refill it, therefore
|
|
* incrementing vpos. Therefore we choose HVS read position -
|
|
* fifo size in scanlines as a estimate of the real scanout
|
|
* position of the PV.
|
|
*/
|
|
*vpos -= fifo_lines + 1;
|
|
|
|
ret |= DRM_SCANOUTPOS_ACCURATE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Less: This happens when we are in vblank and the HVS, after getting
|
|
* the VSTART restart signal from the PV, just started refilling its
|
|
* fifo with new lines from the top-most lines of the new framebuffers.
|
|
* The PV does not scan out in vblank, so does not remove lines from
|
|
* the fifo, so the fifo will be full quickly and the HVS has to pause.
|
|
* We can't get meaningful readings wrt. scanline position of the PV
|
|
* and need to make things up in a approximative but consistent way.
|
|
*/
|
|
ret |= DRM_SCANOUTPOS_IN_VBLANK;
|
|
vblank_lines = mode->vtotal - mode->vdisplay;
|
|
|
|
if (flags & DRM_CALLED_FROM_VBLIRQ) {
|
|
/*
|
|
* Assume the irq handler got called close to first
|
|
* line of vblank, so PV has about a full vblank
|
|
* scanlines to go, and as a base timestamp use the
|
|
* one taken at entry into vblank irq handler, so it
|
|
* is not affected by random delays due to lock
|
|
* contention on event_lock or vblank_time lock in
|
|
* the core.
|
|
*/
|
|
*vpos = -vblank_lines;
|
|
|
|
if (stime)
|
|
*stime = vc4_crtc->t_vblank;
|
|
if (etime)
|
|
*etime = vc4_crtc->t_vblank;
|
|
|
|
/*
|
|
* If the HVS fifo is not yet full then we know for certain
|
|
* we are at the very beginning of vblank, as the hvs just
|
|
* started refilling, and the stime and etime timestamps
|
|
* truly correspond to start of vblank.
|
|
*/
|
|
if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
|
|
ret |= DRM_SCANOUTPOS_ACCURATE;
|
|
} else {
|
|
/*
|
|
* No clue where we are inside vblank. Return a vpos of zero,
|
|
* which will cause calling code to just return the etime
|
|
* timestamp uncorrected. At least this is no worse than the
|
|
* standard fallback.
|
|
*/
|
|
*vpos = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
|
|
int *max_error, struct timeval *vblank_time,
|
|
unsigned flags)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
|
|
struct drm_crtc *crtc = &vc4_crtc->base;
|
|
struct drm_crtc_state *state = crtc->state;
|
|
|
|
/* Helper routine in DRM core does all the work: */
|
|
return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
|
|
vblank_time, flags,
|
|
&state->adjusted_mode);
|
|
}
|
|
|
|
static void vc4_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
drm_crtc_cleanup(crtc);
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_lut_load(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 i;
|
|
|
|
/* The LUT memory is laid out with each HVS channel in order,
|
|
* each of which takes 256 writes for R, 256 for G, then 256
|
|
* for B.
|
|
*/
|
|
HVS_WRITE(SCALER_GAMADDR,
|
|
SCALER_GAMADDR_AUTOINC |
|
|
(vc4_crtc->channel * 3 * crtc->gamma_size));
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
|
|
}
|
|
|
|
static int
|
|
vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
|
|
uint32_t size)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 i;
|
|
|
|
for (i = 0; i < size; i++) {
|
|
vc4_crtc->lut_r[i] = r[i] >> 8;
|
|
vc4_crtc->lut_g[i] = g[i] >> 8;
|
|
vc4_crtc->lut_b[i] = b[i] >> 8;
|
|
}
|
|
|
|
vc4_crtc_lut_load(crtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 vc4_get_fifo_full_level(u32 format)
|
|
{
|
|
static const u32 fifo_len_bytes = 64;
|
|
static const u32 hvs_latency_pix = 6;
|
|
|
|
switch (format) {
|
|
case PV_CONTROL_FORMAT_DSIV_16:
|
|
case PV_CONTROL_FORMAT_DSIC_16:
|
|
return fifo_len_bytes - 2 * hvs_latency_pix;
|
|
case PV_CONTROL_FORMAT_DSIV_18:
|
|
return fifo_len_bytes - 14;
|
|
case PV_CONTROL_FORMAT_24:
|
|
case PV_CONTROL_FORMAT_DSIV_24:
|
|
default:
|
|
return fifo_len_bytes - 3 * hvs_latency_pix;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the clock select bit for the connector attached to the
|
|
* CRTC.
|
|
*/
|
|
static int vc4_get_clock_select(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_connector *connector;
|
|
|
|
drm_for_each_connector(connector, crtc->dev) {
|
|
if (connector->state->crtc == crtc) {
|
|
struct drm_encoder *encoder = connector->encoder;
|
|
struct vc4_encoder *vc4_encoder =
|
|
to_vc4_encoder(encoder);
|
|
|
|
return vc4_encoder->clock_select;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_crtc_state *state = crtc->state;
|
|
struct drm_display_mode *mode = &state->adjusted_mode;
|
|
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
|
|
u32 format = PV_CONTROL_FORMAT_24;
|
|
bool debug_dump_regs = false;
|
|
int clock_select = vc4_get_clock_select(crtc);
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
|
|
vc4_crtc_dump_regs(vc4_crtc);
|
|
}
|
|
|
|
/* Reset the PV fifo. */
|
|
CRTC_WRITE(PV_CONTROL, 0);
|
|
CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
|
|
CRTC_WRITE(PV_CONTROL, 0);
|
|
|
|
CRTC_WRITE(PV_HORZA,
|
|
VC4_SET_FIELD((mode->htotal -
|
|
mode->hsync_end) * pixel_rep,
|
|
PV_HORZA_HBP) |
|
|
VC4_SET_FIELD((mode->hsync_end -
|
|
mode->hsync_start) * pixel_rep,
|
|
PV_HORZA_HSYNC));
|
|
CRTC_WRITE(PV_HORZB,
|
|
VC4_SET_FIELD((mode->hsync_start -
|
|
mode->hdisplay) * pixel_rep,
|
|
PV_HORZB_HFP) |
|
|
VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
|
|
|
|
CRTC_WRITE(PV_VERTA,
|
|
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
|
|
PV_VERTA_VBP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
|
|
PV_VERTA_VSYNC));
|
|
CRTC_WRITE(PV_VERTB,
|
|
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
|
|
PV_VERTB_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
|
|
|
|
if (interlace) {
|
|
CRTC_WRITE(PV_VERTA_EVEN,
|
|
VC4_SET_FIELD(mode->crtc_vtotal -
|
|
mode->crtc_vsync_end - 1,
|
|
PV_VERTA_VBP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_end -
|
|
mode->crtc_vsync_start,
|
|
PV_VERTA_VSYNC));
|
|
CRTC_WRITE(PV_VERTB_EVEN,
|
|
VC4_SET_FIELD(mode->crtc_vsync_start -
|
|
mode->crtc_vdisplay,
|
|
PV_VERTB_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
|
|
|
|
/* We set up first field even mode for HDMI. VEC's
|
|
* NTSC mode would want first field odd instead, once
|
|
* we support it (to do so, set ODD_FIRST and put the
|
|
* delay in VSYNCD_EVEN instead).
|
|
*/
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
PV_VCONTROL_CONTINUOUS |
|
|
PV_VCONTROL_INTERLACE |
|
|
VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
|
|
PV_VCONTROL_ODD_DELAY));
|
|
CRTC_WRITE(PV_VSYNCD_EVEN, 0);
|
|
} else {
|
|
CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
|
|
}
|
|
|
|
CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
|
|
|
|
|
|
CRTC_WRITE(PV_CONTROL,
|
|
VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
|
|
VC4_SET_FIELD(vc4_get_fifo_full_level(format),
|
|
PV_CONTROL_FIFO_LEVEL) |
|
|
VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
|
|
PV_CONTROL_CLR_AT_START |
|
|
PV_CONTROL_TRIGGER_UNDERFLOW |
|
|
PV_CONTROL_WAIT_HSTART |
|
|
VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
|
|
PV_CONTROL_FIFO_CLR |
|
|
PV_CONTROL_EN);
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
|
|
SCALER_DISPBKGND_AUTOHS |
|
|
SCALER_DISPBKGND_GAMMA |
|
|
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
|
|
|
|
/* Reload the LUT, since the SRAMs would have been disabled if
|
|
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
|
|
*/
|
|
vc4_crtc_lut_load(crtc);
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
|
|
vc4_crtc_dump_regs(vc4_crtc);
|
|
}
|
|
}
|
|
|
|
static void require_hvs_enabled(struct drm_device *dev)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
|
|
SCALER_DISPCTRL_ENABLE);
|
|
}
|
|
|
|
static void vc4_crtc_disable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 chan = vc4_crtc->channel;
|
|
int ret;
|
|
require_hvs_enabled(dev);
|
|
|
|
/* Disable vblank irq handling before crtc is disabled. */
|
|
drm_crtc_vblank_off(crtc);
|
|
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
|
|
ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
|
|
WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
|
|
|
|
if (HVS_READ(SCALER_DISPCTRLX(chan)) &
|
|
SCALER_DISPCTRLX_ENABLE) {
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan),
|
|
SCALER_DISPCTRLX_RESET);
|
|
|
|
/* While the docs say that reset is self-clearing, it
|
|
* seems it doesn't actually.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
|
|
}
|
|
|
|
/* Once we leave, the scaler should be disabled and its fifo empty. */
|
|
|
|
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
|
|
|
|
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
|
|
SCALER_DISPSTATX_MODE) !=
|
|
SCALER_DISPSTATX_MODE_DISABLED);
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
|
|
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
|
|
SCALER_DISPSTATX_EMPTY);
|
|
}
|
|
|
|
static void vc4_crtc_enable(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_crtc_state *state = crtc->state;
|
|
struct drm_display_mode *mode = &state->adjusted_mode;
|
|
|
|
require_hvs_enabled(dev);
|
|
|
|
/* Turn on the scaler, which will wait for vstart to start
|
|
* compositing.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
|
|
VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
|
|
VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
|
|
SCALER_DISPCTRLX_ENABLE);
|
|
|
|
/* Turn on the pixel valve, which will emit the vstart signal. */
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
|
|
|
|
/* Enable vblank irq handling after crtc is started. */
|
|
drm_crtc_vblank_on(crtc);
|
|
}
|
|
|
|
static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
/* Do not allow doublescan modes from user space */
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
|
|
DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
|
|
crtc->base.id);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane;
|
|
unsigned long flags;
|
|
const struct drm_plane_state *plane_state;
|
|
u32 dlist_count = 0;
|
|
int ret;
|
|
|
|
/* The pixelvalve can only feed one encoder (and encoders are
|
|
* 1:1 with connectors.)
|
|
*/
|
|
if (hweight32(state->connector_mask) > 1)
|
|
return -EINVAL;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
|
|
dlist_count += vc4_plane_dlist_size(plane_state);
|
|
|
|
dlist_count++; /* Account for SCALER_CTL0_END. */
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
|
|
ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
|
|
dlist_count, 1, 0);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
struct drm_plane *plane;
|
|
bool debug_dump_regs = false;
|
|
u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
|
|
u32 __iomem *dlist_next = dlist_start;
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(dev);
|
|
}
|
|
|
|
/* Copy all the active planes' dlist contents to the hardware dlist. */
|
|
drm_atomic_crtc_for_each_plane(plane, crtc) {
|
|
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
|
|
}
|
|
|
|
writel(SCALER_CTL0_END, dlist_next);
|
|
dlist_next++;
|
|
|
|
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
|
|
|
|
if (crtc->state->event) {
|
|
unsigned long flags;
|
|
|
|
crtc->state->event->pipe = drm_crtc_index(crtc);
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
vc4_crtc->event = crtc->state->event;
|
|
crtc->state->event = NULL;
|
|
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
vc4_state->mm.start);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
} else {
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
vc4_state->mm.start);
|
|
}
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(dev);
|
|
}
|
|
}
|
|
|
|
int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
|
|
|
|
CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
}
|
|
|
|
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc *crtc = &vc4_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
u32 chan = vc4_crtc->channel;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (vc4_crtc->event &&
|
|
(vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
|
|
drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
|
|
vc4_crtc->event = NULL;
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = data;
|
|
u32 stat = CRTC_READ(PV_INTSTAT);
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
if (stat & PV_INT_VFP_START) {
|
|
vc4_crtc->t_vblank = ktime_get();
|
|
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
|
|
drm_crtc_handle_vblank(&vc4_crtc->base);
|
|
vc4_crtc_handle_page_flip(vc4_crtc);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct vc4_async_flip_state {
|
|
struct drm_crtc *crtc;
|
|
struct drm_framebuffer *fb;
|
|
struct drm_pending_vblank_event *event;
|
|
|
|
struct vc4_seqno_cb cb;
|
|
};
|
|
|
|
/* Called when the V3D execution for the BO being flipped to is done, so that
|
|
* we can actually update the plane's address to point to it.
|
|
*/
|
|
static void
|
|
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
|
|
{
|
|
struct vc4_async_flip_state *flip_state =
|
|
container_of(cb, struct vc4_async_flip_state, cb);
|
|
struct drm_crtc *crtc = flip_state->crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane = crtc->primary;
|
|
|
|
vc4_plane_async_set_fb(plane, flip_state->fb);
|
|
if (flip_state->event) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
drm_crtc_send_vblank_event(crtc, flip_state->event);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
drm_framebuffer_unreference(flip_state->fb);
|
|
kfree(flip_state);
|
|
|
|
up(&vc4->async_modeset);
|
|
}
|
|
|
|
/* Implements async (non-vblank-synced) page flips.
|
|
*
|
|
* The page flip ioctl needs to return immediately, so we grab the
|
|
* modeset semaphore on the pipe, and queue the address update for
|
|
* when V3D is done with the BO being flipped to.
|
|
*/
|
|
static int vc4_async_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t flags)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane = crtc->primary;
|
|
int ret = 0;
|
|
struct vc4_async_flip_state *flip_state;
|
|
struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
|
|
struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
|
|
|
|
flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
|
|
if (!flip_state)
|
|
return -ENOMEM;
|
|
|
|
drm_framebuffer_reference(fb);
|
|
flip_state->fb = fb;
|
|
flip_state->crtc = crtc;
|
|
flip_state->event = event;
|
|
|
|
/* Make sure all other async modesetes have landed. */
|
|
ret = down_interruptible(&vc4->async_modeset);
|
|
if (ret) {
|
|
drm_framebuffer_unreference(fb);
|
|
kfree(flip_state);
|
|
return ret;
|
|
}
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
/* Immediately update the plane's legacy fb pointer, so that later
|
|
* modeset prep sees the state that will be present when the semaphore
|
|
* is released.
|
|
*/
|
|
drm_atomic_set_fb_for_plane(plane->state, fb);
|
|
plane->fb = fb;
|
|
|
|
vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
|
|
vc4_async_page_flip_complete);
|
|
|
|
/* Driver takes ownership of state on successful async commit. */
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t flags)
|
|
{
|
|
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
|
|
return vc4_async_page_flip(crtc, fb, event, flags);
|
|
else
|
|
return drm_atomic_helper_page_flip(crtc, fb, event, flags);
|
|
}
|
|
|
|
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc_state *vc4_state;
|
|
|
|
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
|
|
if (!vc4_state)
|
|
return NULL;
|
|
|
|
__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
|
|
return &vc4_state->base;
|
|
}
|
|
|
|
static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
|
|
|
|
if (vc4_state->mm.allocated) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
|
|
drm_mm_remove_node(&vc4_state->mm);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
|
|
|
|
}
|
|
|
|
__drm_atomic_helper_crtc_destroy_state(state);
|
|
}
|
|
|
|
static const struct drm_crtc_funcs vc4_crtc_funcs = {
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.destroy = vc4_crtc_destroy,
|
|
.page_flip = vc4_page_flip,
|
|
.set_property = NULL,
|
|
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
|
|
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
|
|
.reset = drm_atomic_helper_crtc_reset,
|
|
.atomic_duplicate_state = vc4_crtc_duplicate_state,
|
|
.atomic_destroy_state = vc4_crtc_destroy_state,
|
|
.gamma_set = vc4_crtc_gamma_set,
|
|
};
|
|
|
|
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
|
|
.mode_set_nofb = vc4_crtc_mode_set_nofb,
|
|
.disable = vc4_crtc_disable,
|
|
.enable = vc4_crtc_enable,
|
|
.mode_fixup = vc4_crtc_mode_fixup,
|
|
.atomic_check = vc4_crtc_atomic_check,
|
|
.atomic_flush = vc4_crtc_atomic_flush,
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv0_data = {
|
|
.hvs_channel = 0,
|
|
.encoder0_type = VC4_ENCODER_TYPE_DSI0,
|
|
.encoder1_type = VC4_ENCODER_TYPE_DPI,
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv1_data = {
|
|
.hvs_channel = 2,
|
|
.encoder0_type = VC4_ENCODER_TYPE_DSI1,
|
|
.encoder1_type = VC4_ENCODER_TYPE_SMI,
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv2_data = {
|
|
.hvs_channel = 1,
|
|
.encoder0_type = VC4_ENCODER_TYPE_VEC,
|
|
.encoder1_type = VC4_ENCODER_TYPE_HDMI,
|
|
};
|
|
|
|
static const struct of_device_id vc4_crtc_dt_match[] = {
|
|
{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
|
|
{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
|
|
{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
|
|
{}
|
|
};
|
|
|
|
static void vc4_set_crtc_possible_masks(struct drm_device *drm,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_encoder *encoder;
|
|
|
|
drm_for_each_encoder(encoder, drm) {
|
|
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
|
|
|
|
if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
|
|
vc4_encoder->clock_select = 0;
|
|
encoder->possible_crtcs |= drm_crtc_mask(crtc);
|
|
} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
|
|
vc4_encoder->clock_select = 1;
|
|
encoder->possible_crtcs |= drm_crtc_mask(crtc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_device *drm = vc4_crtc->base.dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
|
|
/* Top/base are supposed to be 4-pixel aligned, but the
|
|
* Raspberry Pi firmware fills the low bits (which are
|
|
* presumably ignored).
|
|
*/
|
|
u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
|
|
u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
|
|
|
|
vc4_crtc->cob_size = top - base + 4;
|
|
}
|
|
|
|
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
struct vc4_crtc *vc4_crtc;
|
|
struct drm_crtc *crtc;
|
|
struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
|
|
const struct of_device_id *match;
|
|
int ret, i;
|
|
|
|
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
|
|
if (!vc4_crtc)
|
|
return -ENOMEM;
|
|
crtc = &vc4_crtc->base;
|
|
|
|
match = of_match_device(vc4_crtc_dt_match, dev);
|
|
if (!match)
|
|
return -ENODEV;
|
|
vc4_crtc->data = match->data;
|
|
|
|
vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
|
|
if (IS_ERR(vc4_crtc->regs))
|
|
return PTR_ERR(vc4_crtc->regs);
|
|
|
|
/* For now, we create just the primary and the legacy cursor
|
|
* planes. We should be able to stack more planes on easily,
|
|
* but to do that we would need to compute the bandwidth
|
|
* requirement of the plane configuration, and reject ones
|
|
* that will take too much.
|
|
*/
|
|
primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
|
|
if (IS_ERR(primary_plane)) {
|
|
dev_err(dev, "failed to construct primary plane\n");
|
|
ret = PTR_ERR(primary_plane);
|
|
goto err;
|
|
}
|
|
|
|
drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
|
|
&vc4_crtc_funcs, NULL);
|
|
drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
|
|
primary_plane->crtc = crtc;
|
|
vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
|
|
vc4_crtc->channel = vc4_crtc->data->hvs_channel;
|
|
drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
|
|
|
|
/* Set up some arbitrary number of planes. We're not limited
|
|
* by a set number of physical registers, just the space in
|
|
* the HVS (16k) and how small an plane can be (28 bytes).
|
|
* However, each plane we set up takes up some memory, and
|
|
* increases the cost of looping over planes, which atomic
|
|
* modesetting does quite a bit. As a result, we pick a
|
|
* modest number of planes to expose, that should hopefully
|
|
* still cover any sane usecase.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
struct drm_plane *plane =
|
|
vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
|
|
|
|
if (IS_ERR(plane))
|
|
continue;
|
|
|
|
plane->possible_crtcs = 1 << drm_crtc_index(crtc);
|
|
}
|
|
|
|
/* Set up the legacy cursor after overlay initialization,
|
|
* since we overlay planes on the CRTC in the order they were
|
|
* initialized.
|
|
*/
|
|
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
|
|
if (!IS_ERR(cursor_plane)) {
|
|
cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
|
|
cursor_plane->crtc = crtc;
|
|
crtc->cursor = cursor_plane;
|
|
}
|
|
|
|
vc4_crtc_get_cob_allocation(vc4_crtc);
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
|
|
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
|
|
vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
|
|
if (ret)
|
|
goto err_destroy_planes;
|
|
|
|
vc4_set_crtc_possible_masks(drm, crtc);
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++) {
|
|
vc4_crtc->lut_r[i] = i;
|
|
vc4_crtc->lut_g[i] = i;
|
|
vc4_crtc->lut_b[i] = i;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, vc4_crtc);
|
|
|
|
return 0;
|
|
|
|
err_destroy_planes:
|
|
list_for_each_entry_safe(destroy_plane, temp,
|
|
&drm->mode_config.plane_list, head) {
|
|
if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
|
|
destroy_plane->funcs->destroy(destroy_plane);
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_crtc_unbind(struct device *dev, struct device *master,
|
|
void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
|
|
|
|
vc4_crtc_destroy(&vc4_crtc->base);
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static const struct component_ops vc4_crtc_ops = {
|
|
.bind = vc4_crtc_bind,
|
|
.unbind = vc4_crtc_unbind,
|
|
};
|
|
|
|
static int vc4_crtc_dev_probe(struct platform_device *pdev)
|
|
{
|
|
return component_add(&pdev->dev, &vc4_crtc_ops);
|
|
}
|
|
|
|
static int vc4_crtc_dev_remove(struct platform_device *pdev)
|
|
{
|
|
component_del(&pdev->dev, &vc4_crtc_ops);
|
|
return 0;
|
|
}
|
|
|
|
struct platform_driver vc4_crtc_driver = {
|
|
.probe = vc4_crtc_dev_probe,
|
|
.remove = vc4_crtc_dev_remove,
|
|
.driver = {
|
|
.name = "vc4_crtc",
|
|
.of_match_table = vc4_crtc_dt_match,
|
|
},
|
|
};
|