linux/drivers/cxl/core/pci.c
Dave Jiang 934edcd436 cxl: Add post-reset warning if reset results in loss of previously committed HDM decoders
Secondary Bus Reset (SBR) is equivalent to a device being hot removed and
inserted again. Doing a SBR on a CXL type 3 device is problematic if the
exported device memory is part of system memory that cannot be offlined.
The event is equivalent to violently ripping out that range of memory from
the kernel. While the hardware requires the "Unmask SBR" bit set in the
Port Control Extensions register and the kernel currently does not unmask
it, user can unmask this bit via setpci or similar tool.

The driver does not have a way to detect whether a reset coming from the
PCI subsystem is a Function Level Reset (FLR) or SBR. The only way to
detect is to note if a decoder is marked as enabled in software but the
decoder control register indicates it's not committed.

Add a helper function to find discrepancy between the decoder software
state versus the hardware register state.

Suggested-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20240502165851.1948523-6-dave.jiang@intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
2024-05-08 13:25:46 -05:00

1077 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2021 Intel Corporation. All rights reserved. */
#include <linux/units.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/pci-doe.h>
#include <linux/aer.h>
#include <cxlpci.h>
#include <cxlmem.h>
#include <cxl.h>
#include "core.h"
#include "trace.h"
/**
* DOC: cxl core pci
*
* Compute Express Link protocols are layered on top of PCIe. CXL core provides
* a set of helpers for CXL interactions which occur via PCIe.
*/
static unsigned short media_ready_timeout = 60;
module_param(media_ready_timeout, ushort, 0644);
MODULE_PARM_DESC(media_ready_timeout, "seconds to wait for media ready");
struct cxl_walk_context {
struct pci_bus *bus;
struct cxl_port *port;
int type;
int error;
int count;
};
static int match_add_dports(struct pci_dev *pdev, void *data)
{
struct cxl_walk_context *ctx = data;
struct cxl_port *port = ctx->port;
int type = pci_pcie_type(pdev);
struct cxl_register_map map;
struct cxl_dport *dport;
u32 lnkcap, port_num;
int rc;
if (pdev->bus != ctx->bus)
return 0;
if (!pci_is_pcie(pdev))
return 0;
if (type != ctx->type)
return 0;
if (pci_read_config_dword(pdev, pci_pcie_cap(pdev) + PCI_EXP_LNKCAP,
&lnkcap))
return 0;
rc = cxl_find_regblock(pdev, CXL_REGLOC_RBI_COMPONENT, &map);
if (rc)
dev_dbg(&port->dev, "failed to find component registers\n");
port_num = FIELD_GET(PCI_EXP_LNKCAP_PN, lnkcap);
dport = devm_cxl_add_dport(port, &pdev->dev, port_num, map.resource);
if (IS_ERR(dport)) {
ctx->error = PTR_ERR(dport);
return PTR_ERR(dport);
}
ctx->count++;
return 0;
}
/**
* devm_cxl_port_enumerate_dports - enumerate downstream ports of the upstream port
* @port: cxl_port whose ->uport_dev is the upstream of dports to be enumerated
*
* Returns a positive number of dports enumerated or a negative error
* code.
*/
int devm_cxl_port_enumerate_dports(struct cxl_port *port)
{
struct pci_bus *bus = cxl_port_to_pci_bus(port);
struct cxl_walk_context ctx;
int type;
if (!bus)
return -ENXIO;
if (pci_is_root_bus(bus))
type = PCI_EXP_TYPE_ROOT_PORT;
else
type = PCI_EXP_TYPE_DOWNSTREAM;
ctx = (struct cxl_walk_context) {
.port = port,
.bus = bus,
.type = type,
};
pci_walk_bus(bus, match_add_dports, &ctx);
if (ctx.count == 0)
return -ENODEV;
if (ctx.error)
return ctx.error;
return ctx.count;
}
EXPORT_SYMBOL_NS_GPL(devm_cxl_port_enumerate_dports, CXL);
static int cxl_dvsec_mem_range_valid(struct cxl_dev_state *cxlds, int id)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
bool valid = false;
int rc, i;
u32 temp;
if (id > CXL_DVSEC_RANGE_MAX)
return -EINVAL;
/* Check MEM INFO VALID bit first, give up after 1s */
i = 1;
do {
rc = pci_read_config_dword(pdev,
d + CXL_DVSEC_RANGE_SIZE_LOW(id),
&temp);
if (rc)
return rc;
valid = FIELD_GET(CXL_DVSEC_MEM_INFO_VALID, temp);
if (valid)
break;
msleep(1000);
} while (i--);
if (!valid) {
dev_err(&pdev->dev,
"Timeout awaiting memory range %d valid after 1s.\n",
id);
return -ETIMEDOUT;
}
return 0;
}
static int cxl_dvsec_mem_range_active(struct cxl_dev_state *cxlds, int id)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
bool active = false;
int rc, i;
u32 temp;
if (id > CXL_DVSEC_RANGE_MAX)
return -EINVAL;
/* Check MEM ACTIVE bit, up to 60s timeout by default */
for (i = media_ready_timeout; i; i--) {
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(id), &temp);
if (rc)
return rc;
active = FIELD_GET(CXL_DVSEC_MEM_ACTIVE, temp);
if (active)
break;
msleep(1000);
}
if (!active) {
dev_err(&pdev->dev,
"timeout awaiting memory active after %d seconds\n",
media_ready_timeout);
return -ETIMEDOUT;
}
return 0;
}
/*
* Wait up to @media_ready_timeout for the device to report memory
* active.
*/
int cxl_await_media_ready(struct cxl_dev_state *cxlds)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
int rc, i, hdm_count;
u64 md_status;
u16 cap;
rc = pci_read_config_word(pdev,
d + CXL_DVSEC_CAP_OFFSET, &cap);
if (rc)
return rc;
hdm_count = FIELD_GET(CXL_DVSEC_HDM_COUNT_MASK, cap);
for (i = 0; i < hdm_count; i++) {
rc = cxl_dvsec_mem_range_valid(cxlds, i);
if (rc)
return rc;
}
for (i = 0; i < hdm_count; i++) {
rc = cxl_dvsec_mem_range_active(cxlds, i);
if (rc)
return rc;
}
md_status = readq(cxlds->regs.memdev + CXLMDEV_STATUS_OFFSET);
if (!CXLMDEV_READY(md_status))
return -EIO;
return 0;
}
EXPORT_SYMBOL_NS_GPL(cxl_await_media_ready, CXL);
static int wait_for_valid(struct pci_dev *pdev, int d)
{
u32 val;
int rc;
/*
* Memory_Info_Valid: When set, indicates that the CXL Range 1 Size high
* and Size Low registers are valid. Must be set within 1 second of
* deassertion of reset to CXL device. Likely it is already set by the
* time this runs, but otherwise give a 1.5 second timeout in case of
* clock skew.
*/
rc = pci_read_config_dword(pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(0), &val);
if (rc)
return rc;
if (val & CXL_DVSEC_MEM_INFO_VALID)
return 0;
msleep(1500);
rc = pci_read_config_dword(pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(0), &val);
if (rc)
return rc;
if (val & CXL_DVSEC_MEM_INFO_VALID)
return 0;
return -ETIMEDOUT;
}
static int cxl_set_mem_enable(struct cxl_dev_state *cxlds, u16 val)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
int d = cxlds->cxl_dvsec;
u16 ctrl;
int rc;
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, &ctrl);
if (rc < 0)
return rc;
if ((ctrl & CXL_DVSEC_MEM_ENABLE) == val)
return 1;
ctrl &= ~CXL_DVSEC_MEM_ENABLE;
ctrl |= val;
rc = pci_write_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, ctrl);
if (rc < 0)
return rc;
return 0;
}
static void clear_mem_enable(void *cxlds)
{
cxl_set_mem_enable(cxlds, 0);
}
static int devm_cxl_enable_mem(struct device *host, struct cxl_dev_state *cxlds)
{
int rc;
rc = cxl_set_mem_enable(cxlds, CXL_DVSEC_MEM_ENABLE);
if (rc < 0)
return rc;
if (rc > 0)
return 0;
return devm_add_action_or_reset(host, clear_mem_enable, cxlds);
}
/* require dvsec ranges to be covered by a locked platform window */
static int dvsec_range_allowed(struct device *dev, void *arg)
{
struct range *dev_range = arg;
struct cxl_decoder *cxld;
if (!is_root_decoder(dev))
return 0;
cxld = to_cxl_decoder(dev);
if (!(cxld->flags & CXL_DECODER_F_RAM))
return 0;
return range_contains(&cxld->hpa_range, dev_range);
}
static void disable_hdm(void *_cxlhdm)
{
u32 global_ctrl;
struct cxl_hdm *cxlhdm = _cxlhdm;
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
writel(global_ctrl & ~CXL_HDM_DECODER_ENABLE,
hdm + CXL_HDM_DECODER_CTRL_OFFSET);
}
static int devm_cxl_enable_hdm(struct device *host, struct cxl_hdm *cxlhdm)
{
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
u32 global_ctrl;
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
writel(global_ctrl | CXL_HDM_DECODER_ENABLE,
hdm + CXL_HDM_DECODER_CTRL_OFFSET);
return devm_add_action_or_reset(host, disable_hdm, cxlhdm);
}
int cxl_dvsec_rr_decode(struct device *dev, int d,
struct cxl_endpoint_dvsec_info *info)
{
struct pci_dev *pdev = to_pci_dev(dev);
int hdm_count, rc, i, ranges = 0;
u16 cap, ctrl;
if (!d) {
dev_dbg(dev, "No DVSEC Capability\n");
return -ENXIO;
}
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CAP_OFFSET, &cap);
if (rc)
return rc;
rc = pci_read_config_word(pdev, d + CXL_DVSEC_CTRL_OFFSET, &ctrl);
if (rc)
return rc;
if (!(cap & CXL_DVSEC_MEM_CAPABLE)) {
dev_dbg(dev, "Not MEM Capable\n");
return -ENXIO;
}
/*
* It is not allowed by spec for MEM.capable to be set and have 0 legacy
* HDM decoders (values > 2 are also undefined as of CXL 2.0). As this
* driver is for a spec defined class code which must be CXL.mem
* capable, there is no point in continuing to enable CXL.mem.
*/
hdm_count = FIELD_GET(CXL_DVSEC_HDM_COUNT_MASK, cap);
if (!hdm_count || hdm_count > 2)
return -EINVAL;
rc = wait_for_valid(pdev, d);
if (rc) {
dev_dbg(dev, "Failure awaiting MEM_INFO_VALID (%d)\n", rc);
return rc;
}
/*
* The current DVSEC values are moot if the memory capability is
* disabled, and they will remain moot after the HDM Decoder
* capability is enabled.
*/
info->mem_enabled = FIELD_GET(CXL_DVSEC_MEM_ENABLE, ctrl);
if (!info->mem_enabled)
return 0;
for (i = 0; i < hdm_count; i++) {
u64 base, size;
u32 temp;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_HIGH(i), &temp);
if (rc)
return rc;
size = (u64)temp << 32;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_SIZE_LOW(i), &temp);
if (rc)
return rc;
size |= temp & CXL_DVSEC_MEM_SIZE_LOW_MASK;
if (!size) {
info->dvsec_range[i] = (struct range) {
.start = 0,
.end = CXL_RESOURCE_NONE,
};
continue;
}
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_BASE_HIGH(i), &temp);
if (rc)
return rc;
base = (u64)temp << 32;
rc = pci_read_config_dword(
pdev, d + CXL_DVSEC_RANGE_BASE_LOW(i), &temp);
if (rc)
return rc;
base |= temp & CXL_DVSEC_MEM_BASE_LOW_MASK;
info->dvsec_range[i] = (struct range) {
.start = base,
.end = base + size - 1
};
ranges++;
}
info->ranges = ranges;
return 0;
}
EXPORT_SYMBOL_NS_GPL(cxl_dvsec_rr_decode, CXL);
/**
* cxl_hdm_decode_init() - Setup HDM decoding for the endpoint
* @cxlds: Device state
* @cxlhdm: Mapped HDM decoder Capability
* @info: Cached DVSEC range registers info
*
* Try to enable the endpoint's HDM Decoder Capability
*/
int cxl_hdm_decode_init(struct cxl_dev_state *cxlds, struct cxl_hdm *cxlhdm,
struct cxl_endpoint_dvsec_info *info)
{
void __iomem *hdm = cxlhdm->regs.hdm_decoder;
struct cxl_port *port = cxlhdm->port;
struct device *dev = cxlds->dev;
struct cxl_port *root;
int i, rc, allowed;
u32 global_ctrl = 0;
if (hdm)
global_ctrl = readl(hdm + CXL_HDM_DECODER_CTRL_OFFSET);
/*
* If the HDM Decoder Capability is already enabled then assume
* that some other agent like platform firmware set it up.
*/
if (global_ctrl & CXL_HDM_DECODER_ENABLE || (!hdm && info->mem_enabled))
return devm_cxl_enable_mem(&port->dev, cxlds);
else if (!hdm)
return -ENODEV;
root = to_cxl_port(port->dev.parent);
while (!is_cxl_root(root) && is_cxl_port(root->dev.parent))
root = to_cxl_port(root->dev.parent);
if (!is_cxl_root(root)) {
dev_err(dev, "Failed to acquire root port for HDM enable\n");
return -ENODEV;
}
for (i = 0, allowed = 0; info->mem_enabled && i < info->ranges; i++) {
struct device *cxld_dev;
cxld_dev = device_find_child(&root->dev, &info->dvsec_range[i],
dvsec_range_allowed);
if (!cxld_dev) {
dev_dbg(dev, "DVSEC Range%d denied by platform\n", i);
continue;
}
dev_dbg(dev, "DVSEC Range%d allowed by platform\n", i);
put_device(cxld_dev);
allowed++;
}
if (!allowed && info->mem_enabled) {
dev_err(dev, "Range register decodes outside platform defined CXL ranges.\n");
return -ENXIO;
}
/*
* Per CXL 2.0 Section 8.1.3.8.3 and 8.1.3.8.4 DVSEC CXL Range 1 Base
* [High,Low] when HDM operation is enabled the range register values
* are ignored by the device, but the spec also recommends matching the
* DVSEC Range 1,2 to HDM Decoder Range 0,1. So, non-zero info->ranges
* are expected even though Linux does not require or maintain that
* match. If at least one DVSEC range is enabled and allowed, skip HDM
* Decoder Capability Enable.
*/
if (info->mem_enabled)
return 0;
rc = devm_cxl_enable_hdm(&port->dev, cxlhdm);
if (rc)
return rc;
return devm_cxl_enable_mem(&port->dev, cxlds);
}
EXPORT_SYMBOL_NS_GPL(cxl_hdm_decode_init, CXL);
#define CXL_DOE_TABLE_ACCESS_REQ_CODE 0x000000ff
#define CXL_DOE_TABLE_ACCESS_REQ_CODE_READ 0
#define CXL_DOE_TABLE_ACCESS_TABLE_TYPE 0x0000ff00
#define CXL_DOE_TABLE_ACCESS_TABLE_TYPE_CDATA 0
#define CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE 0xffff0000
#define CXL_DOE_TABLE_ACCESS_LAST_ENTRY 0xffff
#define CXL_DOE_PROTOCOL_TABLE_ACCESS 2
#define CDAT_DOE_REQ(entry_handle) cpu_to_le32 \
(FIELD_PREP(CXL_DOE_TABLE_ACCESS_REQ_CODE, \
CXL_DOE_TABLE_ACCESS_REQ_CODE_READ) | \
FIELD_PREP(CXL_DOE_TABLE_ACCESS_TABLE_TYPE, \
CXL_DOE_TABLE_ACCESS_TABLE_TYPE_CDATA) | \
FIELD_PREP(CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE, (entry_handle)))
static int cxl_cdat_get_length(struct device *dev,
struct pci_doe_mb *doe_mb,
size_t *length)
{
__le32 request = CDAT_DOE_REQ(0);
__le32 response[2];
int rc;
rc = pci_doe(doe_mb, PCI_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS,
&request, sizeof(request),
&response, sizeof(response));
if (rc < 0) {
dev_err(dev, "DOE failed: %d", rc);
return rc;
}
if (rc < sizeof(response))
return -EIO;
*length = le32_to_cpu(response[1]);
dev_dbg(dev, "CDAT length %zu\n", *length);
return 0;
}
static int cxl_cdat_read_table(struct device *dev,
struct pci_doe_mb *doe_mb,
struct cdat_doe_rsp *rsp, size_t *length)
{
size_t received, remaining = *length;
unsigned int entry_handle = 0;
union cdat_data *data;
__le32 saved_dw = 0;
do {
__le32 request = CDAT_DOE_REQ(entry_handle);
int rc;
rc = pci_doe(doe_mb, PCI_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS,
&request, sizeof(request),
rsp, sizeof(*rsp) + remaining);
if (rc < 0) {
dev_err(dev, "DOE failed: %d", rc);
return rc;
}
if (rc < sizeof(*rsp))
return -EIO;
data = (union cdat_data *)rsp->data;
received = rc - sizeof(*rsp);
if (entry_handle == 0) {
if (received != sizeof(data->header))
return -EIO;
} else {
if (received < sizeof(data->entry) ||
received != le16_to_cpu(data->entry.length))
return -EIO;
}
/* Get the CXL table access header entry handle */
entry_handle = FIELD_GET(CXL_DOE_TABLE_ACCESS_ENTRY_HANDLE,
le32_to_cpu(rsp->doe_header));
/*
* Table Access Response Header overwrote the last DW of
* previous entry, so restore that DW
*/
rsp->doe_header = saved_dw;
remaining -= received;
rsp = (void *)rsp + received;
saved_dw = rsp->doe_header;
} while (entry_handle != CXL_DOE_TABLE_ACCESS_LAST_ENTRY);
/* Length in CDAT header may exceed concatenation of CDAT entries */
*length -= remaining;
return 0;
}
static unsigned char cdat_checksum(void *buf, size_t size)
{
unsigned char sum, *data = buf;
size_t i;
for (sum = 0, i = 0; i < size; i++)
sum += data[i];
return sum;
}
/**
* read_cdat_data - Read the CDAT data on this port
* @port: Port to read data from
*
* This call will sleep waiting for responses from the DOE mailbox.
*/
void read_cdat_data(struct cxl_port *port)
{
struct device *uport = port->uport_dev;
struct device *dev = &port->dev;
struct pci_doe_mb *doe_mb;
struct pci_dev *pdev = NULL;
struct cxl_memdev *cxlmd;
struct cdat_doe_rsp *buf;
size_t table_length, length;
int rc;
if (is_cxl_memdev(uport)) {
struct device *host;
cxlmd = to_cxl_memdev(uport);
host = cxlmd->dev.parent;
if (dev_is_pci(host))
pdev = to_pci_dev(host);
} else if (dev_is_pci(uport)) {
pdev = to_pci_dev(uport);
}
if (!pdev)
return;
doe_mb = pci_find_doe_mailbox(pdev, PCI_VENDOR_ID_CXL,
CXL_DOE_PROTOCOL_TABLE_ACCESS);
if (!doe_mb) {
dev_dbg(dev, "No CDAT mailbox\n");
return;
}
port->cdat_available = true;
if (cxl_cdat_get_length(dev, doe_mb, &length)) {
dev_dbg(dev, "No CDAT length\n");
return;
}
/*
* The begin of the CDAT buffer needs space for additional 4
* bytes for the DOE header. Table data starts afterwards.
*/
buf = devm_kzalloc(dev, sizeof(*buf) + length, GFP_KERNEL);
if (!buf)
goto err;
table_length = length;
rc = cxl_cdat_read_table(dev, doe_mb, buf, &length);
if (rc)
goto err;
if (table_length != length)
dev_warn(dev, "Malformed CDAT table length (%zu:%zu), discarding trailing data\n",
table_length, length);
if (cdat_checksum(buf->data, length))
goto err;
port->cdat.table = buf->data;
port->cdat.length = length;
return;
err:
/* Don't leave table data allocated on error */
devm_kfree(dev, buf);
dev_err(dev, "Failed to read/validate CDAT.\n");
}
EXPORT_SYMBOL_NS_GPL(read_cdat_data, CXL);
static void __cxl_handle_cor_ras(struct cxl_dev_state *cxlds,
void __iomem *ras_base)
{
void __iomem *addr;
u32 status;
if (!ras_base)
return;
addr = ras_base + CXL_RAS_CORRECTABLE_STATUS_OFFSET;
status = readl(addr);
if (status & CXL_RAS_CORRECTABLE_STATUS_MASK) {
writel(status & CXL_RAS_CORRECTABLE_STATUS_MASK, addr);
trace_cxl_aer_correctable_error(cxlds->cxlmd, status);
}
}
static void cxl_handle_endpoint_cor_ras(struct cxl_dev_state *cxlds)
{
return __cxl_handle_cor_ras(cxlds, cxlds->regs.ras);
}
/* CXL spec rev3.0 8.2.4.16.1 */
static void header_log_copy(void __iomem *ras_base, u32 *log)
{
void __iomem *addr;
u32 *log_addr;
int i, log_u32_size = CXL_HEADERLOG_SIZE / sizeof(u32);
addr = ras_base + CXL_RAS_HEADER_LOG_OFFSET;
log_addr = log;
for (i = 0; i < log_u32_size; i++) {
*log_addr = readl(addr);
log_addr++;
addr += sizeof(u32);
}
}
/*
* Log the state of the RAS status registers and prepare them to log the
* next error status. Return 1 if reset needed.
*/
static bool __cxl_handle_ras(struct cxl_dev_state *cxlds,
void __iomem *ras_base)
{
u32 hl[CXL_HEADERLOG_SIZE_U32];
void __iomem *addr;
u32 status;
u32 fe;
if (!ras_base)
return false;
addr = ras_base + CXL_RAS_UNCORRECTABLE_STATUS_OFFSET;
status = readl(addr);
if (!(status & CXL_RAS_UNCORRECTABLE_STATUS_MASK))
return false;
/* If multiple errors, log header points to first error from ctrl reg */
if (hweight32(status) > 1) {
void __iomem *rcc_addr =
ras_base + CXL_RAS_CAP_CONTROL_OFFSET;
fe = BIT(FIELD_GET(CXL_RAS_CAP_CONTROL_FE_MASK,
readl(rcc_addr)));
} else {
fe = status;
}
header_log_copy(ras_base, hl);
trace_cxl_aer_uncorrectable_error(cxlds->cxlmd, status, fe, hl);
writel(status & CXL_RAS_UNCORRECTABLE_STATUS_MASK, addr);
return true;
}
static bool cxl_handle_endpoint_ras(struct cxl_dev_state *cxlds)
{
return __cxl_handle_ras(cxlds, cxlds->regs.ras);
}
#ifdef CONFIG_PCIEAER_CXL
static void cxl_dport_map_rch_aer(struct cxl_dport *dport)
{
struct cxl_rcrb_info *ri = &dport->rcrb;
void __iomem *dport_aer = NULL;
resource_size_t aer_phys;
struct device *host;
if (dport->rch && ri->aer_cap) {
host = dport->reg_map.host;
aer_phys = ri->aer_cap + ri->base;
dport_aer = devm_cxl_iomap_block(host, aer_phys,
sizeof(struct aer_capability_regs));
}
dport->regs.dport_aer = dport_aer;
}
static void cxl_dport_map_regs(struct cxl_dport *dport)
{
struct cxl_register_map *map = &dport->reg_map;
struct device *dev = dport->dport_dev;
if (!map->component_map.ras.valid)
dev_dbg(dev, "RAS registers not found\n");
else if (cxl_map_component_regs(map, &dport->regs.component,
BIT(CXL_CM_CAP_CAP_ID_RAS)))
dev_dbg(dev, "Failed to map RAS capability.\n");
if (dport->rch)
cxl_dport_map_rch_aer(dport);
}
static void cxl_disable_rch_root_ints(struct cxl_dport *dport)
{
void __iomem *aer_base = dport->regs.dport_aer;
struct pci_host_bridge *bridge;
u32 aer_cmd_mask, aer_cmd;
if (!aer_base)
return;
bridge = to_pci_host_bridge(dport->dport_dev);
/*
* Disable RCH root port command interrupts.
* CXL 3.0 12.2.1.1 - RCH Downstream Port-detected Errors
*
* This sequence may not be necessary. CXL spec states disabling
* the root cmd register's interrupts is required. But, PCI spec
* shows these are disabled by default on reset.
*/
if (bridge->native_aer) {
aer_cmd_mask = (PCI_ERR_ROOT_CMD_COR_EN |
PCI_ERR_ROOT_CMD_NONFATAL_EN |
PCI_ERR_ROOT_CMD_FATAL_EN);
aer_cmd = readl(aer_base + PCI_ERR_ROOT_COMMAND);
aer_cmd &= ~aer_cmd_mask;
writel(aer_cmd, aer_base + PCI_ERR_ROOT_COMMAND);
}
}
void cxl_setup_parent_dport(struct device *host, struct cxl_dport *dport)
{
struct device *dport_dev = dport->dport_dev;
struct pci_host_bridge *host_bridge;
host_bridge = to_pci_host_bridge(dport_dev);
if (host_bridge->native_aer)
dport->rcrb.aer_cap = cxl_rcrb_to_aer(dport_dev, dport->rcrb.base);
dport->reg_map.host = host;
cxl_dport_map_regs(dport);
if (dport->rch)
cxl_disable_rch_root_ints(dport);
}
EXPORT_SYMBOL_NS_GPL(cxl_setup_parent_dport, CXL);
static void cxl_handle_rdport_cor_ras(struct cxl_dev_state *cxlds,
struct cxl_dport *dport)
{
return __cxl_handle_cor_ras(cxlds, dport->regs.ras);
}
static bool cxl_handle_rdport_ras(struct cxl_dev_state *cxlds,
struct cxl_dport *dport)
{
return __cxl_handle_ras(cxlds, dport->regs.ras);
}
/*
* Copy the AER capability registers using 32 bit read accesses.
* This is necessary because RCRB AER capability is MMIO mapped. Clear the
* status after copying.
*
* @aer_base: base address of AER capability block in RCRB
* @aer_regs: destination for copying AER capability
*/
static bool cxl_rch_get_aer_info(void __iomem *aer_base,
struct aer_capability_regs *aer_regs)
{
int read_cnt = sizeof(struct aer_capability_regs) / sizeof(u32);
u32 *aer_regs_buf = (u32 *)aer_regs;
int n;
if (!aer_base)
return false;
/* Use readl() to guarantee 32-bit accesses */
for (n = 0; n < read_cnt; n++)
aer_regs_buf[n] = readl(aer_base + n * sizeof(u32));
writel(aer_regs->uncor_status, aer_base + PCI_ERR_UNCOR_STATUS);
writel(aer_regs->cor_status, aer_base + PCI_ERR_COR_STATUS);
return true;
}
/* Get AER severity. Return false if there is no error. */
static bool cxl_rch_get_aer_severity(struct aer_capability_regs *aer_regs,
int *severity)
{
if (aer_regs->uncor_status & ~aer_regs->uncor_mask) {
if (aer_regs->uncor_status & PCI_ERR_ROOT_FATAL_RCV)
*severity = AER_FATAL;
else
*severity = AER_NONFATAL;
return true;
}
if (aer_regs->cor_status & ~aer_regs->cor_mask) {
*severity = AER_CORRECTABLE;
return true;
}
return false;
}
static void cxl_handle_rdport_errors(struct cxl_dev_state *cxlds)
{
struct pci_dev *pdev = to_pci_dev(cxlds->dev);
struct aer_capability_regs aer_regs;
struct cxl_dport *dport;
struct cxl_port *port;
int severity;
port = cxl_pci_find_port(pdev, &dport);
if (!port)
return;
put_device(&port->dev);
if (!cxl_rch_get_aer_info(dport->regs.dport_aer, &aer_regs))
return;
if (!cxl_rch_get_aer_severity(&aer_regs, &severity))
return;
pci_print_aer(pdev, severity, &aer_regs);
if (severity == AER_CORRECTABLE)
cxl_handle_rdport_cor_ras(cxlds, dport);
else
cxl_handle_rdport_ras(cxlds, dport);
}
#else
static void cxl_handle_rdport_errors(struct cxl_dev_state *cxlds) { }
#endif
void cxl_cor_error_detected(struct pci_dev *pdev)
{
struct cxl_dev_state *cxlds = pci_get_drvdata(pdev);
struct device *dev = &cxlds->cxlmd->dev;
scoped_guard(device, dev) {
if (!dev->driver) {
dev_warn(&pdev->dev,
"%s: memdev disabled, abort error handling\n",
dev_name(dev));
return;
}
if (cxlds->rcd)
cxl_handle_rdport_errors(cxlds);
cxl_handle_endpoint_cor_ras(cxlds);
}
}
EXPORT_SYMBOL_NS_GPL(cxl_cor_error_detected, CXL);
pci_ers_result_t cxl_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct cxl_dev_state *cxlds = pci_get_drvdata(pdev);
struct cxl_memdev *cxlmd = cxlds->cxlmd;
struct device *dev = &cxlmd->dev;
bool ue;
scoped_guard(device, dev) {
if (!dev->driver) {
dev_warn(&pdev->dev,
"%s: memdev disabled, abort error handling\n",
dev_name(dev));
return PCI_ERS_RESULT_DISCONNECT;
}
if (cxlds->rcd)
cxl_handle_rdport_errors(cxlds);
/*
* A frozen channel indicates an impending reset which is fatal to
* CXL.mem operation, and will likely crash the system. On the off
* chance the situation is recoverable dump the status of the RAS
* capability registers and bounce the active state of the memdev.
*/
ue = cxl_handle_endpoint_ras(cxlds);
}
switch (state) {
case pci_channel_io_normal:
if (ue) {
device_release_driver(dev);
return PCI_ERS_RESULT_NEED_RESET;
}
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
dev_warn(&pdev->dev,
"%s: frozen state error detected, disable CXL.mem\n",
dev_name(dev));
device_release_driver(dev);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
dev_warn(&pdev->dev,
"failure state error detected, request disconnect\n");
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_NEED_RESET;
}
EXPORT_SYMBOL_NS_GPL(cxl_error_detected, CXL);
static int cxl_flit_size(struct pci_dev *pdev)
{
if (cxl_pci_flit_256(pdev))
return 256;
return 68;
}
/**
* cxl_pci_get_latency - calculate the link latency for the PCIe link
* @pdev: PCI device
*
* return: calculated latency or 0 for no latency
*
* CXL Memory Device SW Guide v1.0 2.11.4 Link latency calculation
* Link latency = LinkPropagationLatency + FlitLatency + RetimerLatency
* LinkProgationLatency is negligible, so 0 will be used
* RetimerLatency is assumed to be negligible and 0 will be used
* FlitLatency = FlitSize / LinkBandwidth
* FlitSize is defined by spec. CXL rev3.0 4.2.1.
* 68B flit is used up to 32GT/s. >32GT/s, 256B flit size is used.
* The FlitLatency is converted to picoseconds.
*/
long cxl_pci_get_latency(struct pci_dev *pdev)
{
long bw;
bw = pcie_link_speed_mbps(pdev);
if (bw < 0)
return 0;
bw /= BITS_PER_BYTE;
return cxl_flit_size(pdev) * MEGA / bw;
}
static int __cxl_endpoint_decoder_reset_detected(struct device *dev, void *data)
{
struct cxl_port *port = data;
struct cxl_decoder *cxld;
struct cxl_hdm *cxlhdm;
void __iomem *hdm;
u32 ctrl;
if (!is_endpoint_decoder(dev))
return 0;
cxld = to_cxl_decoder(dev);
if ((cxld->flags & CXL_DECODER_F_ENABLE) == 0)
return 0;
cxlhdm = dev_get_drvdata(&port->dev);
hdm = cxlhdm->regs.hdm_decoder;
ctrl = readl(hdm + CXL_HDM_DECODER0_CTRL_OFFSET(cxld->id));
return !FIELD_GET(CXL_HDM_DECODER0_CTRL_COMMITTED, ctrl);
}
bool cxl_endpoint_decoder_reset_detected(struct cxl_port *port)
{
return device_for_each_child(&port->dev, port,
__cxl_endpoint_decoder_reset_detected);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_decoder_reset_detected, CXL);