linux/net/dccp/proto.c
Breno Leitao e1d001fa5b net: ioctl: Use kernel memory on protocol ioctl callbacks
Most of the ioctls to net protocols operates directly on userspace
argument (arg). Usually doing get_user()/put_user() directly in the
ioctl callback.  This is not flexible, because it is hard to reuse these
functions without passing userspace buffers.

Change the "struct proto" ioctls to avoid touching userspace memory and
operate on kernel buffers, i.e., all protocol's ioctl callbacks is
adapted to operate on a kernel memory other than on userspace (so, no
more {put,get}_user() and friends being called in the ioctl callback).

This changes the "struct proto" ioctl format in the following way:

    int                     (*ioctl)(struct sock *sk, int cmd,
-                                        unsigned long arg);
+                                        int *karg);

(Important to say that this patch does not touch the "struct proto_ops"
protocols)

So, the "karg" argument, which is passed to the ioctl callback, is a
pointer allocated to kernel space memory (inside a function wrapper).
This buffer (karg) may contain input argument (copied from userspace in
a prep function) and it might return a value/buffer, which is copied
back to userspace if necessary. There is not one-size-fits-all format
(that is I am using 'may' above), but basically, there are three type of
ioctls:

1) Do not read from userspace, returns a result to userspace
2) Read an input parameter from userspace, and does not return anything
  to userspace
3) Read an input from userspace, and return a buffer to userspace.

The default case (1) (where no input parameter is given, and an "int" is
returned to userspace) encompasses more than 90% of the cases, but there
are two other exceptions. Here is a list of exceptions:

* Protocol RAW:
   * cmd = SIOCGETVIFCNT:
     * input and output = struct sioc_vif_req
   * cmd = SIOCGETSGCNT
     * input and output = struct sioc_sg_req
   * Explanation: for the SIOCGETVIFCNT case, userspace passes the input
     argument, which is struct sioc_vif_req. Then the callback populates
     the struct, which is copied back to userspace.

* Protocol RAW6:
   * cmd = SIOCGETMIFCNT_IN6
     * input and output = struct sioc_mif_req6
   * cmd = SIOCGETSGCNT_IN6
     * input and output = struct sioc_sg_req6

* Protocol PHONET:
  * cmd == SIOCPNADDRESOURCE | SIOCPNDELRESOURCE
     * input int (4 bytes)
  * Nothing is copied back to userspace.

For the exception cases, functions sock_sk_ioctl_inout() will
copy the userspace input, and copy it back to kernel space.

The wrapper that prepare the buffer and put the buffer back to user is
sk_ioctl(), so, instead of calling sk->sk_prot->ioctl(), the callee now
calls sk_ioctl(), which will handle all cases.

Signed-off-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230609152800.830401-1-leitao@debian.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-06-15 22:33:26 -07:00

1284 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* net/dccp/proto.c
*
* An implementation of the DCCP protocol
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*/
#include <linux/dccp.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/in.h>
#include <linux/if_arp.h>
#include <linux/init.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/inet_sock.h>
#include <net/inet_common.h>
#include <net/sock.h>
#include <net/xfrm.h>
#include <asm/ioctls.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include "ccid.h"
#include "dccp.h"
#include "feat.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
DEFINE_SNMP_STAT(struct dccp_mib, dccp_statistics) __read_mostly;
EXPORT_SYMBOL_GPL(dccp_statistics);
DEFINE_PER_CPU(unsigned int, dccp_orphan_count);
EXPORT_PER_CPU_SYMBOL_GPL(dccp_orphan_count);
struct inet_hashinfo dccp_hashinfo;
EXPORT_SYMBOL_GPL(dccp_hashinfo);
/* the maximum queue length for tx in packets. 0 is no limit */
int sysctl_dccp_tx_qlen __read_mostly = 5;
#ifdef CONFIG_IP_DCCP_DEBUG
static const char *dccp_state_name(const int state)
{
static const char *const dccp_state_names[] = {
[DCCP_OPEN] = "OPEN",
[DCCP_REQUESTING] = "REQUESTING",
[DCCP_PARTOPEN] = "PARTOPEN",
[DCCP_LISTEN] = "LISTEN",
[DCCP_RESPOND] = "RESPOND",
[DCCP_CLOSING] = "CLOSING",
[DCCP_ACTIVE_CLOSEREQ] = "CLOSEREQ",
[DCCP_PASSIVE_CLOSE] = "PASSIVE_CLOSE",
[DCCP_PASSIVE_CLOSEREQ] = "PASSIVE_CLOSEREQ",
[DCCP_TIME_WAIT] = "TIME_WAIT",
[DCCP_CLOSED] = "CLOSED",
};
if (state >= DCCP_MAX_STATES)
return "INVALID STATE!";
else
return dccp_state_names[state];
}
#endif
void dccp_set_state(struct sock *sk, const int state)
{
const int oldstate = sk->sk_state;
dccp_pr_debug("%s(%p) %s --> %s\n", dccp_role(sk), sk,
dccp_state_name(oldstate), dccp_state_name(state));
WARN_ON(state == oldstate);
switch (state) {
case DCCP_OPEN:
if (oldstate != DCCP_OPEN)
DCCP_INC_STATS(DCCP_MIB_CURRESTAB);
/* Client retransmits all Confirm options until entering OPEN */
if (oldstate == DCCP_PARTOPEN)
dccp_feat_list_purge(&dccp_sk(sk)->dccps_featneg);
break;
case DCCP_CLOSED:
if (oldstate == DCCP_OPEN || oldstate == DCCP_ACTIVE_CLOSEREQ ||
oldstate == DCCP_CLOSING)
DCCP_INC_STATS(DCCP_MIB_ESTABRESETS);
sk->sk_prot->unhash(sk);
if (inet_csk(sk)->icsk_bind_hash != NULL &&
!(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
inet_put_port(sk);
fallthrough;
default:
if (oldstate == DCCP_OPEN)
DCCP_DEC_STATS(DCCP_MIB_CURRESTAB);
}
/* Change state AFTER socket is unhashed to avoid closed
* socket sitting in hash tables.
*/
inet_sk_set_state(sk, state);
}
EXPORT_SYMBOL_GPL(dccp_set_state);
static void dccp_finish_passive_close(struct sock *sk)
{
switch (sk->sk_state) {
case DCCP_PASSIVE_CLOSE:
/* Node (client or server) has received Close packet. */
dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED);
dccp_set_state(sk, DCCP_CLOSED);
break;
case DCCP_PASSIVE_CLOSEREQ:
/*
* Client received CloseReq. We set the `active' flag so that
* dccp_send_close() retransmits the Close as per RFC 4340, 8.3.
*/
dccp_send_close(sk, 1);
dccp_set_state(sk, DCCP_CLOSING);
}
}
void dccp_done(struct sock *sk)
{
dccp_set_state(sk, DCCP_CLOSED);
dccp_clear_xmit_timers(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
else
inet_csk_destroy_sock(sk);
}
EXPORT_SYMBOL_GPL(dccp_done);
const char *dccp_packet_name(const int type)
{
static const char *const dccp_packet_names[] = {
[DCCP_PKT_REQUEST] = "REQUEST",
[DCCP_PKT_RESPONSE] = "RESPONSE",
[DCCP_PKT_DATA] = "DATA",
[DCCP_PKT_ACK] = "ACK",
[DCCP_PKT_DATAACK] = "DATAACK",
[DCCP_PKT_CLOSEREQ] = "CLOSEREQ",
[DCCP_PKT_CLOSE] = "CLOSE",
[DCCP_PKT_RESET] = "RESET",
[DCCP_PKT_SYNC] = "SYNC",
[DCCP_PKT_SYNCACK] = "SYNCACK",
};
if (type >= DCCP_NR_PKT_TYPES)
return "INVALID";
else
return dccp_packet_names[type];
}
EXPORT_SYMBOL_GPL(dccp_packet_name);
void dccp_destruct_common(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_tx_ccid = NULL;
}
EXPORT_SYMBOL_GPL(dccp_destruct_common);
static void dccp_sk_destruct(struct sock *sk)
{
dccp_destruct_common(sk);
inet_sock_destruct(sk);
}
int dccp_init_sock(struct sock *sk, const __u8 ctl_sock_initialized)
{
struct dccp_sock *dp = dccp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
pr_warn_once("DCCP is deprecated and scheduled to be removed in 2025, "
"please contact the netdev mailing list\n");
icsk->icsk_rto = DCCP_TIMEOUT_INIT;
icsk->icsk_syn_retries = sysctl_dccp_request_retries;
sk->sk_state = DCCP_CLOSED;
sk->sk_write_space = dccp_write_space;
sk->sk_destruct = dccp_sk_destruct;
icsk->icsk_sync_mss = dccp_sync_mss;
dp->dccps_mss_cache = 536;
dp->dccps_rate_last = jiffies;
dp->dccps_role = DCCP_ROLE_UNDEFINED;
dp->dccps_service = DCCP_SERVICE_CODE_IS_ABSENT;
dp->dccps_tx_qlen = sysctl_dccp_tx_qlen;
dccp_init_xmit_timers(sk);
INIT_LIST_HEAD(&dp->dccps_featneg);
/* control socket doesn't need feat nego */
if (likely(ctl_sock_initialized))
return dccp_feat_init(sk);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_init_sock);
void dccp_destroy_sock(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
__skb_queue_purge(&sk->sk_write_queue);
if (sk->sk_send_head != NULL) {
kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
/* Clean up a referenced DCCP bind bucket. */
if (inet_csk(sk)->icsk_bind_hash != NULL)
inet_put_port(sk);
kfree(dp->dccps_service_list);
dp->dccps_service_list = NULL;
if (dp->dccps_hc_rx_ackvec != NULL) {
dccp_ackvec_free(dp->dccps_hc_rx_ackvec);
dp->dccps_hc_rx_ackvec = NULL;
}
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = NULL;
/* clean up feature negotiation state */
dccp_feat_list_purge(&dp->dccps_featneg);
}
EXPORT_SYMBOL_GPL(dccp_destroy_sock);
static inline int dccp_need_reset(int state)
{
return state != DCCP_CLOSED && state != DCCP_LISTEN &&
state != DCCP_REQUESTING;
}
int dccp_disconnect(struct sock *sk, int flags)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct inet_sock *inet = inet_sk(sk);
struct dccp_sock *dp = dccp_sk(sk);
const int old_state = sk->sk_state;
if (old_state != DCCP_CLOSED)
dccp_set_state(sk, DCCP_CLOSED);
/*
* This corresponds to the ABORT function of RFC793, sec. 3.8
* TCP uses a RST segment, DCCP a Reset packet with Code 2, "Aborted".
*/
if (old_state == DCCP_LISTEN) {
inet_csk_listen_stop(sk);
} else if (dccp_need_reset(old_state)) {
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
sk->sk_err = ECONNRESET;
} else if (old_state == DCCP_REQUESTING)
sk->sk_err = ECONNRESET;
dccp_clear_xmit_timers(sk);
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = NULL;
__skb_queue_purge(&sk->sk_receive_queue);
__skb_queue_purge(&sk->sk_write_queue);
if (sk->sk_send_head != NULL) {
__kfree_skb(sk->sk_send_head);
sk->sk_send_head = NULL;
}
inet->inet_dport = 0;
inet_bhash2_reset_saddr(sk);
sk->sk_shutdown = 0;
sock_reset_flag(sk, SOCK_DONE);
icsk->icsk_backoff = 0;
inet_csk_delack_init(sk);
__sk_dst_reset(sk);
WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
sk_error_report(sk);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_disconnect);
/*
* Wait for a DCCP event.
*
* Note that we don't need to lock the socket, as the upper poll layers
* take care of normal races (between the test and the event) and we don't
* go look at any of the socket buffers directly.
*/
__poll_t dccp_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
__poll_t mask;
struct sock *sk = sock->sk;
sock_poll_wait(file, sock, wait);
if (sk->sk_state == DCCP_LISTEN)
return inet_csk_listen_poll(sk);
/* Socket is not locked. We are protected from async events
by poll logic and correct handling of state changes
made by another threads is impossible in any case.
*/
mask = 0;
if (sk->sk_err)
mask = EPOLLERR;
if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == DCCP_CLOSED)
mask |= EPOLLHUP;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
/* Connected? */
if ((1 << sk->sk_state) & ~(DCCPF_REQUESTING | DCCPF_RESPOND)) {
if (atomic_read(&sk->sk_rmem_alloc) > 0)
mask |= EPOLLIN | EPOLLRDNORM;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
if (sk_stream_is_writeable(sk)) {
mask |= EPOLLOUT | EPOLLWRNORM;
} else { /* send SIGIO later */
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* Race breaker. If space is freed after
* wspace test but before the flags are set,
* IO signal will be lost.
*/
if (sk_stream_is_writeable(sk))
mask |= EPOLLOUT | EPOLLWRNORM;
}
}
}
return mask;
}
EXPORT_SYMBOL_GPL(dccp_poll);
int dccp_ioctl(struct sock *sk, int cmd, int *karg)
{
int rc = -ENOTCONN;
lock_sock(sk);
if (sk->sk_state == DCCP_LISTEN)
goto out;
switch (cmd) {
case SIOCOUTQ: {
*karg = sk_wmem_alloc_get(sk);
/* Using sk_wmem_alloc here because sk_wmem_queued is not used by DCCP and
* always 0, comparably to UDP.
*/
rc = 0;
}
break;
case SIOCINQ: {
struct sk_buff *skb;
*karg = 0;
skb = skb_peek(&sk->sk_receive_queue);
if (skb != NULL) {
/*
* We will only return the amount of this packet since
* that is all that will be read.
*/
*karg = skb->len;
}
rc = 0;
}
break;
default:
rc = -ENOIOCTLCMD;
break;
}
out:
release_sock(sk);
return rc;
}
EXPORT_SYMBOL_GPL(dccp_ioctl);
static int dccp_setsockopt_service(struct sock *sk, const __be32 service,
sockptr_t optval, unsigned int optlen)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_service_list *sl = NULL;
if (service == DCCP_SERVICE_INVALID_VALUE ||
optlen > DCCP_SERVICE_LIST_MAX_LEN * sizeof(u32))
return -EINVAL;
if (optlen > sizeof(service)) {
sl = kmalloc(optlen, GFP_KERNEL);
if (sl == NULL)
return -ENOMEM;
sl->dccpsl_nr = optlen / sizeof(u32) - 1;
if (copy_from_sockptr_offset(sl->dccpsl_list, optval,
sizeof(service), optlen - sizeof(service)) ||
dccp_list_has_service(sl, DCCP_SERVICE_INVALID_VALUE)) {
kfree(sl);
return -EFAULT;
}
}
lock_sock(sk);
dp->dccps_service = service;
kfree(dp->dccps_service_list);
dp->dccps_service_list = sl;
release_sock(sk);
return 0;
}
static int dccp_setsockopt_cscov(struct sock *sk, int cscov, bool rx)
{
u8 *list, len;
int i, rc;
if (cscov < 0 || cscov > 15)
return -EINVAL;
/*
* Populate a list of permissible values, in the range cscov...15. This
* is necessary since feature negotiation of single values only works if
* both sides incidentally choose the same value. Since the list starts
* lowest-value first, negotiation will pick the smallest shared value.
*/
if (cscov == 0)
return 0;
len = 16 - cscov;
list = kmalloc(len, GFP_KERNEL);
if (list == NULL)
return -ENOBUFS;
for (i = 0; i < len; i++)
list[i] = cscov++;
rc = dccp_feat_register_sp(sk, DCCPF_MIN_CSUM_COVER, rx, list, len);
if (rc == 0) {
if (rx)
dccp_sk(sk)->dccps_pcrlen = cscov;
else
dccp_sk(sk)->dccps_pcslen = cscov;
}
kfree(list);
return rc;
}
static int dccp_setsockopt_ccid(struct sock *sk, int type,
sockptr_t optval, unsigned int optlen)
{
u8 *val;
int rc = 0;
if (optlen < 1 || optlen > DCCP_FEAT_MAX_SP_VALS)
return -EINVAL;
val = memdup_sockptr(optval, optlen);
if (IS_ERR(val))
return PTR_ERR(val);
lock_sock(sk);
if (type == DCCP_SOCKOPT_TX_CCID || type == DCCP_SOCKOPT_CCID)
rc = dccp_feat_register_sp(sk, DCCPF_CCID, 1, val, optlen);
if (!rc && (type == DCCP_SOCKOPT_RX_CCID || type == DCCP_SOCKOPT_CCID))
rc = dccp_feat_register_sp(sk, DCCPF_CCID, 0, val, optlen);
release_sock(sk);
kfree(val);
return rc;
}
static int do_dccp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct dccp_sock *dp = dccp_sk(sk);
int val, err = 0;
switch (optname) {
case DCCP_SOCKOPT_PACKET_SIZE:
DCCP_WARN("sockopt(PACKET_SIZE) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_CHANGE_L:
case DCCP_SOCKOPT_CHANGE_R:
DCCP_WARN("sockopt(CHANGE_L/R) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_CCID:
case DCCP_SOCKOPT_RX_CCID:
case DCCP_SOCKOPT_TX_CCID:
return dccp_setsockopt_ccid(sk, optname, optval, optlen);
}
if (optlen < (int)sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(int)))
return -EFAULT;
if (optname == DCCP_SOCKOPT_SERVICE)
return dccp_setsockopt_service(sk, val, optval, optlen);
lock_sock(sk);
switch (optname) {
case DCCP_SOCKOPT_SERVER_TIMEWAIT:
if (dp->dccps_role != DCCP_ROLE_SERVER)
err = -EOPNOTSUPP;
else
dp->dccps_server_timewait = (val != 0);
break;
case DCCP_SOCKOPT_SEND_CSCOV:
err = dccp_setsockopt_cscov(sk, val, false);
break;
case DCCP_SOCKOPT_RECV_CSCOV:
err = dccp_setsockopt_cscov(sk, val, true);
break;
case DCCP_SOCKOPT_QPOLICY_ID:
if (sk->sk_state != DCCP_CLOSED)
err = -EISCONN;
else if (val < 0 || val >= DCCPQ_POLICY_MAX)
err = -EINVAL;
else
dp->dccps_qpolicy = val;
break;
case DCCP_SOCKOPT_QPOLICY_TXQLEN:
if (val < 0)
err = -EINVAL;
else
dp->dccps_tx_qlen = val;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
int dccp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
unsigned int optlen)
{
if (level != SOL_DCCP)
return inet_csk(sk)->icsk_af_ops->setsockopt(sk, level,
optname, optval,
optlen);
return do_dccp_setsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL_GPL(dccp_setsockopt);
static int dccp_getsockopt_service(struct sock *sk, int len,
__be32 __user *optval,
int __user *optlen)
{
const struct dccp_sock *dp = dccp_sk(sk);
const struct dccp_service_list *sl;
int err = -ENOENT, slen = 0, total_len = sizeof(u32);
lock_sock(sk);
if ((sl = dp->dccps_service_list) != NULL) {
slen = sl->dccpsl_nr * sizeof(u32);
total_len += slen;
}
err = -EINVAL;
if (total_len > len)
goto out;
err = 0;
if (put_user(total_len, optlen) ||
put_user(dp->dccps_service, optval) ||
(sl != NULL && copy_to_user(optval + 1, sl->dccpsl_list, slen)))
err = -EFAULT;
out:
release_sock(sk);
return err;
}
static int do_dccp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct dccp_sock *dp;
int val, len;
if (get_user(len, optlen))
return -EFAULT;
if (len < (int)sizeof(int))
return -EINVAL;
dp = dccp_sk(sk);
switch (optname) {
case DCCP_SOCKOPT_PACKET_SIZE:
DCCP_WARN("sockopt(PACKET_SIZE) is deprecated: fix your app\n");
return 0;
case DCCP_SOCKOPT_SERVICE:
return dccp_getsockopt_service(sk, len,
(__be32 __user *)optval, optlen);
case DCCP_SOCKOPT_GET_CUR_MPS:
val = dp->dccps_mss_cache;
break;
case DCCP_SOCKOPT_AVAILABLE_CCIDS:
return ccid_getsockopt_builtin_ccids(sk, len, optval, optlen);
case DCCP_SOCKOPT_TX_CCID:
val = ccid_get_current_tx_ccid(dp);
if (val < 0)
return -ENOPROTOOPT;
break;
case DCCP_SOCKOPT_RX_CCID:
val = ccid_get_current_rx_ccid(dp);
if (val < 0)
return -ENOPROTOOPT;
break;
case DCCP_SOCKOPT_SERVER_TIMEWAIT:
val = dp->dccps_server_timewait;
break;
case DCCP_SOCKOPT_SEND_CSCOV:
val = dp->dccps_pcslen;
break;
case DCCP_SOCKOPT_RECV_CSCOV:
val = dp->dccps_pcrlen;
break;
case DCCP_SOCKOPT_QPOLICY_ID:
val = dp->dccps_qpolicy;
break;
case DCCP_SOCKOPT_QPOLICY_TXQLEN:
val = dp->dccps_tx_qlen;
break;
case 128 ... 191:
return ccid_hc_rx_getsockopt(dp->dccps_hc_rx_ccid, sk, optname,
len, (u32 __user *)optval, optlen);
case 192 ... 255:
return ccid_hc_tx_getsockopt(dp->dccps_hc_tx_ccid, sk, optname,
len, (u32 __user *)optval, optlen);
default:
return -ENOPROTOOPT;
}
len = sizeof(val);
if (put_user(len, optlen) || copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
int dccp_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
if (level != SOL_DCCP)
return inet_csk(sk)->icsk_af_ops->getsockopt(sk, level,
optname, optval,
optlen);
return do_dccp_getsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL_GPL(dccp_getsockopt);
static int dccp_msghdr_parse(struct msghdr *msg, struct sk_buff *skb)
{
struct cmsghdr *cmsg;
/*
* Assign an (opaque) qpolicy priority value to skb->priority.
*
* We are overloading this skb field for use with the qpolicy subystem.
* The skb->priority is normally used for the SO_PRIORITY option, which
* is initialised from sk_priority. Since the assignment of sk_priority
* to skb->priority happens later (on layer 3), we overload this field
* for use with queueing priorities as long as the skb is on layer 4.
* The default priority value (if nothing is set) is 0.
*/
skb->priority = 0;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_DCCP)
continue;
if (cmsg->cmsg_type <= DCCP_SCM_QPOLICY_MAX &&
!dccp_qpolicy_param_ok(skb->sk, cmsg->cmsg_type))
return -EINVAL;
switch (cmsg->cmsg_type) {
case DCCP_SCM_PRIORITY:
if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u32)))
return -EINVAL;
skb->priority = *(__u32 *)CMSG_DATA(cmsg);
break;
default:
return -EINVAL;
}
}
return 0;
}
int dccp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
{
const struct dccp_sock *dp = dccp_sk(sk);
const int flags = msg->msg_flags;
const int noblock = flags & MSG_DONTWAIT;
struct sk_buff *skb;
int rc, size;
long timeo;
trace_dccp_probe(sk, len);
if (len > dp->dccps_mss_cache)
return -EMSGSIZE;
lock_sock(sk);
timeo = sock_sndtimeo(sk, noblock);
/*
* We have to use sk_stream_wait_connect here to set sk_write_pending,
* so that the trick in dccp_rcv_request_sent_state_process.
*/
/* Wait for a connection to finish. */
if ((1 << sk->sk_state) & ~(DCCPF_OPEN | DCCPF_PARTOPEN))
if ((rc = sk_stream_wait_connect(sk, &timeo)) != 0)
goto out_release;
size = sk->sk_prot->max_header + len;
release_sock(sk);
skb = sock_alloc_send_skb(sk, size, noblock, &rc);
lock_sock(sk);
if (skb == NULL)
goto out_release;
if (dccp_qpolicy_full(sk)) {
rc = -EAGAIN;
goto out_discard;
}
if (sk->sk_state == DCCP_CLOSED) {
rc = -ENOTCONN;
goto out_discard;
}
skb_reserve(skb, sk->sk_prot->max_header);
rc = memcpy_from_msg(skb_put(skb, len), msg, len);
if (rc != 0)
goto out_discard;
rc = dccp_msghdr_parse(msg, skb);
if (rc != 0)
goto out_discard;
dccp_qpolicy_push(sk, skb);
/*
* The xmit_timer is set if the TX CCID is rate-based and will expire
* when congestion control permits to release further packets into the
* network. Window-based CCIDs do not use this timer.
*/
if (!timer_pending(&dp->dccps_xmit_timer))
dccp_write_xmit(sk);
out_release:
release_sock(sk);
return rc ? : len;
out_discard:
kfree_skb(skb);
goto out_release;
}
EXPORT_SYMBOL_GPL(dccp_sendmsg);
int dccp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
int *addr_len)
{
const struct dccp_hdr *dh;
long timeo;
lock_sock(sk);
if (sk->sk_state == DCCP_LISTEN) {
len = -ENOTCONN;
goto out;
}
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
do {
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
if (skb == NULL)
goto verify_sock_status;
dh = dccp_hdr(skb);
switch (dh->dccph_type) {
case DCCP_PKT_DATA:
case DCCP_PKT_DATAACK:
goto found_ok_skb;
case DCCP_PKT_CLOSE:
case DCCP_PKT_CLOSEREQ:
if (!(flags & MSG_PEEK))
dccp_finish_passive_close(sk);
fallthrough;
case DCCP_PKT_RESET:
dccp_pr_debug("found fin (%s) ok!\n",
dccp_packet_name(dh->dccph_type));
len = 0;
goto found_fin_ok;
default:
dccp_pr_debug("packet_type=%s\n",
dccp_packet_name(dh->dccph_type));
sk_eat_skb(sk, skb);
}
verify_sock_status:
if (sock_flag(sk, SOCK_DONE)) {
len = 0;
break;
}
if (sk->sk_err) {
len = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN) {
len = 0;
break;
}
if (sk->sk_state == DCCP_CLOSED) {
if (!sock_flag(sk, SOCK_DONE)) {
/* This occurs when user tries to read
* from never connected socket.
*/
len = -ENOTCONN;
break;
}
len = 0;
break;
}
if (!timeo) {
len = -EAGAIN;
break;
}
if (signal_pending(current)) {
len = sock_intr_errno(timeo);
break;
}
sk_wait_data(sk, &timeo, NULL);
continue;
found_ok_skb:
if (len > skb->len)
len = skb->len;
else if (len < skb->len)
msg->msg_flags |= MSG_TRUNC;
if (skb_copy_datagram_msg(skb, 0, msg, len)) {
/* Exception. Bailout! */
len = -EFAULT;
break;
}
if (flags & MSG_TRUNC)
len = skb->len;
found_fin_ok:
if (!(flags & MSG_PEEK))
sk_eat_skb(sk, skb);
break;
} while (1);
out:
release_sock(sk);
return len;
}
EXPORT_SYMBOL_GPL(dccp_recvmsg);
int inet_dccp_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
unsigned char old_state;
int err;
lock_sock(sk);
err = -EINVAL;
if (sock->state != SS_UNCONNECTED || sock->type != SOCK_DCCP)
goto out;
old_state = sk->sk_state;
if (!((1 << old_state) & (DCCPF_CLOSED | DCCPF_LISTEN)))
goto out;
WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
/* Really, if the socket is already in listen state
* we can only allow the backlog to be adjusted.
*/
if (old_state != DCCP_LISTEN) {
struct dccp_sock *dp = dccp_sk(sk);
dp->dccps_role = DCCP_ROLE_LISTEN;
/* do not start to listen if feature negotiation setup fails */
if (dccp_feat_finalise_settings(dp)) {
err = -EPROTO;
goto out;
}
err = inet_csk_listen_start(sk);
if (err)
goto out;
}
err = 0;
out:
release_sock(sk);
return err;
}
EXPORT_SYMBOL_GPL(inet_dccp_listen);
static void dccp_terminate_connection(struct sock *sk)
{
u8 next_state = DCCP_CLOSED;
switch (sk->sk_state) {
case DCCP_PASSIVE_CLOSE:
case DCCP_PASSIVE_CLOSEREQ:
dccp_finish_passive_close(sk);
break;
case DCCP_PARTOPEN:
dccp_pr_debug("Stop PARTOPEN timer (%p)\n", sk);
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
fallthrough;
case DCCP_OPEN:
dccp_send_close(sk, 1);
if (dccp_sk(sk)->dccps_role == DCCP_ROLE_SERVER &&
!dccp_sk(sk)->dccps_server_timewait)
next_state = DCCP_ACTIVE_CLOSEREQ;
else
next_state = DCCP_CLOSING;
fallthrough;
default:
dccp_set_state(sk, next_state);
}
}
void dccp_close(struct sock *sk, long timeout)
{
struct dccp_sock *dp = dccp_sk(sk);
struct sk_buff *skb;
u32 data_was_unread = 0;
int state;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == DCCP_LISTEN) {
dccp_set_state(sk, DCCP_CLOSED);
/* Special case. */
inet_csk_listen_stop(sk);
goto adjudge_to_death;
}
sk_stop_timer(sk, &dp->dccps_xmit_timer);
/*
* We need to flush the recv. buffs. We do this only on the
* descriptor close, not protocol-sourced closes, because the
*reader process may not have drained the data yet!
*/
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
data_was_unread += skb->len;
__kfree_skb(skb);
}
/* If socket has been already reset kill it. */
if (sk->sk_state == DCCP_CLOSED)
goto adjudge_to_death;
if (data_was_unread) {
/* Unread data was tossed, send an appropriate Reset Code */
DCCP_WARN("ABORT with %u bytes unread\n", data_was_unread);
dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED);
dccp_set_state(sk, DCCP_CLOSED);
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
/* Check zero linger _after_ checking for unread data. */
sk->sk_prot->disconnect(sk, 0);
} else if (sk->sk_state != DCCP_CLOSED) {
/*
* Normal connection termination. May need to wait if there are
* still packets in the TX queue that are delayed by the CCID.
*/
dccp_flush_write_queue(sk, &timeout);
dccp_terminate_connection(sk);
}
/*
* Flush write queue. This may be necessary in several cases:
* - we have been closed by the peer but still have application data;
* - abortive termination (unread data or zero linger time),
* - normal termination but queue could not be flushed within time limit
*/
__skb_queue_purge(&sk->sk_write_queue);
sk_stream_wait_close(sk, timeout);
adjudge_to_death:
state = sk->sk_state;
sock_hold(sk);
sock_orphan(sk);
/*
* It is the last release_sock in its life. It will remove backlog.
*/
release_sock(sk);
/*
* Now socket is owned by kernel and we acquire BH lock
* to finish close. No need to check for user refs.
*/
local_bh_disable();
bh_lock_sock(sk);
WARN_ON(sock_owned_by_user(sk));
this_cpu_inc(dccp_orphan_count);
/* Have we already been destroyed by a softirq or backlog? */
if (state != DCCP_CLOSED && sk->sk_state == DCCP_CLOSED)
goto out;
if (sk->sk_state == DCCP_CLOSED)
inet_csk_destroy_sock(sk);
/* Otherwise, socket is reprieved until protocol close. */
out:
bh_unlock_sock(sk);
local_bh_enable();
sock_put(sk);
}
EXPORT_SYMBOL_GPL(dccp_close);
void dccp_shutdown(struct sock *sk, int how)
{
dccp_pr_debug("called shutdown(%x)\n", how);
}
EXPORT_SYMBOL_GPL(dccp_shutdown);
static inline int __init dccp_mib_init(void)
{
dccp_statistics = alloc_percpu(struct dccp_mib);
if (!dccp_statistics)
return -ENOMEM;
return 0;
}
static inline void dccp_mib_exit(void)
{
free_percpu(dccp_statistics);
}
static int thash_entries;
module_param(thash_entries, int, 0444);
MODULE_PARM_DESC(thash_entries, "Number of ehash buckets");
#ifdef CONFIG_IP_DCCP_DEBUG
bool dccp_debug;
module_param(dccp_debug, bool, 0644);
MODULE_PARM_DESC(dccp_debug, "Enable debug messages");
EXPORT_SYMBOL_GPL(dccp_debug);
#endif
static int __init dccp_init(void)
{
unsigned long goal;
unsigned long nr_pages = totalram_pages();
int ehash_order, bhash_order, i;
int rc;
BUILD_BUG_ON(sizeof(struct dccp_skb_cb) >
sizeof_field(struct sk_buff, cb));
rc = inet_hashinfo2_init_mod(&dccp_hashinfo);
if (rc)
goto out_fail;
rc = -ENOBUFS;
dccp_hashinfo.bind_bucket_cachep =
kmem_cache_create("dccp_bind_bucket",
sizeof(struct inet_bind_bucket), 0,
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
if (!dccp_hashinfo.bind_bucket_cachep)
goto out_free_hashinfo2;
dccp_hashinfo.bind2_bucket_cachep =
kmem_cache_create("dccp_bind2_bucket",
sizeof(struct inet_bind2_bucket), 0,
SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
if (!dccp_hashinfo.bind2_bucket_cachep)
goto out_free_bind_bucket_cachep;
/*
* Size and allocate the main established and bind bucket
* hash tables.
*
* The methodology is similar to that of the buffer cache.
*/
if (nr_pages >= (128 * 1024))
goal = nr_pages >> (21 - PAGE_SHIFT);
else
goal = nr_pages >> (23 - PAGE_SHIFT);
if (thash_entries)
goal = (thash_entries *
sizeof(struct inet_ehash_bucket)) >> PAGE_SHIFT;
for (ehash_order = 0; (1UL << ehash_order) < goal; ehash_order++)
;
do {
unsigned long hash_size = (1UL << ehash_order) * PAGE_SIZE /
sizeof(struct inet_ehash_bucket);
while (hash_size & (hash_size - 1))
hash_size--;
dccp_hashinfo.ehash_mask = hash_size - 1;
dccp_hashinfo.ehash = (struct inet_ehash_bucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, ehash_order);
} while (!dccp_hashinfo.ehash && --ehash_order > 0);
if (!dccp_hashinfo.ehash) {
DCCP_CRIT("Failed to allocate DCCP established hash table");
goto out_free_bind2_bucket_cachep;
}
for (i = 0; i <= dccp_hashinfo.ehash_mask; i++)
INIT_HLIST_NULLS_HEAD(&dccp_hashinfo.ehash[i].chain, i);
if (inet_ehash_locks_alloc(&dccp_hashinfo))
goto out_free_dccp_ehash;
bhash_order = ehash_order;
do {
dccp_hashinfo.bhash_size = (1UL << bhash_order) * PAGE_SIZE /
sizeof(struct inet_bind_hashbucket);
if ((dccp_hashinfo.bhash_size > (64 * 1024)) &&
bhash_order > 0)
continue;
dccp_hashinfo.bhash = (struct inet_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, bhash_order);
} while (!dccp_hashinfo.bhash && --bhash_order >= 0);
if (!dccp_hashinfo.bhash) {
DCCP_CRIT("Failed to allocate DCCP bind hash table");
goto out_free_dccp_locks;
}
dccp_hashinfo.bhash2 = (struct inet_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC | __GFP_NOWARN, bhash_order);
if (!dccp_hashinfo.bhash2) {
DCCP_CRIT("Failed to allocate DCCP bind2 hash table");
goto out_free_dccp_bhash;
}
for (i = 0; i < dccp_hashinfo.bhash_size; i++) {
spin_lock_init(&dccp_hashinfo.bhash[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.bhash[i].chain);
spin_lock_init(&dccp_hashinfo.bhash2[i].lock);
INIT_HLIST_HEAD(&dccp_hashinfo.bhash2[i].chain);
}
dccp_hashinfo.pernet = false;
rc = dccp_mib_init();
if (rc)
goto out_free_dccp_bhash2;
rc = dccp_ackvec_init();
if (rc)
goto out_free_dccp_mib;
rc = dccp_sysctl_init();
if (rc)
goto out_ackvec_exit;
rc = ccid_initialize_builtins();
if (rc)
goto out_sysctl_exit;
dccp_timestamping_init();
return 0;
out_sysctl_exit:
dccp_sysctl_exit();
out_ackvec_exit:
dccp_ackvec_exit();
out_free_dccp_mib:
dccp_mib_exit();
out_free_dccp_bhash2:
free_pages((unsigned long)dccp_hashinfo.bhash2, bhash_order);
out_free_dccp_bhash:
free_pages((unsigned long)dccp_hashinfo.bhash, bhash_order);
out_free_dccp_locks:
inet_ehash_locks_free(&dccp_hashinfo);
out_free_dccp_ehash:
free_pages((unsigned long)dccp_hashinfo.ehash, ehash_order);
out_free_bind2_bucket_cachep:
kmem_cache_destroy(dccp_hashinfo.bind2_bucket_cachep);
out_free_bind_bucket_cachep:
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
out_free_hashinfo2:
inet_hashinfo2_free_mod(&dccp_hashinfo);
out_fail:
dccp_hashinfo.bhash = NULL;
dccp_hashinfo.bhash2 = NULL;
dccp_hashinfo.ehash = NULL;
dccp_hashinfo.bind_bucket_cachep = NULL;
dccp_hashinfo.bind2_bucket_cachep = NULL;
return rc;
}
static void __exit dccp_fini(void)
{
int bhash_order = get_order(dccp_hashinfo.bhash_size *
sizeof(struct inet_bind_hashbucket));
ccid_cleanup_builtins();
dccp_mib_exit();
free_pages((unsigned long)dccp_hashinfo.bhash, bhash_order);
free_pages((unsigned long)dccp_hashinfo.bhash2, bhash_order);
free_pages((unsigned long)dccp_hashinfo.ehash,
get_order((dccp_hashinfo.ehash_mask + 1) *
sizeof(struct inet_ehash_bucket)));
inet_ehash_locks_free(&dccp_hashinfo);
kmem_cache_destroy(dccp_hashinfo.bind_bucket_cachep);
dccp_ackvec_exit();
dccp_sysctl_exit();
inet_hashinfo2_free_mod(&dccp_hashinfo);
}
module_init(dccp_init);
module_exit(dccp_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Arnaldo Carvalho de Melo <acme@conectiva.com.br>");
MODULE_DESCRIPTION("DCCP - Datagram Congestion Controlled Protocol");