bb87672562
This removes the remaining calls to HCI_OP_WRITE_SCAN_ENABLE from hci_request call chains, and converts them to hci_sync calls. Signed-off-by: Brian Gix <brian.gix@intel.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2358 lines
61 KiB
C
2358 lines
61 KiB
C
/*
|
|
BlueZ - Bluetooth protocol stack for Linux
|
|
|
|
Copyright (C) 2014 Intel Corporation
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License version 2 as
|
|
published by the Free Software Foundation;
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
|
|
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
|
|
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
|
|
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
|
|
SOFTWARE IS DISCLAIMED.
|
|
*/
|
|
|
|
#include <linux/sched/signal.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
#include <net/bluetooth/mgmt.h>
|
|
|
|
#include "smp.h"
|
|
#include "hci_request.h"
|
|
#include "msft.h"
|
|
#include "eir.h"
|
|
|
|
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
|
|
{
|
|
skb_queue_head_init(&req->cmd_q);
|
|
req->hdev = hdev;
|
|
req->err = 0;
|
|
}
|
|
|
|
void hci_req_purge(struct hci_request *req)
|
|
{
|
|
skb_queue_purge(&req->cmd_q);
|
|
}
|
|
|
|
bool hci_req_status_pend(struct hci_dev *hdev)
|
|
{
|
|
return hdev->req_status == HCI_REQ_PEND;
|
|
}
|
|
|
|
static int req_run(struct hci_request *req, hci_req_complete_t complete,
|
|
hci_req_complete_skb_t complete_skb)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct sk_buff *skb;
|
|
unsigned long flags;
|
|
|
|
bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
|
|
|
|
/* If an error occurred during request building, remove all HCI
|
|
* commands queued on the HCI request queue.
|
|
*/
|
|
if (req->err) {
|
|
skb_queue_purge(&req->cmd_q);
|
|
return req->err;
|
|
}
|
|
|
|
/* Do not allow empty requests */
|
|
if (skb_queue_empty(&req->cmd_q))
|
|
return -ENODATA;
|
|
|
|
skb = skb_peek_tail(&req->cmd_q);
|
|
if (complete) {
|
|
bt_cb(skb)->hci.req_complete = complete;
|
|
} else if (complete_skb) {
|
|
bt_cb(skb)->hci.req_complete_skb = complete_skb;
|
|
bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
|
|
}
|
|
|
|
spin_lock_irqsave(&hdev->cmd_q.lock, flags);
|
|
skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
|
|
spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
|
|
|
|
queue_work(hdev->workqueue, &hdev->cmd_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
|
|
{
|
|
return req_run(req, complete, NULL);
|
|
}
|
|
|
|
int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
|
|
{
|
|
return req_run(req, NULL, complete);
|
|
}
|
|
|
|
void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
|
|
struct sk_buff *skb)
|
|
{
|
|
bt_dev_dbg(hdev, "result 0x%2.2x", result);
|
|
|
|
if (hdev->req_status == HCI_REQ_PEND) {
|
|
hdev->req_result = result;
|
|
hdev->req_status = HCI_REQ_DONE;
|
|
if (skb)
|
|
hdev->req_skb = skb_get(skb);
|
|
wake_up_interruptible(&hdev->req_wait_q);
|
|
}
|
|
}
|
|
|
|
/* Execute request and wait for completion. */
|
|
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
|
|
unsigned long opt),
|
|
unsigned long opt, u32 timeout, u8 *hci_status)
|
|
{
|
|
struct hci_request req;
|
|
int err = 0;
|
|
|
|
bt_dev_dbg(hdev, "start");
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hdev->req_status = HCI_REQ_PEND;
|
|
|
|
err = func(&req, opt);
|
|
if (err) {
|
|
if (hci_status)
|
|
*hci_status = HCI_ERROR_UNSPECIFIED;
|
|
return err;
|
|
}
|
|
|
|
err = hci_req_run_skb(&req, hci_req_sync_complete);
|
|
if (err < 0) {
|
|
hdev->req_status = 0;
|
|
|
|
/* ENODATA means the HCI request command queue is empty.
|
|
* This can happen when a request with conditionals doesn't
|
|
* trigger any commands to be sent. This is normal behavior
|
|
* and should not trigger an error return.
|
|
*/
|
|
if (err == -ENODATA) {
|
|
if (hci_status)
|
|
*hci_status = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (hci_status)
|
|
*hci_status = HCI_ERROR_UNSPECIFIED;
|
|
|
|
return err;
|
|
}
|
|
|
|
err = wait_event_interruptible_timeout(hdev->req_wait_q,
|
|
hdev->req_status != HCI_REQ_PEND, timeout);
|
|
|
|
if (err == -ERESTARTSYS)
|
|
return -EINTR;
|
|
|
|
switch (hdev->req_status) {
|
|
case HCI_REQ_DONE:
|
|
err = -bt_to_errno(hdev->req_result);
|
|
if (hci_status)
|
|
*hci_status = hdev->req_result;
|
|
break;
|
|
|
|
case HCI_REQ_CANCELED:
|
|
err = -hdev->req_result;
|
|
if (hci_status)
|
|
*hci_status = HCI_ERROR_UNSPECIFIED;
|
|
break;
|
|
|
|
default:
|
|
err = -ETIMEDOUT;
|
|
if (hci_status)
|
|
*hci_status = HCI_ERROR_UNSPECIFIED;
|
|
break;
|
|
}
|
|
|
|
kfree_skb(hdev->req_skb);
|
|
hdev->req_skb = NULL;
|
|
hdev->req_status = hdev->req_result = 0;
|
|
|
|
bt_dev_dbg(hdev, "end: err %d", err);
|
|
|
|
return err;
|
|
}
|
|
|
|
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
|
|
unsigned long opt),
|
|
unsigned long opt, u32 timeout, u8 *hci_status)
|
|
{
|
|
int ret;
|
|
|
|
/* Serialize all requests */
|
|
hci_req_sync_lock(hdev);
|
|
/* check the state after obtaing the lock to protect the HCI_UP
|
|
* against any races from hci_dev_do_close when the controller
|
|
* gets removed.
|
|
*/
|
|
if (test_bit(HCI_UP, &hdev->flags))
|
|
ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
|
|
else
|
|
ret = -ENETDOWN;
|
|
hci_req_sync_unlock(hdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
|
|
const void *param)
|
|
{
|
|
int len = HCI_COMMAND_HDR_SIZE + plen;
|
|
struct hci_command_hdr *hdr;
|
|
struct sk_buff *skb;
|
|
|
|
skb = bt_skb_alloc(len, GFP_ATOMIC);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
|
|
hdr->opcode = cpu_to_le16(opcode);
|
|
hdr->plen = plen;
|
|
|
|
if (plen)
|
|
skb_put_data(skb, param, plen);
|
|
|
|
bt_dev_dbg(hdev, "skb len %d", skb->len);
|
|
|
|
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
|
|
hci_skb_opcode(skb) = opcode;
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* Queue a command to an asynchronous HCI request */
|
|
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
|
|
const void *param, u8 event)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct sk_buff *skb;
|
|
|
|
bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
|
|
|
|
/* If an error occurred during request building, there is no point in
|
|
* queueing the HCI command. We can simply return.
|
|
*/
|
|
if (req->err)
|
|
return;
|
|
|
|
skb = hci_prepare_cmd(hdev, opcode, plen, param);
|
|
if (!skb) {
|
|
bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
|
|
opcode);
|
|
req->err = -ENOMEM;
|
|
return;
|
|
}
|
|
|
|
if (skb_queue_empty(&req->cmd_q))
|
|
bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
|
|
|
|
hci_skb_event(skb) = event;
|
|
|
|
skb_queue_tail(&req->cmd_q, skb);
|
|
}
|
|
|
|
void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
|
|
const void *param)
|
|
{
|
|
hci_req_add_ev(req, opcode, plen, param, 0);
|
|
}
|
|
|
|
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_page_scan_activity acp;
|
|
u8 type;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
|
return;
|
|
|
|
if (hdev->hci_ver < BLUETOOTH_VER_1_2)
|
|
return;
|
|
|
|
if (enable) {
|
|
type = PAGE_SCAN_TYPE_INTERLACED;
|
|
|
|
/* 160 msec page scan interval */
|
|
acp.interval = cpu_to_le16(0x0100);
|
|
} else {
|
|
type = hdev->def_page_scan_type;
|
|
acp.interval = cpu_to_le16(hdev->def_page_scan_int);
|
|
}
|
|
|
|
acp.window = cpu_to_le16(hdev->def_page_scan_window);
|
|
|
|
if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
|
|
__cpu_to_le16(hdev->page_scan_window) != acp.window)
|
|
hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
|
|
sizeof(acp), &acp);
|
|
|
|
if (hdev->page_scan_type != type)
|
|
hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
|
|
}
|
|
|
|
static void start_interleave_scan(struct hci_dev *hdev)
|
|
{
|
|
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
|
|
queue_delayed_work(hdev->req_workqueue,
|
|
&hdev->interleave_scan, 0);
|
|
}
|
|
|
|
static bool is_interleave_scanning(struct hci_dev *hdev)
|
|
{
|
|
return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
|
|
}
|
|
|
|
static void cancel_interleave_scan(struct hci_dev *hdev)
|
|
{
|
|
bt_dev_dbg(hdev, "cancelling interleave scan");
|
|
|
|
cancel_delayed_work_sync(&hdev->interleave_scan);
|
|
|
|
hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
|
|
}
|
|
|
|
/* Return true if interleave_scan wasn't started until exiting this function,
|
|
* otherwise, return false
|
|
*/
|
|
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
|
|
{
|
|
/* Do interleaved scan only if all of the following are true:
|
|
* - There is at least one ADV monitor
|
|
* - At least one pending LE connection or one device to be scanned for
|
|
* - Monitor offloading is not supported
|
|
* If so, we should alternate between allowlist scan and one without
|
|
* any filters to save power.
|
|
*/
|
|
bool use_interleaving = hci_is_adv_monitoring(hdev) &&
|
|
!(list_empty(&hdev->pend_le_conns) &&
|
|
list_empty(&hdev->pend_le_reports)) &&
|
|
hci_get_adv_monitor_offload_ext(hdev) ==
|
|
HCI_ADV_MONITOR_EXT_NONE;
|
|
bool is_interleaving = is_interleave_scanning(hdev);
|
|
|
|
if (use_interleaving && !is_interleaving) {
|
|
start_interleave_scan(hdev);
|
|
bt_dev_dbg(hdev, "starting interleave scan");
|
|
return true;
|
|
}
|
|
|
|
if (!use_interleaving && is_interleaving)
|
|
cancel_interleave_scan(hdev);
|
|
|
|
return false;
|
|
}
|
|
|
|
void __hci_req_update_name(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_local_name cp;
|
|
|
|
memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
|
|
}
|
|
|
|
void __hci_req_update_eir(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_eir cp;
|
|
|
|
if (!hdev_is_powered(hdev))
|
|
return;
|
|
|
|
if (!lmp_ext_inq_capable(hdev))
|
|
return;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
|
|
return;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
|
|
return;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
eir_create(hdev, cp.data);
|
|
|
|
if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
|
|
return;
|
|
|
|
memcpy(hdev->eir, cp.data, sizeof(cp.data));
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
|
|
}
|
|
|
|
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
if (hdev->scanning_paused) {
|
|
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
|
return;
|
|
}
|
|
|
|
if (use_ext_scan(hdev)) {
|
|
struct hci_cp_le_set_ext_scan_enable cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
cp.enable = LE_SCAN_DISABLE;
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
|
|
&cp);
|
|
} else {
|
|
struct hci_cp_le_set_scan_enable cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
cp.enable = LE_SCAN_DISABLE;
|
|
hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
|
|
}
|
|
|
|
/* Disable address resolution */
|
|
if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
|
|
__u8 enable = 0x00;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
|
|
}
|
|
}
|
|
|
|
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
|
|
u8 bdaddr_type)
|
|
{
|
|
struct hci_cp_le_del_from_accept_list cp;
|
|
|
|
cp.bdaddr_type = bdaddr_type;
|
|
bacpy(&cp.bdaddr, bdaddr);
|
|
|
|
bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
|
|
cp.bdaddr_type);
|
|
hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
|
|
|
|
if (use_ll_privacy(req->hdev)) {
|
|
struct smp_irk *irk;
|
|
|
|
irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
|
|
if (irk) {
|
|
struct hci_cp_le_del_from_resolv_list cp;
|
|
|
|
cp.bdaddr_type = bdaddr_type;
|
|
bacpy(&cp.bdaddr, bdaddr);
|
|
|
|
hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
|
|
sizeof(cp), &cp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Adds connection to accept list if needed. On error, returns -1. */
|
|
static int add_to_accept_list(struct hci_request *req,
|
|
struct hci_conn_params *params, u8 *num_entries,
|
|
bool allow_rpa)
|
|
{
|
|
struct hci_cp_le_add_to_accept_list cp;
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* Already in accept list */
|
|
if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
|
|
params->addr_type))
|
|
return 0;
|
|
|
|
/* Select filter policy to accept all advertising */
|
|
if (*num_entries >= hdev->le_accept_list_size)
|
|
return -1;
|
|
|
|
/* Accept list can not be used with RPAs */
|
|
if (!allow_rpa &&
|
|
!hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
|
|
hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) {
|
|
return -1;
|
|
}
|
|
|
|
/* During suspend, only wakeable devices can be in accept list */
|
|
if (hdev->suspended &&
|
|
!(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
|
|
return 0;
|
|
|
|
*num_entries += 1;
|
|
cp.bdaddr_type = params->addr_type;
|
|
bacpy(&cp.bdaddr, ¶ms->addr);
|
|
|
|
bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
|
|
cp.bdaddr_type);
|
|
hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
|
|
|
|
if (use_ll_privacy(hdev)) {
|
|
struct smp_irk *irk;
|
|
|
|
irk = hci_find_irk_by_addr(hdev, ¶ms->addr,
|
|
params->addr_type);
|
|
if (irk) {
|
|
struct hci_cp_le_add_to_resolv_list cp;
|
|
|
|
cp.bdaddr_type = params->addr_type;
|
|
bacpy(&cp.bdaddr, ¶ms->addr);
|
|
memcpy(cp.peer_irk, irk->val, 16);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_PRIVACY))
|
|
memcpy(cp.local_irk, hdev->irk, 16);
|
|
else
|
|
memset(cp.local_irk, 0, 16);
|
|
|
|
hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
|
|
sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u8 update_accept_list(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_conn_params *params;
|
|
struct bdaddr_list *b;
|
|
u8 num_entries = 0;
|
|
bool pend_conn, pend_report;
|
|
/* We allow usage of accept list even with RPAs in suspend. In the worst
|
|
* case, we won't be able to wake from devices that use the privacy1.2
|
|
* features. Additionally, once we support privacy1.2 and IRK
|
|
* offloading, we can update this to also check for those conditions.
|
|
*/
|
|
bool allow_rpa = hdev->suspended;
|
|
|
|
if (use_ll_privacy(hdev))
|
|
allow_rpa = true;
|
|
|
|
/* Go through the current accept list programmed into the
|
|
* controller one by one and check if that address is still
|
|
* in the list of pending connections or list of devices to
|
|
* report. If not present in either list, then queue the
|
|
* command to remove it from the controller.
|
|
*/
|
|
list_for_each_entry(b, &hdev->le_accept_list, list) {
|
|
pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
|
|
&b->bdaddr,
|
|
b->bdaddr_type);
|
|
pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
|
|
&b->bdaddr,
|
|
b->bdaddr_type);
|
|
|
|
/* If the device is not likely to connect or report,
|
|
* remove it from the accept list.
|
|
*/
|
|
if (!pend_conn && !pend_report) {
|
|
del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
|
|
continue;
|
|
}
|
|
|
|
/* Accept list can not be used with RPAs */
|
|
if (!allow_rpa &&
|
|
!hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
|
|
hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
|
|
return 0x00;
|
|
}
|
|
|
|
num_entries++;
|
|
}
|
|
|
|
/* Since all no longer valid accept list entries have been
|
|
* removed, walk through the list of pending connections
|
|
* and ensure that any new device gets programmed into
|
|
* the controller.
|
|
*
|
|
* If the list of the devices is larger than the list of
|
|
* available accept list entries in the controller, then
|
|
* just abort and return filer policy value to not use the
|
|
* accept list.
|
|
*/
|
|
list_for_each_entry(params, &hdev->pend_le_conns, action) {
|
|
if (add_to_accept_list(req, params, &num_entries, allow_rpa))
|
|
return 0x00;
|
|
}
|
|
|
|
/* After adding all new pending connections, walk through
|
|
* the list of pending reports and also add these to the
|
|
* accept list if there is still space. Abort if space runs out.
|
|
*/
|
|
list_for_each_entry(params, &hdev->pend_le_reports, action) {
|
|
if (add_to_accept_list(req, params, &num_entries, allow_rpa))
|
|
return 0x00;
|
|
}
|
|
|
|
/* Use the allowlist unless the following conditions are all true:
|
|
* - We are not currently suspending
|
|
* - There are 1 or more ADV monitors registered and it's not offloaded
|
|
* - Interleaved scanning is not currently using the allowlist
|
|
*/
|
|
if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
|
|
hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
|
|
hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
|
|
return 0x00;
|
|
|
|
/* Select filter policy to use accept list */
|
|
return 0x01;
|
|
}
|
|
|
|
static bool scan_use_rpa(struct hci_dev *hdev)
|
|
{
|
|
return hci_dev_test_flag(hdev, HCI_PRIVACY);
|
|
}
|
|
|
|
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
|
|
u16 window, u8 own_addr_type, u8 filter_policy,
|
|
bool filter_dup, bool addr_resolv)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
if (hdev->scanning_paused) {
|
|
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
|
return;
|
|
}
|
|
|
|
if (use_ll_privacy(hdev) && addr_resolv) {
|
|
u8 enable = 0x01;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
|
|
}
|
|
|
|
/* Use ext scanning if set ext scan param and ext scan enable is
|
|
* supported
|
|
*/
|
|
if (use_ext_scan(hdev)) {
|
|
struct hci_cp_le_set_ext_scan_params *ext_param_cp;
|
|
struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
|
|
struct hci_cp_le_scan_phy_params *phy_params;
|
|
u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
|
|
u32 plen;
|
|
|
|
ext_param_cp = (void *)data;
|
|
phy_params = (void *)ext_param_cp->data;
|
|
|
|
memset(ext_param_cp, 0, sizeof(*ext_param_cp));
|
|
ext_param_cp->own_addr_type = own_addr_type;
|
|
ext_param_cp->filter_policy = filter_policy;
|
|
|
|
plen = sizeof(*ext_param_cp);
|
|
|
|
if (scan_1m(hdev) || scan_2m(hdev)) {
|
|
ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
|
|
|
|
memset(phy_params, 0, sizeof(*phy_params));
|
|
phy_params->type = type;
|
|
phy_params->interval = cpu_to_le16(interval);
|
|
phy_params->window = cpu_to_le16(window);
|
|
|
|
plen += sizeof(*phy_params);
|
|
phy_params++;
|
|
}
|
|
|
|
if (scan_coded(hdev)) {
|
|
ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
|
|
|
|
memset(phy_params, 0, sizeof(*phy_params));
|
|
phy_params->type = type;
|
|
phy_params->interval = cpu_to_le16(interval);
|
|
phy_params->window = cpu_to_le16(window);
|
|
|
|
plen += sizeof(*phy_params);
|
|
phy_params++;
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
|
|
plen, ext_param_cp);
|
|
|
|
memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
|
|
ext_enable_cp.enable = LE_SCAN_ENABLE;
|
|
ext_enable_cp.filter_dup = filter_dup;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
|
|
sizeof(ext_enable_cp), &ext_enable_cp);
|
|
} else {
|
|
struct hci_cp_le_set_scan_param param_cp;
|
|
struct hci_cp_le_set_scan_enable enable_cp;
|
|
|
|
memset(¶m_cp, 0, sizeof(param_cp));
|
|
param_cp.type = type;
|
|
param_cp.interval = cpu_to_le16(interval);
|
|
param_cp.window = cpu_to_le16(window);
|
|
param_cp.own_address_type = own_addr_type;
|
|
param_cp.filter_policy = filter_policy;
|
|
hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
|
|
¶m_cp);
|
|
|
|
memset(&enable_cp, 0, sizeof(enable_cp));
|
|
enable_cp.enable = LE_SCAN_ENABLE;
|
|
enable_cp.filter_dup = filter_dup;
|
|
hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
|
|
&enable_cp);
|
|
}
|
|
}
|
|
|
|
/* Returns true if an le connection is in the scanning state */
|
|
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
|
|
{
|
|
struct hci_conn_hash *h = &hdev->conn_hash;
|
|
struct hci_conn *c;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(c, &h->list, list) {
|
|
if (c->type == LE_LINK && c->state == BT_CONNECT &&
|
|
test_bit(HCI_CONN_SCANNING, &c->flags)) {
|
|
rcu_read_unlock();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
|
|
* controller based address resolution to be able to reconfigure
|
|
* resolving list.
|
|
*/
|
|
void hci_req_add_le_passive_scan(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 own_addr_type;
|
|
u8 filter_policy;
|
|
u16 window, interval;
|
|
/* Default is to enable duplicates filter */
|
|
u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
|
|
/* Background scanning should run with address resolution */
|
|
bool addr_resolv = true;
|
|
|
|
if (hdev->scanning_paused) {
|
|
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
|
return;
|
|
}
|
|
|
|
/* Set require_privacy to false since no SCAN_REQ are send
|
|
* during passive scanning. Not using an non-resolvable address
|
|
* here is important so that peer devices using direct
|
|
* advertising with our address will be correctly reported
|
|
* by the controller.
|
|
*/
|
|
if (hci_update_random_address(req, false, scan_use_rpa(hdev),
|
|
&own_addr_type))
|
|
return;
|
|
|
|
if (hdev->enable_advmon_interleave_scan &&
|
|
__hci_update_interleaved_scan(hdev))
|
|
return;
|
|
|
|
bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
|
|
/* Adding or removing entries from the accept list must
|
|
* happen before enabling scanning. The controller does
|
|
* not allow accept list modification while scanning.
|
|
*/
|
|
filter_policy = update_accept_list(req);
|
|
|
|
/* When the controller is using random resolvable addresses and
|
|
* with that having LE privacy enabled, then controllers with
|
|
* Extended Scanner Filter Policies support can now enable support
|
|
* for handling directed advertising.
|
|
*
|
|
* So instead of using filter polices 0x00 (no accept list)
|
|
* and 0x01 (accept list enabled) use the new filter policies
|
|
* 0x02 (no accept list) and 0x03 (accept list enabled).
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
|
|
(hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
|
|
filter_policy |= 0x02;
|
|
|
|
if (hdev->suspended) {
|
|
window = hdev->le_scan_window_suspend;
|
|
interval = hdev->le_scan_int_suspend;
|
|
} else if (hci_is_le_conn_scanning(hdev)) {
|
|
window = hdev->le_scan_window_connect;
|
|
interval = hdev->le_scan_int_connect;
|
|
} else if (hci_is_adv_monitoring(hdev)) {
|
|
window = hdev->le_scan_window_adv_monitor;
|
|
interval = hdev->le_scan_int_adv_monitor;
|
|
|
|
/* Disable duplicates filter when scanning for advertisement
|
|
* monitor for the following reasons.
|
|
*
|
|
* For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
|
|
* controllers ignore RSSI_Sampling_Period when the duplicates
|
|
* filter is enabled.
|
|
*
|
|
* For SW pattern filtering, when we're not doing interleaved
|
|
* scanning, it is necessary to disable duplicates filter,
|
|
* otherwise hosts can only receive one advertisement and it's
|
|
* impossible to know if a peer is still in range.
|
|
*/
|
|
filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
|
|
} else {
|
|
window = hdev->le_scan_window;
|
|
interval = hdev->le_scan_interval;
|
|
}
|
|
|
|
bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
|
|
filter_policy);
|
|
hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
|
|
own_addr_type, filter_policy, filter_dup,
|
|
addr_resolv);
|
|
}
|
|
|
|
static void cancel_adv_timeout(struct hci_dev *hdev)
|
|
{
|
|
if (hdev->adv_instance_timeout) {
|
|
hdev->adv_instance_timeout = 0;
|
|
cancel_delayed_work(&hdev->adv_instance_expire);
|
|
}
|
|
}
|
|
|
|
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
|
|
{
|
|
return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
|
|
}
|
|
|
|
void __hci_req_disable_advertising(struct hci_request *req)
|
|
{
|
|
if (ext_adv_capable(req->hdev)) {
|
|
__hci_req_disable_ext_adv_instance(req, 0x00);
|
|
|
|
} else {
|
|
u8 enable = 0x00;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
|
|
}
|
|
}
|
|
|
|
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
|
|
{
|
|
/* If privacy is not enabled don't use RPA */
|
|
if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
|
|
return false;
|
|
|
|
/* If basic privacy mode is enabled use RPA */
|
|
if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
|
|
return true;
|
|
|
|
/* If limited privacy mode is enabled don't use RPA if we're
|
|
* both discoverable and bondable.
|
|
*/
|
|
if ((flags & MGMT_ADV_FLAG_DISCOV) &&
|
|
hci_dev_test_flag(hdev, HCI_BONDABLE))
|
|
return false;
|
|
|
|
/* We're neither bondable nor discoverable in the limited
|
|
* privacy mode, therefore use RPA.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
|
|
{
|
|
/* If there is no connection we are OK to advertise. */
|
|
if (hci_conn_num(hdev, LE_LINK) == 0)
|
|
return true;
|
|
|
|
/* Check le_states if there is any connection in peripheral role. */
|
|
if (hdev->conn_hash.le_num_peripheral > 0) {
|
|
/* Peripheral connection state and non connectable mode bit 20.
|
|
*/
|
|
if (!connectable && !(hdev->le_states[2] & 0x10))
|
|
return false;
|
|
|
|
/* Peripheral connection state and connectable mode bit 38
|
|
* and scannable bit 21.
|
|
*/
|
|
if (connectable && (!(hdev->le_states[4] & 0x40) ||
|
|
!(hdev->le_states[2] & 0x20)))
|
|
return false;
|
|
}
|
|
|
|
/* Check le_states if there is any connection in central role. */
|
|
if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
|
|
/* Central connection state and non connectable mode bit 18. */
|
|
if (!connectable && !(hdev->le_states[2] & 0x02))
|
|
return false;
|
|
|
|
/* Central connection state and connectable mode bit 35 and
|
|
* scannable 19.
|
|
*/
|
|
if (connectable && (!(hdev->le_states[4] & 0x08) ||
|
|
!(hdev->le_states[2] & 0x08)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void __hci_req_enable_advertising(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct adv_info *adv;
|
|
struct hci_cp_le_set_adv_param cp;
|
|
u8 own_addr_type, enable = 0x01;
|
|
bool connectable;
|
|
u16 adv_min_interval, adv_max_interval;
|
|
u32 flags;
|
|
|
|
flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
|
|
adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
|
|
|
|
/* If the "connectable" instance flag was not set, then choose between
|
|
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
|
|
*/
|
|
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
|
|
mgmt_get_connectable(hdev);
|
|
|
|
if (!is_advertising_allowed(hdev, connectable))
|
|
return;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LE_ADV))
|
|
__hci_req_disable_advertising(req);
|
|
|
|
/* Clear the HCI_LE_ADV bit temporarily so that the
|
|
* hci_update_random_address knows that it's safe to go ahead
|
|
* and write a new random address. The flag will be set back on
|
|
* as soon as the SET_ADV_ENABLE HCI command completes.
|
|
*/
|
|
hci_dev_clear_flag(hdev, HCI_LE_ADV);
|
|
|
|
/* Set require_privacy to true only when non-connectable
|
|
* advertising is used. In that case it is fine to use a
|
|
* non-resolvable private address.
|
|
*/
|
|
if (hci_update_random_address(req, !connectable,
|
|
adv_use_rpa(hdev, flags),
|
|
&own_addr_type) < 0)
|
|
return;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
if (adv) {
|
|
adv_min_interval = adv->min_interval;
|
|
adv_max_interval = adv->max_interval;
|
|
} else {
|
|
adv_min_interval = hdev->le_adv_min_interval;
|
|
adv_max_interval = hdev->le_adv_max_interval;
|
|
}
|
|
|
|
if (connectable) {
|
|
cp.type = LE_ADV_IND;
|
|
} else {
|
|
if (adv_cur_instance_is_scannable(hdev))
|
|
cp.type = LE_ADV_SCAN_IND;
|
|
else
|
|
cp.type = LE_ADV_NONCONN_IND;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
|
|
hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
|
|
adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
|
|
adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
|
|
}
|
|
}
|
|
|
|
cp.min_interval = cpu_to_le16(adv_min_interval);
|
|
cp.max_interval = cpu_to_le16(adv_max_interval);
|
|
cp.own_address_type = own_addr_type;
|
|
cp.channel_map = hdev->le_adv_channel_map;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
|
|
}
|
|
|
|
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 len;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
|
return;
|
|
|
|
if (ext_adv_capable(hdev)) {
|
|
struct {
|
|
struct hci_cp_le_set_ext_scan_rsp_data cp;
|
|
u8 data[HCI_MAX_EXT_AD_LENGTH];
|
|
} pdu;
|
|
|
|
memset(&pdu, 0, sizeof(pdu));
|
|
|
|
len = eir_create_scan_rsp(hdev, instance, pdu.data);
|
|
|
|
if (hdev->scan_rsp_data_len == len &&
|
|
!memcmp(pdu.data, hdev->scan_rsp_data, len))
|
|
return;
|
|
|
|
memcpy(hdev->scan_rsp_data, pdu.data, len);
|
|
hdev->scan_rsp_data_len = len;
|
|
|
|
pdu.cp.handle = instance;
|
|
pdu.cp.length = len;
|
|
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
|
|
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
|
|
sizeof(pdu.cp) + len, &pdu.cp);
|
|
} else {
|
|
struct hci_cp_le_set_scan_rsp_data cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
len = eir_create_scan_rsp(hdev, instance, cp.data);
|
|
|
|
if (hdev->scan_rsp_data_len == len &&
|
|
!memcmp(cp.data, hdev->scan_rsp_data, len))
|
|
return;
|
|
|
|
memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
|
|
hdev->scan_rsp_data_len = len;
|
|
|
|
cp.length = len;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 len;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
|
|
return;
|
|
|
|
if (ext_adv_capable(hdev)) {
|
|
struct {
|
|
struct hci_cp_le_set_ext_adv_data cp;
|
|
u8 data[HCI_MAX_EXT_AD_LENGTH];
|
|
} pdu;
|
|
|
|
memset(&pdu, 0, sizeof(pdu));
|
|
|
|
len = eir_create_adv_data(hdev, instance, pdu.data);
|
|
|
|
/* There's nothing to do if the data hasn't changed */
|
|
if (hdev->adv_data_len == len &&
|
|
memcmp(pdu.data, hdev->adv_data, len) == 0)
|
|
return;
|
|
|
|
memcpy(hdev->adv_data, pdu.data, len);
|
|
hdev->adv_data_len = len;
|
|
|
|
pdu.cp.length = len;
|
|
pdu.cp.handle = instance;
|
|
pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
|
|
pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
|
|
sizeof(pdu.cp) + len, &pdu.cp);
|
|
} else {
|
|
struct hci_cp_le_set_adv_data cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
len = eir_create_adv_data(hdev, instance, cp.data);
|
|
|
|
/* There's nothing to do if the data hasn't changed */
|
|
if (hdev->adv_data_len == len &&
|
|
memcmp(cp.data, hdev->adv_data, len) == 0)
|
|
return;
|
|
|
|
memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
|
|
hdev->adv_data_len = len;
|
|
|
|
cp.length = len;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
|
|
}
|
|
}
|
|
|
|
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
|
|
{
|
|
struct hci_request req;
|
|
|
|
hci_req_init(&req, hdev);
|
|
__hci_req_update_adv_data(&req, instance);
|
|
|
|
return hci_req_run(&req, NULL);
|
|
}
|
|
|
|
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
|
|
u16 opcode)
|
|
{
|
|
BT_DBG("%s status %u", hdev->name, status);
|
|
}
|
|
|
|
void hci_req_disable_address_resolution(struct hci_dev *hdev)
|
|
{
|
|
struct hci_request req;
|
|
__u8 enable = 0x00;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
|
|
return;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
|
|
|
|
hci_req_run(&req, enable_addr_resolution_complete);
|
|
}
|
|
|
|
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
|
|
{
|
|
bt_dev_dbg(hdev, "status %u", status);
|
|
}
|
|
|
|
void hci_req_reenable_advertising(struct hci_dev *hdev)
|
|
{
|
|
struct hci_request req;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
|
|
list_empty(&hdev->adv_instances))
|
|
return;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
if (hdev->cur_adv_instance) {
|
|
__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
|
|
true);
|
|
} else {
|
|
if (ext_adv_capable(hdev)) {
|
|
__hci_req_start_ext_adv(&req, 0x00);
|
|
} else {
|
|
__hci_req_update_adv_data(&req, 0x00);
|
|
__hci_req_update_scan_rsp_data(&req, 0x00);
|
|
__hci_req_enable_advertising(&req);
|
|
}
|
|
}
|
|
|
|
hci_req_run(&req, adv_enable_complete);
|
|
}
|
|
|
|
static void adv_timeout_expire(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
adv_instance_expire.work);
|
|
|
|
struct hci_request req;
|
|
u8 instance;
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
hdev->adv_instance_timeout = 0;
|
|
|
|
instance = hdev->cur_adv_instance;
|
|
if (instance == 0x00)
|
|
goto unlock;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
|
|
|
|
if (list_empty(&hdev->adv_instances))
|
|
__hci_req_disable_advertising(&req);
|
|
|
|
hci_req_run(&req, NULL);
|
|
|
|
unlock:
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
|
|
unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
int ret = 0;
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
|
hci_req_add_le_scan_disable(req, false);
|
|
hci_req_add_le_passive_scan(req);
|
|
|
|
switch (hdev->interleave_scan_state) {
|
|
case INTERLEAVE_SCAN_ALLOWLIST:
|
|
bt_dev_dbg(hdev, "next state: allowlist");
|
|
hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
|
|
break;
|
|
case INTERLEAVE_SCAN_NO_FILTER:
|
|
bt_dev_dbg(hdev, "next state: no filter");
|
|
hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
|
|
break;
|
|
case INTERLEAVE_SCAN_NONE:
|
|
BT_ERR("unexpected error");
|
|
ret = -1;
|
|
}
|
|
|
|
hci_dev_unlock(hdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void interleave_scan_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
interleave_scan.work);
|
|
u8 status;
|
|
unsigned long timeout;
|
|
|
|
if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
|
|
timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
|
|
} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
|
|
timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
|
|
} else {
|
|
bt_dev_err(hdev, "unexpected error");
|
|
return;
|
|
}
|
|
|
|
hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
|
|
HCI_CMD_TIMEOUT, &status);
|
|
|
|
/* Don't continue interleaving if it was canceled */
|
|
if (is_interleave_scanning(hdev))
|
|
queue_delayed_work(hdev->req_workqueue,
|
|
&hdev->interleave_scan, timeout);
|
|
}
|
|
|
|
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
|
|
bool use_rpa, struct adv_info *adv_instance,
|
|
u8 *own_addr_type, bdaddr_t *rand_addr)
|
|
{
|
|
int err;
|
|
|
|
bacpy(rand_addr, BDADDR_ANY);
|
|
|
|
/* If privacy is enabled use a resolvable private address. If
|
|
* current RPA has expired then generate a new one.
|
|
*/
|
|
if (use_rpa) {
|
|
/* If Controller supports LL Privacy use own address type is
|
|
* 0x03
|
|
*/
|
|
if (use_ll_privacy(hdev))
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
|
|
else
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
|
|
if (adv_instance) {
|
|
if (adv_rpa_valid(adv_instance))
|
|
return 0;
|
|
} else {
|
|
if (rpa_valid(hdev))
|
|
return 0;
|
|
}
|
|
|
|
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "failed to generate new RPA");
|
|
return err;
|
|
}
|
|
|
|
bacpy(rand_addr, &hdev->rpa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* In case of required privacy without resolvable private address,
|
|
* use an non-resolvable private address. This is useful for
|
|
* non-connectable advertising.
|
|
*/
|
|
if (require_privacy) {
|
|
bdaddr_t nrpa;
|
|
|
|
while (true) {
|
|
/* The non-resolvable private address is generated
|
|
* from random six bytes with the two most significant
|
|
* bits cleared.
|
|
*/
|
|
get_random_bytes(&nrpa, 6);
|
|
nrpa.b[5] &= 0x3f;
|
|
|
|
/* The non-resolvable private address shall not be
|
|
* equal to the public address.
|
|
*/
|
|
if (bacmp(&hdev->bdaddr, &nrpa))
|
|
break;
|
|
}
|
|
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
bacpy(rand_addr, &nrpa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* No privacy so use a public address. */
|
|
*own_addr_type = ADDR_LE_DEV_PUBLIC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
|
|
{
|
|
hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
|
|
}
|
|
|
|
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* If we're advertising or initiating an LE connection we can't
|
|
* go ahead and change the random address at this time. This is
|
|
* because the eventual initiator address used for the
|
|
* subsequently created connection will be undefined (some
|
|
* controllers use the new address and others the one we had
|
|
* when the operation started).
|
|
*
|
|
* In this kind of scenario skip the update and let the random
|
|
* address be updated at the next cycle.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
|
|
hci_lookup_le_connect(hdev)) {
|
|
bt_dev_dbg(hdev, "Deferring random address update");
|
|
hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
|
|
return;
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
|
|
}
|
|
|
|
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_cp_le_set_ext_adv_params cp;
|
|
struct hci_dev *hdev = req->hdev;
|
|
bool connectable;
|
|
u32 flags;
|
|
bdaddr_t random_addr;
|
|
u8 own_addr_type;
|
|
int err;
|
|
struct adv_info *adv_instance;
|
|
bool secondary_adv;
|
|
|
|
if (instance > 0) {
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
if (!adv_instance)
|
|
return -EINVAL;
|
|
} else {
|
|
adv_instance = NULL;
|
|
}
|
|
|
|
flags = hci_adv_instance_flags(hdev, instance);
|
|
|
|
/* If the "connectable" instance flag was not set, then choose between
|
|
* ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
|
|
*/
|
|
connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
|
|
mgmt_get_connectable(hdev);
|
|
|
|
if (!is_advertising_allowed(hdev, connectable))
|
|
return -EPERM;
|
|
|
|
/* Set require_privacy to true only when non-connectable
|
|
* advertising is used. In that case it is fine to use a
|
|
* non-resolvable private address.
|
|
*/
|
|
err = hci_get_random_address(hdev, !connectable,
|
|
adv_use_rpa(hdev, flags), adv_instance,
|
|
&own_addr_type, &random_addr);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
if (adv_instance) {
|
|
hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
|
|
hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
|
|
cp.tx_power = adv_instance->tx_power;
|
|
} else {
|
|
hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
|
|
hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
|
|
cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
|
|
}
|
|
|
|
secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
|
|
|
|
if (connectable) {
|
|
if (secondary_adv)
|
|
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
|
|
else
|
|
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
|
|
} else if (hci_adv_instance_is_scannable(hdev, instance) ||
|
|
(flags & MGMT_ADV_PARAM_SCAN_RSP)) {
|
|
if (secondary_adv)
|
|
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
|
|
else
|
|
cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
|
|
} else {
|
|
if (secondary_adv)
|
|
cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
|
|
else
|
|
cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
|
|
}
|
|
|
|
cp.own_addr_type = own_addr_type;
|
|
cp.channel_map = hdev->le_adv_channel_map;
|
|
cp.handle = instance;
|
|
|
|
if (flags & MGMT_ADV_FLAG_SEC_2M) {
|
|
cp.primary_phy = HCI_ADV_PHY_1M;
|
|
cp.secondary_phy = HCI_ADV_PHY_2M;
|
|
} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
|
|
cp.primary_phy = HCI_ADV_PHY_CODED;
|
|
cp.secondary_phy = HCI_ADV_PHY_CODED;
|
|
} else {
|
|
/* In all other cases use 1M */
|
|
cp.primary_phy = HCI_ADV_PHY_1M;
|
|
cp.secondary_phy = HCI_ADV_PHY_1M;
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
|
|
|
|
if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
|
|
own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
|
|
bacmp(&random_addr, BDADDR_ANY)) {
|
|
struct hci_cp_le_set_adv_set_rand_addr cp;
|
|
|
|
/* Check if random address need to be updated */
|
|
if (adv_instance) {
|
|
if (!bacmp(&random_addr, &adv_instance->random_addr))
|
|
return 0;
|
|
} else {
|
|
if (!bacmp(&random_addr, &hdev->random_addr))
|
|
return 0;
|
|
/* Instance 0x00 doesn't have an adv_info, instead it
|
|
* uses hdev->random_addr to track its address so
|
|
* whenever it needs to be updated this also set the
|
|
* random address since hdev->random_addr is shared with
|
|
* scan state machine.
|
|
*/
|
|
set_random_addr(req, &random_addr);
|
|
}
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
cp.handle = instance;
|
|
bacpy(&cp.bdaddr, &random_addr);
|
|
|
|
hci_req_add(req,
|
|
HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
|
|
sizeof(cp), &cp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_le_set_ext_adv_enable *cp;
|
|
struct hci_cp_ext_adv_set *adv_set;
|
|
u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
|
|
struct adv_info *adv_instance;
|
|
|
|
if (instance > 0) {
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
if (!adv_instance)
|
|
return -EINVAL;
|
|
} else {
|
|
adv_instance = NULL;
|
|
}
|
|
|
|
cp = (void *) data;
|
|
adv_set = (void *) cp->data;
|
|
|
|
memset(cp, 0, sizeof(*cp));
|
|
|
|
cp->enable = 0x01;
|
|
cp->num_of_sets = 0x01;
|
|
|
|
memset(adv_set, 0, sizeof(*adv_set));
|
|
|
|
adv_set->handle = instance;
|
|
|
|
/* Set duration per instance since controller is responsible for
|
|
* scheduling it.
|
|
*/
|
|
if (adv_instance && adv_instance->duration) {
|
|
u16 duration = adv_instance->timeout * MSEC_PER_SEC;
|
|
|
|
/* Time = N * 10 ms */
|
|
adv_set->duration = cpu_to_le16(duration / 10);
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
|
|
sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
|
|
data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_le_set_ext_adv_enable *cp;
|
|
struct hci_cp_ext_adv_set *adv_set;
|
|
u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
|
|
u8 req_size;
|
|
|
|
/* If request specifies an instance that doesn't exist, fail */
|
|
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
|
|
return -EINVAL;
|
|
|
|
memset(data, 0, sizeof(data));
|
|
|
|
cp = (void *)data;
|
|
adv_set = (void *)cp->data;
|
|
|
|
/* Instance 0x00 indicates all advertising instances will be disabled */
|
|
cp->num_of_sets = !!instance;
|
|
cp->enable = 0x00;
|
|
|
|
adv_set->handle = instance;
|
|
|
|
req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* If request specifies an instance that doesn't exist, fail */
|
|
if (instance > 0 && !hci_find_adv_instance(hdev, instance))
|
|
return -EINVAL;
|
|
|
|
hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
|
|
int err;
|
|
|
|
/* If instance isn't pending, the chip knows about it, and it's safe to
|
|
* disable
|
|
*/
|
|
if (adv_instance && !adv_instance->pending)
|
|
__hci_req_disable_ext_adv_instance(req, instance);
|
|
|
|
err = __hci_req_setup_ext_adv_instance(req, instance);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
__hci_req_update_scan_rsp_data(req, instance);
|
|
__hci_req_enable_ext_advertising(req, instance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
|
|
bool force)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct adv_info *adv_instance = NULL;
|
|
u16 timeout;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
|
|
list_empty(&hdev->adv_instances))
|
|
return -EPERM;
|
|
|
|
if (hdev->adv_instance_timeout)
|
|
return -EBUSY;
|
|
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
if (!adv_instance)
|
|
return -ENOENT;
|
|
|
|
/* A zero timeout means unlimited advertising. As long as there is
|
|
* only one instance, duration should be ignored. We still set a timeout
|
|
* in case further instances are being added later on.
|
|
*
|
|
* If the remaining lifetime of the instance is more than the duration
|
|
* then the timeout corresponds to the duration, otherwise it will be
|
|
* reduced to the remaining instance lifetime.
|
|
*/
|
|
if (adv_instance->timeout == 0 ||
|
|
adv_instance->duration <= adv_instance->remaining_time)
|
|
timeout = adv_instance->duration;
|
|
else
|
|
timeout = adv_instance->remaining_time;
|
|
|
|
/* The remaining time is being reduced unless the instance is being
|
|
* advertised without time limit.
|
|
*/
|
|
if (adv_instance->timeout)
|
|
adv_instance->remaining_time =
|
|
adv_instance->remaining_time - timeout;
|
|
|
|
/* Only use work for scheduling instances with legacy advertising */
|
|
if (!ext_adv_capable(hdev)) {
|
|
hdev->adv_instance_timeout = timeout;
|
|
queue_delayed_work(hdev->req_workqueue,
|
|
&hdev->adv_instance_expire,
|
|
msecs_to_jiffies(timeout * 1000));
|
|
}
|
|
|
|
/* If we're just re-scheduling the same instance again then do not
|
|
* execute any HCI commands. This happens when a single instance is
|
|
* being advertised.
|
|
*/
|
|
if (!force && hdev->cur_adv_instance == instance &&
|
|
hci_dev_test_flag(hdev, HCI_LE_ADV))
|
|
return 0;
|
|
|
|
hdev->cur_adv_instance = instance;
|
|
if (ext_adv_capable(hdev)) {
|
|
__hci_req_start_ext_adv(req, instance);
|
|
} else {
|
|
__hci_req_update_adv_data(req, instance);
|
|
__hci_req_update_scan_rsp_data(req, instance);
|
|
__hci_req_enable_advertising(req);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* For a single instance:
|
|
* - force == true: The instance will be removed even when its remaining
|
|
* lifetime is not zero.
|
|
* - force == false: the instance will be deactivated but kept stored unless
|
|
* the remaining lifetime is zero.
|
|
*
|
|
* For instance == 0x00:
|
|
* - force == true: All instances will be removed regardless of their timeout
|
|
* setting.
|
|
* - force == false: Only instances that have a timeout will be removed.
|
|
*/
|
|
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
|
|
struct hci_request *req, u8 instance,
|
|
bool force)
|
|
{
|
|
struct adv_info *adv_instance, *n, *next_instance = NULL;
|
|
int err;
|
|
u8 rem_inst;
|
|
|
|
/* Cancel any timeout concerning the removed instance(s). */
|
|
if (!instance || hdev->cur_adv_instance == instance)
|
|
cancel_adv_timeout(hdev);
|
|
|
|
/* Get the next instance to advertise BEFORE we remove
|
|
* the current one. This can be the same instance again
|
|
* if there is only one instance.
|
|
*/
|
|
if (instance && hdev->cur_adv_instance == instance)
|
|
next_instance = hci_get_next_instance(hdev, instance);
|
|
|
|
if (instance == 0x00) {
|
|
list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
|
|
list) {
|
|
if (!(force || adv_instance->timeout))
|
|
continue;
|
|
|
|
rem_inst = adv_instance->instance;
|
|
err = hci_remove_adv_instance(hdev, rem_inst);
|
|
if (!err)
|
|
mgmt_advertising_removed(sk, hdev, rem_inst);
|
|
}
|
|
} else {
|
|
adv_instance = hci_find_adv_instance(hdev, instance);
|
|
|
|
if (force || (adv_instance && adv_instance->timeout &&
|
|
!adv_instance->remaining_time)) {
|
|
/* Don't advertise a removed instance. */
|
|
if (next_instance &&
|
|
next_instance->instance == instance)
|
|
next_instance = NULL;
|
|
|
|
err = hci_remove_adv_instance(hdev, instance);
|
|
if (!err)
|
|
mgmt_advertising_removed(sk, hdev, instance);
|
|
}
|
|
}
|
|
|
|
if (!req || !hdev_is_powered(hdev) ||
|
|
hci_dev_test_flag(hdev, HCI_ADVERTISING))
|
|
return;
|
|
|
|
if (next_instance && !ext_adv_capable(hdev))
|
|
__hci_req_schedule_adv_instance(req, next_instance->instance,
|
|
false);
|
|
}
|
|
|
|
int hci_update_random_address(struct hci_request *req, bool require_privacy,
|
|
bool use_rpa, u8 *own_addr_type)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
int err;
|
|
|
|
/* If privacy is enabled use a resolvable private address. If
|
|
* current RPA has expired or there is something else than
|
|
* the current RPA in use, then generate a new one.
|
|
*/
|
|
if (use_rpa) {
|
|
/* If Controller supports LL Privacy use own address type is
|
|
* 0x03
|
|
*/
|
|
if (use_ll_privacy(hdev))
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
|
|
else
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
|
|
if (rpa_valid(hdev))
|
|
return 0;
|
|
|
|
err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "failed to generate new RPA");
|
|
return err;
|
|
}
|
|
|
|
set_random_addr(req, &hdev->rpa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* In case of required privacy without resolvable private address,
|
|
* use an non-resolvable private address. This is useful for active
|
|
* scanning and non-connectable advertising.
|
|
*/
|
|
if (require_privacy) {
|
|
bdaddr_t nrpa;
|
|
|
|
while (true) {
|
|
/* The non-resolvable private address is generated
|
|
* from random six bytes with the two most significant
|
|
* bits cleared.
|
|
*/
|
|
get_random_bytes(&nrpa, 6);
|
|
nrpa.b[5] &= 0x3f;
|
|
|
|
/* The non-resolvable private address shall not be
|
|
* equal to the public address.
|
|
*/
|
|
if (bacmp(&hdev->bdaddr, &nrpa))
|
|
break;
|
|
}
|
|
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
set_random_addr(req, &nrpa);
|
|
return 0;
|
|
}
|
|
|
|
/* If forcing static address is in use or there is no public
|
|
* address use the static address as random address (but skip
|
|
* the HCI command if the current random address is already the
|
|
* static one.
|
|
*
|
|
* In case BR/EDR has been disabled on a dual-mode controller
|
|
* and a static address has been configured, then use that
|
|
* address instead of the public BR/EDR address.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
|
|
!bacmp(&hdev->bdaddr, BDADDR_ANY) ||
|
|
(!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
|
|
bacmp(&hdev->static_addr, BDADDR_ANY))) {
|
|
*own_addr_type = ADDR_LE_DEV_RANDOM;
|
|
if (bacmp(&hdev->static_addr, &hdev->random_addr))
|
|
hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
|
|
&hdev->static_addr);
|
|
return 0;
|
|
}
|
|
|
|
/* Neither privacy nor static address is being used so use a
|
|
* public address.
|
|
*/
|
|
*own_addr_type = ADDR_LE_DEV_PUBLIC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
|
|
{
|
|
struct bdaddr_list *b;
|
|
|
|
list_for_each_entry(b, &hdev->accept_list, list) {
|
|
struct hci_conn *conn;
|
|
|
|
conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
|
|
if (!conn)
|
|
return true;
|
|
|
|
if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void __hci_req_update_scan(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 scan;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
|
return;
|
|
|
|
if (!hdev_is_powered(hdev))
|
|
return;
|
|
|
|
if (mgmt_powering_down(hdev))
|
|
return;
|
|
|
|
if (hdev->scanning_paused)
|
|
return;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
|
|
disconnected_accept_list_entries(hdev))
|
|
scan = SCAN_PAGE;
|
|
else
|
|
scan = SCAN_DISABLED;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
|
|
scan |= SCAN_INQUIRY;
|
|
|
|
if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
|
|
test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
|
|
return;
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
|
|
}
|
|
|
|
static u8 get_service_classes(struct hci_dev *hdev)
|
|
{
|
|
struct bt_uuid *uuid;
|
|
u8 val = 0;
|
|
|
|
list_for_each_entry(uuid, &hdev->uuids, list)
|
|
val |= uuid->svc_hint;
|
|
|
|
return val;
|
|
}
|
|
|
|
void __hci_req_update_class(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
u8 cod[3];
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
if (!hdev_is_powered(hdev))
|
|
return;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
|
|
return;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
|
|
return;
|
|
|
|
cod[0] = hdev->minor_class;
|
|
cod[1] = hdev->major_class;
|
|
cod[2] = get_service_classes(hdev);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
|
|
cod[1] |= 0x20;
|
|
|
|
if (memcmp(cod, hdev->dev_class, 3) == 0)
|
|
return;
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
|
|
}
|
|
|
|
static void write_iac(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct hci_cp_write_current_iac_lap cp;
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
|
|
return;
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
|
|
/* Limited discoverable mode */
|
|
cp.num_iac = min_t(u8, hdev->num_iac, 2);
|
|
cp.iac_lap[0] = 0x00; /* LIAC */
|
|
cp.iac_lap[1] = 0x8b;
|
|
cp.iac_lap[2] = 0x9e;
|
|
cp.iac_lap[3] = 0x33; /* GIAC */
|
|
cp.iac_lap[4] = 0x8b;
|
|
cp.iac_lap[5] = 0x9e;
|
|
} else {
|
|
/* General discoverable mode */
|
|
cp.num_iac = 1;
|
|
cp.iac_lap[0] = 0x33; /* GIAC */
|
|
cp.iac_lap[1] = 0x8b;
|
|
cp.iac_lap[2] = 0x9e;
|
|
}
|
|
|
|
hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
|
|
(cp.num_iac * 3) + 1, &cp);
|
|
}
|
|
|
|
static int discoverable_update(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
|
|
write_iac(req);
|
|
__hci_req_update_scan(req);
|
|
__hci_req_update_class(req);
|
|
}
|
|
|
|
/* Advertising instances don't use the global discoverable setting, so
|
|
* only update AD if advertising was enabled using Set Advertising.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
|
|
__hci_req_update_adv_data(req, 0x00);
|
|
|
|
/* Discoverable mode affects the local advertising
|
|
* address in limited privacy mode.
|
|
*/
|
|
if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
|
|
if (ext_adv_capable(hdev))
|
|
__hci_req_start_ext_adv(req, 0x00);
|
|
else
|
|
__hci_req_enable_advertising(req);
|
|
}
|
|
}
|
|
|
|
hci_dev_unlock(hdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
|
|
u8 reason)
|
|
{
|
|
switch (conn->state) {
|
|
case BT_CONNECTED:
|
|
case BT_CONFIG:
|
|
if (conn->type == AMP_LINK) {
|
|
struct hci_cp_disconn_phy_link cp;
|
|
|
|
cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
|
|
cp.reason = reason;
|
|
hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
|
|
&cp);
|
|
} else {
|
|
struct hci_cp_disconnect dc;
|
|
|
|
dc.handle = cpu_to_le16(conn->handle);
|
|
dc.reason = reason;
|
|
hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
|
|
}
|
|
|
|
conn->state = BT_DISCONN;
|
|
|
|
break;
|
|
case BT_CONNECT:
|
|
if (conn->type == LE_LINK) {
|
|
if (test_bit(HCI_CONN_SCANNING, &conn->flags))
|
|
break;
|
|
hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
|
|
0, NULL);
|
|
} else if (conn->type == ACL_LINK) {
|
|
if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
|
|
break;
|
|
hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
|
|
6, &conn->dst);
|
|
}
|
|
break;
|
|
case BT_CONNECT2:
|
|
if (conn->type == ACL_LINK) {
|
|
struct hci_cp_reject_conn_req rej;
|
|
|
|
bacpy(&rej.bdaddr, &conn->dst);
|
|
rej.reason = reason;
|
|
|
|
hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
|
|
sizeof(rej), &rej);
|
|
} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
|
|
struct hci_cp_reject_sync_conn_req rej;
|
|
|
|
bacpy(&rej.bdaddr, &conn->dst);
|
|
|
|
/* SCO rejection has its own limited set of
|
|
* allowed error values (0x0D-0x0F) which isn't
|
|
* compatible with most values passed to this
|
|
* function. To be safe hard-code one of the
|
|
* values that's suitable for SCO.
|
|
*/
|
|
rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
|
|
|
|
hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
|
|
sizeof(rej), &rej);
|
|
}
|
|
break;
|
|
default:
|
|
conn->state = BT_CLOSED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
|
|
{
|
|
if (status)
|
|
bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
|
|
}
|
|
|
|
int hci_abort_conn(struct hci_conn *conn, u8 reason)
|
|
{
|
|
struct hci_request req;
|
|
int err;
|
|
|
|
hci_req_init(&req, conn->hdev);
|
|
|
|
__hci_abort_conn(&req, conn, reason);
|
|
|
|
err = hci_req_run(&req, abort_conn_complete);
|
|
if (err && err != -ENODATA) {
|
|
bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int le_scan_disable(struct hci_request *req, unsigned long opt)
|
|
{
|
|
hci_req_add_le_scan_disable(req, false);
|
|
return 0;
|
|
}
|
|
|
|
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
|
|
{
|
|
u8 length = opt;
|
|
const u8 giac[3] = { 0x33, 0x8b, 0x9e };
|
|
const u8 liac[3] = { 0x00, 0x8b, 0x9e };
|
|
struct hci_cp_inquiry cp;
|
|
|
|
if (test_bit(HCI_INQUIRY, &req->hdev->flags))
|
|
return 0;
|
|
|
|
bt_dev_dbg(req->hdev, "");
|
|
|
|
hci_dev_lock(req->hdev);
|
|
hci_inquiry_cache_flush(req->hdev);
|
|
hci_dev_unlock(req->hdev);
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
|
|
if (req->hdev->discovery.limited)
|
|
memcpy(&cp.lap, liac, sizeof(cp.lap));
|
|
else
|
|
memcpy(&cp.lap, giac, sizeof(cp.lap));
|
|
|
|
cp.length = length;
|
|
|
|
hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void le_scan_disable_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
le_scan_disable.work);
|
|
u8 status;
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
|
return;
|
|
|
|
cancel_delayed_work(&hdev->le_scan_restart);
|
|
|
|
hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
|
|
if (status) {
|
|
bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
|
|
status);
|
|
return;
|
|
}
|
|
|
|
hdev->discovery.scan_start = 0;
|
|
|
|
/* If we were running LE only scan, change discovery state. If
|
|
* we were running both LE and BR/EDR inquiry simultaneously,
|
|
* and BR/EDR inquiry is already finished, stop discovery,
|
|
* otherwise BR/EDR inquiry will stop discovery when finished.
|
|
* If we will resolve remote device name, do not change
|
|
* discovery state.
|
|
*/
|
|
|
|
if (hdev->discovery.type == DISCOV_TYPE_LE)
|
|
goto discov_stopped;
|
|
|
|
if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
|
|
return;
|
|
|
|
if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
|
|
if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
|
|
hdev->discovery.state != DISCOVERY_RESOLVING)
|
|
goto discov_stopped;
|
|
|
|
return;
|
|
}
|
|
|
|
hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
|
|
HCI_CMD_TIMEOUT, &status);
|
|
if (status) {
|
|
bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
|
|
goto discov_stopped;
|
|
}
|
|
|
|
return;
|
|
|
|
discov_stopped:
|
|
hci_dev_lock(hdev);
|
|
hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
static int le_scan_restart(struct hci_request *req, unsigned long opt)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
|
|
/* If controller is not scanning we are done. */
|
|
if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
|
|
return 0;
|
|
|
|
if (hdev->scanning_paused) {
|
|
bt_dev_dbg(hdev, "Scanning is paused for suspend");
|
|
return 0;
|
|
}
|
|
|
|
hci_req_add_le_scan_disable(req, false);
|
|
|
|
if (use_ext_scan(hdev)) {
|
|
struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
|
|
|
|
memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
|
|
ext_enable_cp.enable = LE_SCAN_ENABLE;
|
|
ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
|
|
|
|
hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
|
|
sizeof(ext_enable_cp), &ext_enable_cp);
|
|
} else {
|
|
struct hci_cp_le_set_scan_enable cp;
|
|
|
|
memset(&cp, 0, sizeof(cp));
|
|
cp.enable = LE_SCAN_ENABLE;
|
|
cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
|
|
hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void le_scan_restart_work(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
le_scan_restart.work);
|
|
unsigned long timeout, duration, scan_start, now;
|
|
u8 status;
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
|
|
if (status) {
|
|
bt_dev_err(hdev, "failed to restart LE scan: status %d",
|
|
status);
|
|
return;
|
|
}
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
|
|
!hdev->discovery.scan_start)
|
|
goto unlock;
|
|
|
|
/* When the scan was started, hdev->le_scan_disable has been queued
|
|
* after duration from scan_start. During scan restart this job
|
|
* has been canceled, and we need to queue it again after proper
|
|
* timeout, to make sure that scan does not run indefinitely.
|
|
*/
|
|
duration = hdev->discovery.scan_duration;
|
|
scan_start = hdev->discovery.scan_start;
|
|
now = jiffies;
|
|
if (now - scan_start <= duration) {
|
|
int elapsed;
|
|
|
|
if (now >= scan_start)
|
|
elapsed = now - scan_start;
|
|
else
|
|
elapsed = ULONG_MAX - scan_start + now;
|
|
|
|
timeout = duration - elapsed;
|
|
} else {
|
|
timeout = 0;
|
|
}
|
|
|
|
queue_delayed_work(hdev->req_workqueue,
|
|
&hdev->le_scan_disable, timeout);
|
|
|
|
unlock:
|
|
hci_dev_unlock(hdev);
|
|
}
|
|
|
|
bool hci_req_stop_discovery(struct hci_request *req)
|
|
{
|
|
struct hci_dev *hdev = req->hdev;
|
|
struct discovery_state *d = &hdev->discovery;
|
|
struct hci_cp_remote_name_req_cancel cp;
|
|
struct inquiry_entry *e;
|
|
bool ret = false;
|
|
|
|
bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
|
|
|
|
if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
|
|
if (test_bit(HCI_INQUIRY, &hdev->flags))
|
|
hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
|
|
|
|
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
|
|
cancel_delayed_work(&hdev->le_scan_disable);
|
|
cancel_delayed_work(&hdev->le_scan_restart);
|
|
hci_req_add_le_scan_disable(req, false);
|
|
}
|
|
|
|
ret = true;
|
|
} else {
|
|
/* Passive scanning */
|
|
if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
|
|
hci_req_add_le_scan_disable(req, false);
|
|
ret = true;
|
|
}
|
|
}
|
|
|
|
/* No further actions needed for LE-only discovery */
|
|
if (d->type == DISCOV_TYPE_LE)
|
|
return ret;
|
|
|
|
if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
|
|
e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
|
|
NAME_PENDING);
|
|
if (!e)
|
|
return ret;
|
|
|
|
bacpy(&cp.bdaddr, &e->data.bdaddr);
|
|
hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
|
|
&cp);
|
|
ret = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
|
|
u16 opcode)
|
|
{
|
|
bt_dev_dbg(hdev, "status %u", status);
|
|
}
|
|
|
|
int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
|
|
{
|
|
struct hci_request req;
|
|
int err;
|
|
__u8 vnd_len, *vnd_data = NULL;
|
|
struct hci_op_configure_data_path *cmd = NULL;
|
|
|
|
hci_req_init(&req, hdev);
|
|
|
|
err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
|
|
&vnd_data);
|
|
if (err < 0)
|
|
goto error;
|
|
|
|
cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
|
|
if (!cmd) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
|
|
if (err < 0)
|
|
goto error;
|
|
|
|
cmd->vnd_len = vnd_len;
|
|
memcpy(cmd->vnd_data, vnd_data, vnd_len);
|
|
|
|
cmd->direction = 0x00;
|
|
hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);
|
|
|
|
cmd->direction = 0x01;
|
|
hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);
|
|
|
|
err = hci_req_run(&req, config_data_path_complete);
|
|
error:
|
|
|
|
kfree(cmd);
|
|
kfree(vnd_data);
|
|
return err;
|
|
}
|
|
|
|
static void discov_off(struct work_struct *work)
|
|
{
|
|
struct hci_dev *hdev = container_of(work, struct hci_dev,
|
|
discov_off.work);
|
|
|
|
bt_dev_dbg(hdev, "");
|
|
|
|
hci_dev_lock(hdev);
|
|
|
|
/* When discoverable timeout triggers, then just make sure
|
|
* the limited discoverable flag is cleared. Even in the case
|
|
* of a timeout triggered from general discoverable, it is
|
|
* safe to unconditionally clear the flag.
|
|
*/
|
|
hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
|
|
hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
|
|
hdev->discov_timeout = 0;
|
|
|
|
hci_dev_unlock(hdev);
|
|
|
|
hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
|
|
mgmt_new_settings(hdev);
|
|
}
|
|
|
|
void hci_request_setup(struct hci_dev *hdev)
|
|
{
|
|
INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
|
|
INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
|
|
INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
|
|
INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
|
|
INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
|
|
}
|
|
|
|
void hci_request_cancel_all(struct hci_dev *hdev)
|
|
{
|
|
__hci_cmd_sync_cancel(hdev, ENODEV);
|
|
|
|
cancel_delayed_work_sync(&hdev->discov_off);
|
|
cancel_delayed_work_sync(&hdev->le_scan_disable);
|
|
cancel_delayed_work_sync(&hdev->le_scan_restart);
|
|
|
|
if (hdev->adv_instance_timeout) {
|
|
cancel_delayed_work_sync(&hdev->adv_instance_expire);
|
|
hdev->adv_instance_timeout = 0;
|
|
}
|
|
|
|
cancel_interleave_scan(hdev);
|
|
}
|