linux/drivers/gpu/drm/bridge/ti-sn65dsi83.c
Ville Syrjälä 72bd9ea389 drm: Remove linux/media-bus-format.h from drm_crtc.h
drm_crtc.h has no need for linux/media-bus-format.h, so don't
include it. Avoids useless rebuilds of the entire universe when
touching linux/media-bus-format.h.

Quite a few placs do currently depend on linux/media-bus-format.h
without actually including it directly. All of those need to be
fixed up.

v2: Deal with ingenic as well
v3: Fix up mxsfb and remaining parts of imx

Acked-by: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220630195114.17407-4-ville.syrjala@linux.intel.com
2022-07-05 21:15:13 +03:00

748 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* TI SN65DSI83,84,85 driver
*
* Currently supported:
* - SN65DSI83
* = 1x Single-link DSI ~ 1x Single-link LVDS
* - Supported
* - Single-link LVDS mode tested
* - SN65DSI84
* = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Supported
* - Dual-link LVDS mode tested
* - 2x Single-link LVDS mode unsupported
* (should be easy to add by someone who has the HW)
* - SN65DSI85
* = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Unsupported
* (should be easy to add by someone who has the HW)
*
* Copyright (C) 2021 Marek Vasut <marex@denx.de>
*
* Based on previous work of:
* Valentin Raevsky <valentin@compulab.co.il>
* Philippe Schenker <philippe.schenker@toradex.com>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* ID registers */
#define REG_ID(n) (0x00 + (n))
/* Reset and clock registers */
#define REG_RC_RESET 0x09
#define REG_RC_RESET_SOFT_RESET BIT(0)
#define REG_RC_LVDS_PLL 0x0a
#define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
#define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
#define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
#define REG_RC_DSI_CLK 0x0b
#define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
#define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
#define REG_RC_PLL_EN 0x0d
#define REG_RC_PLL_EN_PLL_EN BIT(0)
/* DSI registers */
#define REG_DSI_LANE 0x10
#define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
#define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
#define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
#define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
#define REG_DSI_EQ 0x11
#define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
#define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
#define REG_DSI_CLK 0x12
#define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
/* LVDS registers */
#define REG_LVDS_FMT 0x18
#define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
#define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
#define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
#define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
#define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
#define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
#define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
#define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
#define REG_LVDS_VCOM 0x19
#define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
#define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
#define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
#define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
#define REG_LVDS_LANE 0x1a
#define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
#define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
#define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
#define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
#define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
#define REG_LVDS_CM 0x1b
#define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
#define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
/* Video registers */
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
#define REG_VID_CHA_SYNC_DELAY_LOW 0x28
#define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
#define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
#define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
#define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
#define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
#define REG_VID_CHA_TEST_PATTERN 0x3c
/* IRQ registers */
#define REG_IRQ_GLOBAL 0xe0
#define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
#define REG_IRQ_EN 0xe1
#define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
#define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
#define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
#define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
#define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
#define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
#define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
#define REG_IRQ_STAT 0xe5
#define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
#define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
#define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
#define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
#define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
#define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
#define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
enum sn65dsi83_model {
MODEL_SN65DSI83,
MODEL_SN65DSI84,
};
struct sn65dsi83 {
struct drm_bridge bridge;
struct device *dev;
struct regmap *regmap;
struct mipi_dsi_device *dsi;
struct drm_bridge *panel_bridge;
struct gpio_desc *enable_gpio;
struct regulator *vcc;
bool lvds_dual_link;
bool lvds_dual_link_even_odd_swap;
};
static const struct regmap_range sn65dsi83_readable_ranges[] = {
regmap_reg_range(REG_ID(0), REG_ID(8)),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_readable_table = {
.yes_ranges = sn65dsi83_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
};
static const struct regmap_range sn65dsi83_writeable_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_writeable_table = {
.yes_ranges = sn65dsi83_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
};
static const struct regmap_range sn65dsi83_volatile_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_volatile_table = {
.yes_ranges = sn65dsi83_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
};
static const struct regmap_config sn65dsi83_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.rd_table = &sn65dsi83_readable_table,
.wr_table = &sn65dsi83_writeable_table,
.volatile_table = &sn65dsi83_volatile_table,
.cache_type = REGCACHE_RBTREE,
.max_register = REG_IRQ_STAT,
};
static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
{
return container_of(bridge, struct sn65dsi83, bridge);
}
static int sn65dsi83_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
&ctx->bridge, flags);
}
static void sn65dsi83_detach(struct drm_bridge *bridge)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
if (!ctx->dsi)
return;
ctx->dsi = NULL;
}
static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the LVDS_CLK_RANGE is as follows:
* 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
* 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
* 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
* 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
* 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
* 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
* which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
* the ends of the ranges are clamped to the supported range. Since
* sn65dsi83_mode_valid() already filters the valid modes and limits
* the clock to 25..154 MHz, the range calculation can be simplified
* as follows:
*/
int mode_clock = mode->clock;
if (ctx->lvds_dual_link)
mode_clock /= 2;
return (mode_clock - 12500) / 25000;
}
static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the CHA_DSI_CLK_RANGE is as follows:
* 0x00 through 0x07 - Reserved
* 0x08 - 40 <= DSI_CLK < 45 MHz
* 0x09 - 45 <= DSI_CLK < 50 MHz
* ...
* 0x63 - 495 <= DSI_CLK < 500 MHz
* 0x64 - 500 MHz
* 0x65 through 0xFF - Reserved
* which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
* The DSI clock are calculated as:
* DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
* the 2 is there because the bus is DDR.
*/
return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
}
static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
{
/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
dsi_div /= ctx->dsi->lanes;
if (!ctx->lvds_dual_link)
dsi_div /= 2;
return dsi_div - 1;
}
static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
const struct drm_bridge_state *bridge_state;
const struct drm_crtc_state *crtc_state;
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
bool lvds_format_24bpp;
bool lvds_format_jeida;
unsigned int pval;
__le16 le16val;
u16 val;
int ret;
ret = regulator_enable(ctx->vcc);
if (ret) {
dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
return;
}
/* Deassert reset */
gpiod_set_value_cansleep(ctx->enable_gpio, 1);
usleep_range(1000, 1100);
/* Get the LVDS format from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
switch (bridge_state->output_bus_cfg.format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
lvds_format_24bpp = false;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
lvds_format_24bpp = true;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
lvds_format_24bpp = true;
lvds_format_jeida = false;
break;
default:
/*
* Some bridges still don't set the correct
* LVDS bus pixel format, use SPWG24 default
* format until those are fixed.
*/
lvds_format_24bpp = true;
lvds_format_jeida = false;
dev_warn(ctx->dev,
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
bridge_state->output_bus_cfg.format);
break;
}
/*
* Retrieve the CRTC adjusted mode. This requires a little dance to go
* from the bridge to the encoder, to the connector and to the CRTC.
*/
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
mode = &crtc_state->adjusted_mode;
/* Clear reset, disable PLL */
regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
/* Reference clock derived from DSI link clock. */
regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
regmap_write(ctx->regmap, REG_DSI_CLK,
REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
regmap_write(ctx->regmap, REG_RC_DSI_CLK,
REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
/* Set number of DSI lanes and LVDS link config. */
regmap_write(ctx->regmap, REG_DSI_LANE,
REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
/* CHB is DSI85-only, set to default on DSI83/DSI84 */
REG_DSI_LANE_CHB_DSI_LANES(3));
/* No equalization. */
regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
/* Set up sync signal polarity. */
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
(mode->flags & DRM_MODE_FLAG_NVSYNC ?
REG_LVDS_FMT_VS_NEG_POLARITY : 0);
/* Set up bits-per-pixel, 18bpp or 24bpp. */
if (lvds_format_24bpp) {
val |= REG_LVDS_FMT_CHA_24BPP_MODE;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_MODE;
}
/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
if (lvds_format_jeida) {
val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
}
/* Set up LVDS output config (DSI84,DSI85) */
if (!ctx->lvds_dual_link)
val |= REG_LVDS_FMT_LVDS_LINK_CFG;
regmap_write(ctx->regmap, REG_LVDS_FMT, val);
regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05);
regmap_write(ctx->regmap, REG_LVDS_LANE,
(ctx->lvds_dual_link_even_odd_swap ?
REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
REG_LVDS_LANE_CHA_LVDS_TERM |
REG_LVDS_LANE_CHB_LVDS_TERM);
regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
le16val = cpu_to_le16(mode->hdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
&le16val, 2);
/* 32 + 1 pixel clock to ensure proper operation */
le16val = cpu_to_le16(32 + 1);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
mode->htotal - mode->hsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
mode->vtotal - mode->vsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
mode->hsync_start - mode->hdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
mode->vsync_start - mode->vdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
/* Enable PLL */
regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
usleep_range(3000, 4000);
ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
1000, 100000);
if (ret) {
dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
/* On failure, disable PLL again and exit. */
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
return;
}
/* Trigger reset after CSR register update. */
regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
/* Clear all errors that got asserted during initialization. */
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
usleep_range(10000, 12000);
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
if (pval)
dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
}
static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
int ret;
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
gpiod_set_value_cansleep(ctx->enable_gpio, 0);
usleep_range(10000, 11000);
ret = regulator_disable(ctx->vcc);
if (ret)
dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
regcache_mark_dirty(ctx->regmap);
}
static enum drm_mode_status
sn65dsi83_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* LVDS output clock range 25..154 MHz */
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs sn65dsi83_funcs = {
.attach = sn65dsi83_attach,
.detach = sn65dsi83_detach,
.atomic_enable = sn65dsi83_atomic_enable,
.atomic_disable = sn65dsi83_atomic_disable,
.mode_valid = sn65dsi83_mode_valid,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
};
static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
{
struct drm_bridge *panel_bridge;
struct device *dev = ctx->dev;
ctx->lvds_dual_link = false;
ctx->lvds_dual_link_even_odd_swap = false;
if (model != MODEL_SN65DSI83) {
struct device_node *port2, *port3;
int dual_link;
port2 = of_graph_get_port_by_id(dev->of_node, 2);
port3 = of_graph_get_port_by_id(dev->of_node, 3);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
of_node_put(port2);
of_node_put(port3);
if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
ctx->lvds_dual_link = true;
/* Odd pixels to LVDS Channel A, even pixels to B */
ctx->lvds_dual_link_even_odd_swap = false;
} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
ctx->lvds_dual_link = true;
/* Even pixels to LVDS Channel A, odd pixels to B */
ctx->lvds_dual_link_even_odd_swap = true;
}
}
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ctx->panel_bridge = panel_bridge;
ctx->vcc = devm_regulator_get(dev, "vcc");
if (IS_ERR(ctx->vcc))
return dev_err_probe(dev, PTR_ERR(ctx->vcc),
"Failed to get supply 'vcc'\n");
return 0;
}
static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
{
struct device *dev = ctx->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = {
.type = "sn65dsi83",
.channel = 0,
.node = NULL,
};
int dsi_lanes, ret;
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
host_node = of_graph_get_remote_port_parent(endpoint);
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
of_node_put(endpoint);
if (!host)
return -EPROBE_DEFER;
if (dsi_lanes < 0)
return dsi_lanes;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
ctx->dsi = dsi;
dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
return ret;
}
return 0;
}
static int sn65dsi83_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
enum sn65dsi83_model model;
struct sn65dsi83 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
if (dev->of_node) {
model = (enum sn65dsi83_model)(uintptr_t)
of_device_get_match_data(dev);
} else {
model = id->driver_data;
}
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(ctx->enable_gpio))
return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
usleep_range(10000, 11000);
ret = sn65dsi83_parse_dt(ctx, model);
if (ret)
return ret;
ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
if (IS_ERR(ctx->regmap))
return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
dev_set_drvdata(dev, ctx);
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = &sn65dsi83_funcs;
ctx->bridge.of_node = dev->of_node;
drm_bridge_add(&ctx->bridge);
ret = sn65dsi83_host_attach(ctx);
if (ret)
goto err_remove_bridge;
return 0;
err_remove_bridge:
drm_bridge_remove(&ctx->bridge);
return ret;
}
static int sn65dsi83_remove(struct i2c_client *client)
{
struct sn65dsi83 *ctx = i2c_get_clientdata(client);
drm_bridge_remove(&ctx->bridge);
return 0;
}
static struct i2c_device_id sn65dsi83_id[] = {
{ "ti,sn65dsi83", MODEL_SN65DSI83 },
{ "ti,sn65dsi84", MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
static const struct of_device_id sn65dsi83_match_table[] = {
{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
static struct i2c_driver sn65dsi83_driver = {
.probe = sn65dsi83_probe,
.remove = sn65dsi83_remove,
.id_table = sn65dsi83_id,
.driver = {
.name = "sn65dsi83",
.of_match_table = sn65dsi83_match_table,
},
};
module_i2c_driver(sn65dsi83_driver);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
MODULE_LICENSE("GPL v2");