linux/drivers/iio/health/afe4404.c
Uwe Kleine-König 48d1ae7740 iio: health: afe4404: Remove duplicated error reporting in .remove()
Returning an error value in an i2c remove callback results in an error
message being emitted by the i2c core, but otherwise it doesn't make a
difference.

As afe4404_remove() already emits an error message on failure and the
additional error message by the i2c core doesn't add any useful
information, change the return value to zero to suppress this message.

This patch is a preparation for making i2c remove callbacks return void.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20220514130432.304674-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-06-11 14:35:26 +01:00

621 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters
*
* Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include "afe440x.h"
#define AFE4404_DRIVER_NAME "afe4404"
/* AFE4404 registers */
#define AFE4404_TIA_GAIN_SEP 0x20
#define AFE4404_TIA_GAIN 0x21
#define AFE4404_PROG_TG_STC 0x34
#define AFE4404_PROG_TG_ENDC 0x35
#define AFE4404_LED3LEDSTC 0x36
#define AFE4404_LED3LEDENDC 0x37
#define AFE4404_CLKDIV_PRF 0x39
#define AFE4404_OFFDAC 0x3a
#define AFE4404_DEC 0x3d
#define AFE4404_AVG_LED2_ALED2VAL 0x3f
#define AFE4404_AVG_LED1_ALED1VAL 0x40
/* AFE4404 CONTROL2 register fields */
#define AFE440X_CONTROL2_OSC_ENABLE BIT(9)
enum afe4404_fields {
/* Gains */
F_TIA_GAIN_SEP, F_TIA_CF_SEP,
F_TIA_GAIN, TIA_CF,
/* LED Current */
F_ILED1, F_ILED2, F_ILED3,
/* Offset DAC */
F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2,
/* sentinel */
F_MAX_FIELDS
};
static const struct reg_field afe4404_reg_fields[] = {
/* Gains */
[F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2),
[F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5),
[F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2),
[TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5),
/* LED Current */
[F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5),
[F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11),
[F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17),
/* Offset DAC */
[F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4),
[F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9),
[F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14),
[F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19),
};
/**
* struct afe4404_data - AFE4404 device instance data
* @dev: Device structure
* @regmap: Register map of the device
* @fields: Register fields of the device
* @regulator: Pointer to the regulator for the IC
* @trig: IIO trigger for this device
* @irq: ADC_RDY line interrupt number
* @buffer: Used to construct a scan to push to the iio buffer.
*/
struct afe4404_data {
struct device *dev;
struct regmap *regmap;
struct regmap_field *fields[F_MAX_FIELDS];
struct regulator *regulator;
struct iio_trigger *trig;
int irq;
s32 buffer[10] __aligned(8);
};
enum afe4404_chan_id {
LED2 = 1,
ALED2,
LED1,
ALED1,
LED2_ALED2,
LED1_ALED1,
};
static const unsigned int afe4404_channel_values[] = {
[LED2] = AFE440X_LED2VAL,
[ALED2] = AFE440X_ALED2VAL,
[LED1] = AFE440X_LED1VAL,
[ALED1] = AFE440X_ALED1VAL,
[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
};
static const unsigned int afe4404_channel_leds[] = {
[LED2] = F_ILED2,
[ALED2] = F_ILED3,
[LED1] = F_ILED1,
};
static const unsigned int afe4404_channel_offdacs[] = {
[LED2] = F_OFFDAC_LED2,
[ALED2] = F_OFFDAC_AMB2,
[LED1] = F_OFFDAC_LED1,
[ALED1] = F_OFFDAC_AMB1,
};
static const struct iio_chan_spec afe4404_channels[] = {
/* ADC values */
AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)),
AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
/* LED current */
AFE440X_CURRENT_CHAN(LED2),
AFE440X_CURRENT_CHAN(ALED2),
AFE440X_CURRENT_CHAN(LED1),
};
static const struct afe440x_val_table afe4404_res_table[] = {
{ .integer = 500000, .fract = 0 },
{ .integer = 250000, .fract = 0 },
{ .integer = 100000, .fract = 0 },
{ .integer = 50000, .fract = 0 },
{ .integer = 25000, .fract = 0 },
{ .integer = 10000, .fract = 0 },
{ .integer = 1000000, .fract = 0 },
{ .integer = 2000000, .fract = 0 },
};
AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table);
static const struct afe440x_val_table afe4404_cap_table[] = {
{ .integer = 0, .fract = 5000 },
{ .integer = 0, .fract = 2500 },
{ .integer = 0, .fract = 10000 },
{ .integer = 0, .fract = 7500 },
{ .integer = 0, .fract = 20000 },
{ .integer = 0, .fract = 17500 },
{ .integer = 0, .fract = 25000 },
{ .integer = 0, .fract = 22500 },
};
AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table);
static ssize_t afe440x_show_register(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4404_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
unsigned int reg_val;
int vals[2];
int ret;
ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
if (ret)
return ret;
if (reg_val >= afe440x_attr->table_size)
return -EINVAL;
vals[0] = afe440x_attr->val_table[reg_val].integer;
vals[1] = afe440x_attr->val_table[reg_val].fract;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
}
static ssize_t afe440x_store_register(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4404_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
int val, integer, fract, ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
if (ret)
return ret;
for (val = 0; val < afe440x_attr->table_size; val++)
if (afe440x_attr->val_table[val].integer == integer &&
afe440x_attr->val_table[val].fract == fract)
break;
if (val == afe440x_attr->table_size)
return -EINVAL;
ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
if (ret)
return ret;
return count;
}
static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table);
static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table);
static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table);
static struct attribute *afe440x_attributes[] = {
&dev_attr_in_intensity_resistance_available.attr,
&dev_attr_in_intensity_capacitance_available.attr,
&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
NULL
};
static const struct attribute_group afe440x_attribute_group = {
.attrs = afe440x_attributes
};
static int afe4404_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct afe4404_data *afe = iio_priv(indio_dev);
unsigned int value_reg = afe4404_channel_values[chan->address];
unsigned int led_field = afe4404_channel_leds[chan->address];
unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
int ret;
switch (chan->type) {
case IIO_INTENSITY:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_read(afe->regmap, value_reg, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
ret = regmap_field_read(afe->fields[offdac_field], val);
if (ret)
return ret;
return IIO_VAL_INT;
}
break;
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_field_read(afe->fields[led_field], val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = 800000;
return IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
return -EINVAL;
}
static int afe4404_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct afe4404_data *afe = iio_priv(indio_dev);
unsigned int led_field = afe4404_channel_leds[chan->address];
unsigned int offdac_field = afe4404_channel_offdacs[chan->address];
switch (chan->type) {
case IIO_INTENSITY:
switch (mask) {
case IIO_CHAN_INFO_OFFSET:
return regmap_field_write(afe->fields[offdac_field], val);
}
break;
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
return regmap_field_write(afe->fields[led_field], val);
}
break;
default:
break;
}
return -EINVAL;
}
static const struct iio_info afe4404_iio_info = {
.attrs = &afe440x_attribute_group,
.read_raw = afe4404_read_raw,
.write_raw = afe4404_write_raw,
};
static irqreturn_t afe4404_trigger_handler(int irq, void *private)
{
struct iio_poll_func *pf = private;
struct iio_dev *indio_dev = pf->indio_dev;
struct afe4404_data *afe = iio_priv(indio_dev);
int ret, bit, i = 0;
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = regmap_read(afe->regmap, afe4404_channel_values[bit],
&afe->buffer[i++]);
if (ret)
goto err;
}
iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
pf->timestamp);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
/* Default timings from data-sheet */
#define AFE4404_TIMING_PAIRS \
{ AFE440X_PRPCOUNT, 39999 }, \
{ AFE440X_LED2LEDSTC, 0 }, \
{ AFE440X_LED2LEDENDC, 398 }, \
{ AFE440X_LED2STC, 80 }, \
{ AFE440X_LED2ENDC, 398 }, \
{ AFE440X_ADCRSTSTCT0, 5600 }, \
{ AFE440X_ADCRSTENDCT0, 5606 }, \
{ AFE440X_LED2CONVST, 5607 }, \
{ AFE440X_LED2CONVEND, 6066 }, \
{ AFE4404_LED3LEDSTC, 400 }, \
{ AFE4404_LED3LEDENDC, 798 }, \
{ AFE440X_ALED2STC, 480 }, \
{ AFE440X_ALED2ENDC, 798 }, \
{ AFE440X_ADCRSTSTCT1, 6068 }, \
{ AFE440X_ADCRSTENDCT1, 6074 }, \
{ AFE440X_ALED2CONVST, 6075 }, \
{ AFE440X_ALED2CONVEND, 6534 }, \
{ AFE440X_LED1LEDSTC, 800 }, \
{ AFE440X_LED1LEDENDC, 1198 }, \
{ AFE440X_LED1STC, 880 }, \
{ AFE440X_LED1ENDC, 1198 }, \
{ AFE440X_ADCRSTSTCT2, 6536 }, \
{ AFE440X_ADCRSTENDCT2, 6542 }, \
{ AFE440X_LED1CONVST, 6543 }, \
{ AFE440X_LED1CONVEND, 7003 }, \
{ AFE440X_ALED1STC, 1280 }, \
{ AFE440X_ALED1ENDC, 1598 }, \
{ AFE440X_ADCRSTSTCT3, 7005 }, \
{ AFE440X_ADCRSTENDCT3, 7011 }, \
{ AFE440X_ALED1CONVST, 7012 }, \
{ AFE440X_ALED1CONVEND, 7471 }, \
{ AFE440X_PDNCYCLESTC, 7671 }, \
{ AFE440X_PDNCYCLEENDC, 39199 }
static const struct reg_sequence afe4404_reg_sequences[] = {
AFE4404_TIMING_PAIRS,
{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
{ AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN },
{ AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE },
};
static const struct regmap_range afe4404_yes_ranges[] = {
regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL),
};
static const struct regmap_access_table afe4404_volatile_table = {
.yes_ranges = afe4404_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges),
};
static const struct regmap_config afe4404_regmap_config = {
.reg_bits = 8,
.val_bits = 24,
.max_register = AFE4404_AVG_LED1_ALED1VAL,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &afe4404_volatile_table,
};
static const struct of_device_id afe4404_of_match[] = {
{ .compatible = "ti,afe4404", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, afe4404_of_match);
static int __maybe_unused afe4404_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE,
AFE440X_CONTROL2_PDN_AFE);
if (ret)
return ret;
ret = regulator_disable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to disable regulator\n");
return ret;
}
return 0;
}
static int __maybe_unused afe4404_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE, 0);
if (ret)
return ret;
return 0;
}
static SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend, afe4404_resume);
static int afe4404_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct afe4404_data *afe;
int i, ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe));
if (!indio_dev)
return -ENOMEM;
afe = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
afe->dev = &client->dev;
afe->irq = client->irq;
afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config);
if (IS_ERR(afe->regmap)) {
dev_err(afe->dev, "Unable to allocate register map\n");
return PTR_ERR(afe->regmap);
}
for (i = 0; i < F_MAX_FIELDS; i++) {
afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
afe4404_reg_fields[i]);
if (IS_ERR(afe->fields[i])) {
dev_err(afe->dev, "Unable to allocate regmap fields\n");
return PTR_ERR(afe->fields[i]);
}
}
afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
if (IS_ERR(afe->regulator))
return dev_err_probe(afe->dev, PTR_ERR(afe->regulator),
"Unable to get regulator\n");
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(afe->dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
AFE440X_CONTROL0_SW_RESET);
if (ret) {
dev_err(afe->dev, "Unable to reset device\n");
goto disable_reg;
}
ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences,
ARRAY_SIZE(afe4404_reg_sequences));
if (ret) {
dev_err(afe->dev, "Unable to set register defaults\n");
goto disable_reg;
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = afe4404_channels;
indio_dev->num_channels = ARRAY_SIZE(afe4404_channels);
indio_dev->name = AFE4404_DRIVER_NAME;
indio_dev->info = &afe4404_iio_info;
if (afe->irq > 0) {
afe->trig = devm_iio_trigger_alloc(afe->dev,
"%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!afe->trig) {
dev_err(afe->dev, "Unable to allocate IIO trigger\n");
ret = -ENOMEM;
goto disable_reg;
}
iio_trigger_set_drvdata(afe->trig, indio_dev);
ret = iio_trigger_register(afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to register IIO trigger\n");
goto disable_reg;
}
ret = devm_request_threaded_irq(afe->dev, afe->irq,
iio_trigger_generic_data_rdy_poll,
NULL, IRQF_ONESHOT,
AFE4404_DRIVER_NAME,
afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to request IRQ\n");
goto disable_reg;
}
}
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
afe4404_trigger_handler, NULL);
if (ret) {
dev_err(afe->dev, "Unable to setup buffer\n");
goto unregister_trigger;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(afe->dev, "Unable to register IIO device\n");
goto unregister_triggered_buffer;
}
return 0;
unregister_triggered_buffer:
iio_triggered_buffer_cleanup(indio_dev);
unregister_trigger:
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
disable_reg:
regulator_disable(afe->regulator);
return ret;
}
static int afe4404_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct afe4404_data *afe = iio_priv(indio_dev);
int ret;
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
ret = regulator_disable(afe->regulator);
if (ret)
dev_err(afe->dev, "Unable to disable regulator\n");
return 0;
}
static const struct i2c_device_id afe4404_ids[] = {
{ "afe4404", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, afe4404_ids);
static struct i2c_driver afe4404_i2c_driver = {
.driver = {
.name = AFE4404_DRIVER_NAME,
.of_match_table = afe4404_of_match,
.pm = &afe4404_pm_ops,
},
.probe = afe4404_probe,
.remove = afe4404_remove,
.id_table = afe4404_ids,
};
module_i2c_driver(afe4404_i2c_driver);
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE");
MODULE_LICENSE("GPL v2");