Ming Lei bd2e74d657 usb: musb: gadget: fix kernel panic if using out ep with FIFO_TXRX style
For shared fifo hw endpoint(with FIFO_TXRX style), only ep_in
field of musb_hw_ep is intialized in musb_g_init_endpoints, and
ep_out is not initialized, but musb_g_rx and rxstate may access
ep_out field of musb_hw_ep by the method below:

	musb_ep = &musb->endpoints[epnum].ep_out

which can cause the kernel panic[1] below, this patch fixes the issue
by getting 'musb_ep' from '&musb->endpoints[epnum].ep_in' for shared fifo
endpoint.

[1], kernel panic
[root@OMAP3EVM /]# musb_interrupt 1583: ** IRQ peripheral usb0008 tx0000 rx4000
musb_stage0_irq 460: <== Power=f0, DevCtl=99, int_usb=0x8
musb_g_rx 772: <== (null), rxcsr 4007 ffffffe8
musb_g_rx 786:  iso overrun on ffffffe8
Unable to handle kernel NULL pointer dereference at virtual address 00000008
pgd = c0004000
[00000008] *pgd=00000000
Internal error: Oops: 17 [#1] PREEMPT
last sysfs file: /sys/devices/platform/musb_hdrc/usb1/usb_device/usbdev1.1/dev
Modules linked in: g_zero
CPU: 0    Tainted: G        W    (2.6.35-rc6-gkh-wl+ #92)
PC is at musb_g_rx+0xfc/0x2ec
LR is at vprintk+0x3f4/0x458
pc : [<c02c07a4>]    lr : [<c006ccb0>]    psr: 20000193
sp : c760bd78  ip : c03c9d70  fp : c760bdbc
r10: 00000000  r9 : fa0ab1e0  r8 : 0000000e
r7 : c7e80158  r6 : ffffffe8  r5 : 00000001  r4 : 00004003
r3 : 00010003  r2 : c760bcd8  r1 : c03cd030  r0 : 0000002e
Flags: nzCv  IRQs off  FIQs on  Mode SVC_32  ISA ARM  Segment kernel
Control: 10c5387d  Table: 8778c019  DAC: 00000017
Process kmemleak (pid: 421, stack limit = 0xc760a2e8)
Stack: (0xc760bd78 to 0xc760c000)
bd60:                                                       ffffffe8 c04b1b58
bd80: ffffffe8 c7c01ac0 00000000 c7e80d24 c0084238 00000001 00000001 c7e80158
bda0: 0000000e 00000008 00000099 000000f0 c760be04 c760bdc0 c02bcd68 c02c06b4
bdc0: 00000099 00000008 00004000 c760bdd8 c03cc4f8 00000000 00000002 c7e80158
bde0: c7d2e300 60000193 c760a000 0000005c 00000000 00000000 c760be24 c760be08
be00: c02bcecc c02bc1ac c7d2e300 c7d2e300 0000005c c760a000 c760be54 c760be28
be20: c00ad698 c02bce6c 00000000 c7d2e300 c067c258 0000005c c067c294 00000001
be40: c760a000 00000000 c760be74 c760be58 c00af984 c00ad5fc 0000005c 00000000
be60: 00000000 00000002 c760be8c c760be78 c0039080 c00af8d0 ffffffff fa200000
be80: c760beec c760be90 c0039b6c c003900c 00000001 00000000 c7d1e240 00000000
bea0: 00000000 c068bae8 00000000 60000013 00000001 00000000 00000000 c760beec
bec0: c0064ecc c760bed8 c00ff7d0 c003a0a8 60000013 ffffffff 00000000 c068bae8
bee0: c760bf24 c760bef0 c00ff7d0 c0064ec4 00000001 00000000 c00ff700 00000000
bf00: c0087f00 00000000 60000013 c0d76a70 c0e23795 00000001 c760bf4c c760bf28
bf20: c00ffdd8 c00ff70c c068bb08 c068bae8 60000013 c0100938 c068bb30 00000000
bf40: c760bf84 c760bf50 c010014c c00ffd84 00000001 00000000 c010000c 00012c00
bf60: c7c33f04 00012c00 c7c33f04 00000000 c0100938 00000000 c760bf9c c760bf88
bf80: c01009a8 c0100018 c760bfa8 c7c33f04 c760bff4 c760bfa0 c0088000 c0100944
bfa0: c760bf98 00000000 00000000 00000001 dead4ead ffffffff ffffffff c08ba2bc
bfc0: 00000000 c049e7fa 00000000 c0087f70 c760bfd0 c760bfd0 c7c33f04 c0087f70
bfe0: c006f5e8 00000013 00000000 c760bff8 c006f5e8 c0087f7c 7f0004ff df2000ff
Backtrace:
[<c02c06a8>] (musb_g_rx+0x0/0x2ec) from [<c02bcd68>] (musb_interrupt+0xbc8/0xcc0)
[<c02bc1a0>] (musb_interrupt+0x0/0xcc0) from [<c02bcecc>] (generic_interrupt+0x6c/0x84)
[<c02bce60>] (generic_interrupt+0x0/0x84) from [<c00ad698>] (handle_IRQ_event+0xa8/0x1ec)
 r7:c760a000 r6:0000005c r5:c7d2e300 r4:c7d2e300
[<c00ad5f0>] (handle_IRQ_event+0x0/0x1ec) from [<c00af984>] (handle_level_irq+0xc0/0x13c)
[<c00af8c4>] (handle_level_irq+0x0/0x13c) from [<c0039080>] (asm_do_IRQ+0x80/0xa0)
 r7:00000002 r6:00000000 r5:00000000 r4:0000005c
[<c0039000>] (asm_do_IRQ+0x0/0xa0) from [<c0039b6c>] (__irq_svc+0x4c/0xb4)
Exception stack(0xc760be90 to 0xc760bed8)
be80:                                     00000001 00000000 c7d1e240 00000000
bea0: 00000000 c068bae8 00000000 60000013 00000001 00000000 00000000 c760beec
bec0: c0064ecc c760bed8 c00ff7d0 c003a0a8 60000013 ffffffff
 r5:fa200000 r4:ffffffff
[<c0064eb8>] (sub_preempt_count+0x0/0x100) from [<c00ff7d0>] (find_and_get_object+0xd0/0x110)
 r5:c068bae8 r4:00000000
[<c00ff700>] (find_and_get_object+0x0/0x110) from [<c00ffdd8>] (scan_block+0x60/0x104)
 r8:00000001 r7:c0e23795 r6:c0d76a70 r5:60000013 r4:00000000
[<c00ffd78>] (scan_block+0x0/0x104) from [<c010014c>] (kmemleak_scan+0x140/0x484)
[<c010000c>] (kmemleak_scan+0x0/0x484) from [<c01009a8>] (kmemleak_scan_thread+0x70/0xcc)
 r8:00000000 r7:c0100938 r6:00000000 r5:c7c33f04 r4:00012c00
[<c0100938>] (kmemleak_scan_thread+0x0/0xcc) from [<c0088000>] (kthread+0x90/0x98)
 r5:c7c33f04 r4:c760bfa8
[<c0087f70>] (kthread+0x0/0x98) from [<c006f5e8>] (do_exit+0x0/0x684)
 r7:00000013 r6:c006f5e8 r5:c0087f70 r4:c7c33f04
Code: e3002312 e58d6000 e2833e16 eb0422d5 (e5963020)
---[ end trace f3d5e96f75c297b7 ]---

Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by:   Sergei Shtylyov <sshtylyov@mvista.com>
Cc: David Brownell <dbrownell@users.sourceforge.net>
Cc: Anand Gadiyar <gadiyar@ti.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Cc: stable <stable@kernel.org>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-09-24 11:05:00 -07:00
2010-08-09 16:47:58 -04:00
2010-09-22 17:22:39 -07:00
2010-09-23 11:31:56 -03:00
2009-02-06 08:47:25 -08:00
2005-09-10 10:06:29 -07:00
2009-09-15 09:37:12 -07:00
2010-09-20 16:56:53 -07:00

	Linux kernel release 2.6.xx <http://kernel.org/>

These are the release notes for Linux version 2.6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, AVR32 and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

		gzip -cd linux-2.6.XX.tar.gz | tar xvf -

   or
		bzip2 -dc linux-2.6.XX.tar.bz2 | tar xvf -


   Replace "XX" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 2.6.xx releases by patching.  Patches are
   distributed in the traditional gzip and the newer bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-2.6.xx) and execute:

		gzip -cd ../patch-2.6.xx.gz | patch -p1

   or
		bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1

   (repeat xx for all versions bigger than the version of your current
   source tree, _in_order_) and you should be ok.  You may want to remove
   the backup files (xxx~ or xxx.orig), and make sure that there are no
   failed patches (xxx# or xxx.rej). If there are, either you or me has
   made a mistake.

   Unlike patches for the 2.6.x kernels, patches for the 2.6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 2.6.x kernel.  Please read
   Documentation/applying-patches.txt for more information.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

		linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - If you are upgrading between releases using the stable series patches
   (for example, patch-2.6.xx.y), note that these "dot-releases" are
   not incremental and must be applied to the 2.6.xx base tree. For
   example, if your base kernel is 2.6.12 and you want to apply the
   2.6.12.3 patch, you do not and indeed must not first apply the
   2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel
   version 2.6.12.2 and want to jump to 2.6.12.3, you must first
   reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying
   the 2.6.12.3 patch.
   You can read more on this in Documentation/applying-patches.txt

 - Make sure you have no stale .o files and dependencies lying around:

		cd linux
		make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 2.6.xx kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:
     kernel source code:	/usr/src/linux-2.6.N
     build directory:		/home/name/build/kernel

   To configure and build the kernel use:
   cd /usr/src/linux-2.6.N
   make O=/home/name/build/kernel menuconfig
   make O=/home/name/build/kernel
   sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternate configuration commands are:
	"make config"      Plain text interface.
	"make menuconfig"  Text based color menus, radiolists & dialogs.
	"make xconfig"     X windows (Qt) based configuration tool.
	"make gconfig"     X windows (Gtk) based configuration tool.
	"make oldconfig"   Default all questions based on the contents of
			   your existing ./.config file and asking about
			   new config symbols.
	"make silentoldconfig"
			   Like above, but avoids cluttering the screen
			   with questions already answered.
			   Additionally updates the dependencies.
	"make defconfig"   Create a ./.config file by using the default
			   symbol values from either arch/$ARCH/defconfig
			   or arch/$ARCH/configs/${PLATFORM}_defconfig,
			   depending on the architecture.
	"make ${PLATFORM}_defconfig"
			  Create a ./.config file by using the default
			  symbol values from
			  arch/$ARCH/configs/${PLATFORM}_defconfig.
			  Use "make help" to get a list of all available
			  platforms of your architecture.
	"make allyesconfig"
			   Create a ./.config file by setting symbol
			   values to 'y' as much as possible.
	"make allmodconfig"
			   Create a ./.config file by setting symbol
			   values to 'm' as much as possible.
	"make allnoconfig" Create a ./.config file by setting symbol
			   values to 'n' as much as possible.
	"make randconfig"  Create a ./.config file by setting symbol
			   values to random values.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

	NOTES on "make config":
	- having unnecessary drivers will make the kernel bigger, and can
	  under some circumstances lead to problems: probing for a
	  nonexistent controller card may confuse your other controllers
	- compiling the kernel with "Processor type" set higher than 386
	  will result in a kernel that does NOT work on a 386.  The
	  kernel will detect this on bootup, and give up.
	- A kernel with math-emulation compiled in will still use the
	  coprocessor if one is present: the math emulation will just
	  never get used in that case.  The kernel will be slightly larger,
	  but will work on different machines regardless of whether they
	  have a math coprocessor or not. 
	- the "kernel hacking" configuration details usually result in a
	  bigger or slower kernel (or both), and can even make the kernel
	  less stable by configuring some routines to actively try to
	  break bad code to find kernel problems (kmalloc()).  Thus you
	  should probably answer 'n' to the questions for
          "development", "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

	make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".
   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

	unable to handle kernel paging request at address C0000010
	Oops: 0002
	EIP:   0010:XXXXXXXX
	eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
	esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
	ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
	Pid: xx, process nr: xx
	xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternately you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

		nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternately, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.

Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%