bd30fe6a7d
* Unbound workqueues now support more flexible affinity scopes. The default behavior is to soft-affine according to last level cache boundaries. A work item queued from a given LLC is executed by a worker running on the same LLC but the worker may be moved across cache boundaries as the scheduler sees fit. On machines which multiple L3 caches, which are becoming more popular along with chiplet designs, this improves cache locality while not harming work conservation too much. Unbound workqueues are now also a lot more flexible in terms of execution affinity. Differeing levels of affinity scopes are supported and both the default and per-workqueue affinity settings can be modified dynamically. This should help working around amny of sub-optimal behaviors observed recently with asymmetric ARM CPUs. This involved signficant restructuring of workqueue code. Nothing was reported yet but there's some risk of subtle regressions. Should keep an eye out. * Rescuer workers now has more identifiable comms. * workqueue.unbound_cpus added so that CPUs which can be used by workqueue can be constrained early during boot. * Now that all the in-tree users have been flushed out, trigger warning if system-wide workqueues are flushed. * One pull commit from for-6.5-fixes to avoid cascading conflicts in the affinity scope patchset. -----BEGIN PGP SIGNATURE----- iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZPERlQ4cdGpAa2VybmVs Lm9yZwAKCRCxYfJx3gVYGVqQAPwIOy9tWY5jFAmMuIyH6wV50hbmfxCc2n5xhQNr 5HoyGgEA8lw1W7afDCIPiQVA7AYsu8dhwuNSOcRCJxhrrn4XsA0= =g/Uu -----END PGP SIGNATURE----- Merge tag 'wq-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq Pull workqueue updates from Tejun Heo: - Unbound workqueues now support more flexible affinity scopes. The default behavior is to soft-affine according to last level cache boundaries. A work item queued from a given LLC is executed by a worker running on the same LLC but the worker may be moved across cache boundaries as the scheduler sees fit. On machines which multiple L3 caches, which are becoming more popular along with chiplet designs, this improves cache locality while not harming work conservation too much. Unbound workqueues are now also a lot more flexible in terms of execution affinity. Differeing levels of affinity scopes are supported and both the default and per-workqueue affinity settings can be modified dynamically. This should help working around amny of sub-optimal behaviors observed recently with asymmetric ARM CPUs. This involved signficant restructuring of workqueue code. Nothing was reported yet but there's some risk of subtle regressions. Should keep an eye out. - Rescuer workers now has more identifiable comms. - workqueue.unbound_cpus added so that CPUs which can be used by workqueue can be constrained early during boot. - Now that all the in-tree users have been flushed out, trigger warning if system-wide workqueues are flushed. * tag 'wq-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (31 commits) workqueue: fix data race with the pwq->stats[] increment workqueue: Rename rescuer kworker workqueue: Make default affinity_scope dynamically updatable workqueue: Add "Affinity Scopes and Performance" section to documentation workqueue: Implement non-strict affinity scope for unbound workqueues workqueue: Add workqueue_attrs->__pod_cpumask workqueue: Factor out need_more_worker() check and worker wake-up workqueue: Factor out work to worker assignment and collision handling workqueue: Add multiple affinity scopes and interface to select them workqueue: Modularize wq_pod_type initialization workqueue: Add tools/workqueue/wq_dump.py which prints out workqueue configuration workqueue: Generalize unbound CPU pods workqueue: Factor out clearing of workqueue-only attrs fields workqueue: Factor out actual cpumask calculation to reduce subtlety in wq_update_pod() workqueue: Initialize unbound CPU pods later in the boot workqueue: Move wq_pod_init() below workqueue_init() workqueue: Rename NUMA related names to use pod instead workqueue: Rename workqueue_attrs->no_numa to ->ordered workqueue: Make unbound workqueues to use per-cpu pool_workqueues workqueue: Call wq_update_unbound_numa() on all CPUs in NUMA node on CPU hotplug ... |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.