linux/arch/x86/events/intel/uncore.c
Andi Kleen d46b4c1ce5 perf/x86/intel/uncore: Cache logical pkg id in uncore driver
The SNB-EP uncore driver is the only user of topology_phys_to_logical_pkg
in a performance critical path.

Change it query the logical pkg ID only once at initialization time and
then cache it in box structure. This allows to change the logical package
management without affecting the performance critical path.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: He Chen <he.chen@linux.intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Piotr Luc <piotr.luc@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20171114124257.22013-2-prarit@redhat.com
2017-11-17 16:22:30 +01:00

1399 lines
34 KiB
C

#include <linux/module.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "uncore.h"
static struct intel_uncore_type *empty_uncore[] = { NULL, };
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* pci bus to socket mapping */
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
struct pci_extra_dev *uncore_extra_pci_dev;
static int max_packages;
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;
/* constraint for the fixed counter */
static struct event_constraint uncore_constraint_fixed =
EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
struct event_constraint uncore_constraint_empty =
EVENT_CONSTRAINT(0, 0, 0);
MODULE_LICENSE("GPL");
static int uncore_pcibus_to_physid(struct pci_bus *bus)
{
struct pci2phy_map *map;
int phys_id = -1;
raw_spin_lock(&pci2phy_map_lock);
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == pci_domain_nr(bus)) {
phys_id = map->pbus_to_physid[bus->number];
break;
}
}
raw_spin_unlock(&pci2phy_map_lock);
return phys_id;
}
static void uncore_free_pcibus_map(void)
{
struct pci2phy_map *map, *tmp;
list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
list_del(&map->list);
kfree(map);
}
}
struct pci2phy_map *__find_pci2phy_map(int segment)
{
struct pci2phy_map *map, *alloc = NULL;
int i;
lockdep_assert_held(&pci2phy_map_lock);
lookup:
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == segment)
goto end;
}
if (!alloc) {
raw_spin_unlock(&pci2phy_map_lock);
alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
raw_spin_lock(&pci2phy_map_lock);
if (!alloc)
return NULL;
goto lookup;
}
map = alloc;
alloc = NULL;
map->segment = segment;
for (i = 0; i < 256; i++)
map->pbus_to_physid[i] = -1;
list_add_tail(&map->list, &pci2phy_map_head);
end:
kfree(alloc);
return map;
}
ssize_t uncore_event_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct uncore_event_desc *event =
container_of(attr, struct uncore_event_desc, attr);
return sprintf(buf, "%s", event->config);
}
struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
{
unsigned int pkgid = topology_logical_package_id(cpu);
/*
* The unsigned check also catches the '-1' return value for non
* existent mappings in the topology map.
*/
return pkgid < max_packages ? pmu->boxes[pkgid] : NULL;
}
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
{
u64 count;
rdmsrl(event->hw.event_base, count);
return count;
}
/*
* generic get constraint function for shared match/mask registers.
*/
struct event_constraint *
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
unsigned long flags;
bool ok = false;
/*
* reg->alloc can be set due to existing state, so for fake box we
* need to ignore this, otherwise we might fail to allocate proper
* fake state for this extra reg constraint.
*/
if (reg1->idx == EXTRA_REG_NONE ||
(!uncore_box_is_fake(box) && reg1->alloc))
return NULL;
er = &box->shared_regs[reg1->idx];
raw_spin_lock_irqsave(&er->lock, flags);
if (!atomic_read(&er->ref) ||
(er->config1 == reg1->config && er->config2 == reg2->config)) {
atomic_inc(&er->ref);
er->config1 = reg1->config;
er->config2 = reg2->config;
ok = true;
}
raw_spin_unlock_irqrestore(&er->lock, flags);
if (ok) {
if (!uncore_box_is_fake(box))
reg1->alloc = 1;
return NULL;
}
return &uncore_constraint_empty;
}
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
/*
* Only put constraint if extra reg was actually allocated. Also
* takes care of event which do not use an extra shared reg.
*
* Also, if this is a fake box we shouldn't touch any event state
* (reg->alloc) and we don't care about leaving inconsistent box
* state either since it will be thrown out.
*/
if (uncore_box_is_fake(box) || !reg1->alloc)
return;
er = &box->shared_regs[reg1->idx];
atomic_dec(&er->ref);
reg1->alloc = 0;
}
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
{
struct intel_uncore_extra_reg *er;
unsigned long flags;
u64 config;
er = &box->shared_regs[idx];
raw_spin_lock_irqsave(&er->lock, flags);
config = er->config;
raw_spin_unlock_irqrestore(&er->lock, flags);
return config;
}
static void uncore_assign_hw_event(struct intel_uncore_box *box,
struct perf_event *event, int idx)
{
struct hw_perf_event *hwc = &event->hw;
hwc->idx = idx;
hwc->last_tag = ++box->tags[idx];
if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
hwc->event_base = uncore_fixed_ctr(box);
hwc->config_base = uncore_fixed_ctl(box);
return;
}
hwc->config_base = uncore_event_ctl(box, hwc->idx);
hwc->event_base = uncore_perf_ctr(box, hwc->idx);
}
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
{
u64 prev_count, new_count, delta;
int shift;
if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
shift = 64 - uncore_fixed_ctr_bits(box);
else
shift = 64 - uncore_perf_ctr_bits(box);
/* the hrtimer might modify the previous event value */
again:
prev_count = local64_read(&event->hw.prev_count);
new_count = uncore_read_counter(box, event);
if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
goto again;
delta = (new_count << shift) - (prev_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
}
/*
* The overflow interrupt is unavailable for SandyBridge-EP, is broken
* for SandyBridge. So we use hrtimer to periodically poll the counter
* to avoid overflow.
*/
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
struct intel_uncore_box *box;
struct perf_event *event;
unsigned long flags;
int bit;
box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
if (!box->n_active || box->cpu != smp_processor_id())
return HRTIMER_NORESTART;
/*
* disable local interrupt to prevent uncore_pmu_event_start/stop
* to interrupt the update process
*/
local_irq_save(flags);
/*
* handle boxes with an active event list as opposed to active
* counters
*/
list_for_each_entry(event, &box->active_list, active_entry) {
uncore_perf_event_update(box, event);
}
for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
uncore_perf_event_update(box, box->events[bit]);
local_irq_restore(flags);
hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
return HRTIMER_RESTART;
}
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
{
hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
HRTIMER_MODE_REL_PINNED);
}
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
{
hrtimer_cancel(&box->hrtimer);
}
static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
box->hrtimer.function = uncore_pmu_hrtimer;
}
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
int node)
{
int i, size, numshared = type->num_shared_regs ;
struct intel_uncore_box *box;
size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
box = kzalloc_node(size, GFP_KERNEL, node);
if (!box)
return NULL;
for (i = 0; i < numshared; i++)
raw_spin_lock_init(&box->shared_regs[i].lock);
uncore_pmu_init_hrtimer(box);
box->cpu = -1;
box->pci_phys_id = -1;
box->pkgid = -1;
/* set default hrtimer timeout */
box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
INIT_LIST_HEAD(&box->active_list);
return box;
}
/*
* Using uncore_pmu_event_init pmu event_init callback
* as a detection point for uncore events.
*/
static int uncore_pmu_event_init(struct perf_event *event);
static bool is_box_event(struct intel_uncore_box *box, struct perf_event *event)
{
return &box->pmu->pmu == event->pmu;
}
static int
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
bool dogrp)
{
struct perf_event *event;
int n, max_count;
max_count = box->pmu->type->num_counters;
if (box->pmu->type->fixed_ctl)
max_count++;
if (box->n_events >= max_count)
return -EINVAL;
n = box->n_events;
if (is_box_event(box, leader)) {
box->event_list[n] = leader;
n++;
}
if (!dogrp)
return n;
list_for_each_entry(event, &leader->sibling_list, group_entry) {
if (!is_box_event(box, event) ||
event->state <= PERF_EVENT_STATE_OFF)
continue;
if (n >= max_count)
return -EINVAL;
box->event_list[n] = event;
n++;
}
return n;
}
static struct event_constraint *
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_type *type = box->pmu->type;
struct event_constraint *c;
if (type->ops->get_constraint) {
c = type->ops->get_constraint(box, event);
if (c)
return c;
}
if (event->attr.config == UNCORE_FIXED_EVENT)
return &uncore_constraint_fixed;
if (type->constraints) {
for_each_event_constraint(c, type->constraints) {
if ((event->hw.config & c->cmask) == c->code)
return c;
}
}
return &type->unconstrainted;
}
static void uncore_put_event_constraint(struct intel_uncore_box *box,
struct perf_event *event)
{
if (box->pmu->type->ops->put_constraint)
box->pmu->type->ops->put_constraint(box, event);
}
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
{
unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
struct event_constraint *c;
int i, wmin, wmax, ret = 0;
struct hw_perf_event *hwc;
bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);
for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
c = uncore_get_event_constraint(box, box->event_list[i]);
box->event_constraint[i] = c;
wmin = min(wmin, c->weight);
wmax = max(wmax, c->weight);
}
/* fastpath, try to reuse previous register */
for (i = 0; i < n; i++) {
hwc = &box->event_list[i]->hw;
c = box->event_constraint[i];
/* never assigned */
if (hwc->idx == -1)
break;
/* constraint still honored */
if (!test_bit(hwc->idx, c->idxmsk))
break;
/* not already used */
if (test_bit(hwc->idx, used_mask))
break;
__set_bit(hwc->idx, used_mask);
if (assign)
assign[i] = hwc->idx;
}
/* slow path */
if (i != n)
ret = perf_assign_events(box->event_constraint, n,
wmin, wmax, n, assign);
if (!assign || ret) {
for (i = 0; i < n; i++)
uncore_put_event_constraint(box, box->event_list[i]);
}
return ret ? -EINVAL : 0;
}
static void uncore_pmu_event_start(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int idx = event->hw.idx;
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
return;
event->hw.state = 0;
box->events[idx] = event;
box->n_active++;
__set_bit(idx, box->active_mask);
local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
uncore_enable_event(box, event);
if (box->n_active == 1) {
uncore_enable_box(box);
uncore_pmu_start_hrtimer(box);
}
}
static void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
uncore_disable_event(box, event);
box->n_active--;
box->events[hwc->idx] = NULL;
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
hwc->state |= PERF_HES_STOPPED;
if (box->n_active == 0) {
uncore_disable_box(box);
uncore_pmu_cancel_hrtimer(box);
}
}
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
/*
* Drain the remaining delta count out of a event
* that we are disabling:
*/
uncore_perf_event_update(box, event);
hwc->state |= PERF_HES_UPTODATE;
}
}
static int uncore_pmu_event_add(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
int assign[UNCORE_PMC_IDX_MAX];
int i, n, ret;
if (!box)
return -ENODEV;
ret = n = uncore_collect_events(box, event, false);
if (ret < 0)
return ret;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (!(flags & PERF_EF_START))
hwc->state |= PERF_HES_ARCH;
ret = uncore_assign_events(box, assign, n);
if (ret)
return ret;
/* save events moving to new counters */
for (i = 0; i < box->n_events; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx == assign[i] &&
hwc->last_tag == box->tags[assign[i]])
continue;
/*
* Ensure we don't accidentally enable a stopped
* counter simply because we rescheduled.
*/
if (hwc->state & PERF_HES_STOPPED)
hwc->state |= PERF_HES_ARCH;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
}
/* reprogram moved events into new counters */
for (i = 0; i < n; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx != assign[i] ||
hwc->last_tag != box->tags[assign[i]])
uncore_assign_hw_event(box, event, assign[i]);
else if (i < box->n_events)
continue;
if (hwc->state & PERF_HES_ARCH)
continue;
uncore_pmu_event_start(event, 0);
}
box->n_events = n;
return 0;
}
static void uncore_pmu_event_del(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int i;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
for (i = 0; i < box->n_events; i++) {
if (event == box->event_list[i]) {
uncore_put_event_constraint(box, event);
for (++i; i < box->n_events; i++)
box->event_list[i - 1] = box->event_list[i];
--box->n_events;
break;
}
}
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
}
void uncore_pmu_event_read(struct perf_event *event)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
uncore_perf_event_update(box, event);
}
/*
* validation ensures the group can be loaded onto the
* PMU if it was the only group available.
*/
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
struct intel_uncore_box *fake_box;
int ret = -EINVAL, n;
fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
if (!fake_box)
return -ENOMEM;
fake_box->pmu = pmu;
/*
* the event is not yet connected with its
* siblings therefore we must first collect
* existing siblings, then add the new event
* before we can simulate the scheduling
*/
n = uncore_collect_events(fake_box, leader, true);
if (n < 0)
goto out;
fake_box->n_events = n;
n = uncore_collect_events(fake_box, event, false);
if (n < 0)
goto out;
fake_box->n_events = n;
ret = uncore_assign_events(fake_box, NULL, n);
out:
kfree(fake_box);
return ret;
}
static int uncore_pmu_event_init(struct perf_event *event)
{
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
struct hw_perf_event *hwc = &event->hw;
int ret;
if (event->attr.type != event->pmu->type)
return -ENOENT;
pmu = uncore_event_to_pmu(event);
/* no device found for this pmu */
if (pmu->func_id < 0)
return -ENOENT;
/*
* Uncore PMU does measure at all privilege level all the time.
* So it doesn't make sense to specify any exclude bits.
*/
if (event->attr.exclude_user || event->attr.exclude_kernel ||
event->attr.exclude_hv || event->attr.exclude_idle)
return -EINVAL;
/* Sampling not supported yet */
if (hwc->sample_period)
return -EINVAL;
/*
* Place all uncore events for a particular physical package
* onto a single cpu
*/
if (event->cpu < 0)
return -EINVAL;
box = uncore_pmu_to_box(pmu, event->cpu);
if (!box || box->cpu < 0)
return -EINVAL;
event->cpu = box->cpu;
event->pmu_private = box;
event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
event->hw.extra_reg.idx = EXTRA_REG_NONE;
event->hw.branch_reg.idx = EXTRA_REG_NONE;
if (event->attr.config == UNCORE_FIXED_EVENT) {
/* no fixed counter */
if (!pmu->type->fixed_ctl)
return -EINVAL;
/*
* if there is only one fixed counter, only the first pmu
* can access the fixed counter
*/
if (pmu->type->single_fixed && pmu->pmu_idx > 0)
return -EINVAL;
/* fixed counters have event field hardcoded to zero */
hwc->config = 0ULL;
} else {
hwc->config = event->attr.config &
(pmu->type->event_mask | ((u64)pmu->type->event_mask_ext << 32));
if (pmu->type->ops->hw_config) {
ret = pmu->type->ops->hw_config(box, event);
if (ret)
return ret;
}
}
if (event->group_leader != event)
ret = uncore_validate_group(pmu, event);
else
ret = 0;
return ret;
}
static ssize_t uncore_get_attr_cpumask(struct device *dev,
struct device_attribute *attr, char *buf)
{
return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);
static struct attribute *uncore_pmu_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static const struct attribute_group uncore_pmu_attr_group = {
.attrs = uncore_pmu_attrs,
};
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
{
int ret;
if (!pmu->type->pmu) {
pmu->pmu = (struct pmu) {
.attr_groups = pmu->type->attr_groups,
.task_ctx_nr = perf_invalid_context,
.event_init = uncore_pmu_event_init,
.add = uncore_pmu_event_add,
.del = uncore_pmu_event_del,
.start = uncore_pmu_event_start,
.stop = uncore_pmu_event_stop,
.read = uncore_pmu_event_read,
.module = THIS_MODULE,
};
} else {
pmu->pmu = *pmu->type->pmu;
pmu->pmu.attr_groups = pmu->type->attr_groups;
}
if (pmu->type->num_boxes == 1) {
if (strlen(pmu->type->name) > 0)
sprintf(pmu->name, "uncore_%s", pmu->type->name);
else
sprintf(pmu->name, "uncore");
} else {
sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
pmu->pmu_idx);
}
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
if (!ret)
pmu->registered = true;
return ret;
}
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
if (!pmu->registered)
return;
perf_pmu_unregister(&pmu->pmu);
pmu->registered = false;
}
static void uncore_free_boxes(struct intel_uncore_pmu *pmu)
{
int pkg;
for (pkg = 0; pkg < max_packages; pkg++)
kfree(pmu->boxes[pkg]);
kfree(pmu->boxes);
}
static void uncore_type_exit(struct intel_uncore_type *type)
{
struct intel_uncore_pmu *pmu = type->pmus;
int i;
if (pmu) {
for (i = 0; i < type->num_boxes; i++, pmu++) {
uncore_pmu_unregister(pmu);
uncore_free_boxes(pmu);
}
kfree(type->pmus);
type->pmus = NULL;
}
kfree(type->events_group);
type->events_group = NULL;
}
static void uncore_types_exit(struct intel_uncore_type **types)
{
for (; *types; types++)
uncore_type_exit(*types);
}
static int __init uncore_type_init(struct intel_uncore_type *type, bool setid)
{
struct intel_uncore_pmu *pmus;
struct attribute_group *attr_group;
struct attribute **attrs;
size_t size;
int i, j;
pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
if (!pmus)
return -ENOMEM;
size = max_packages * sizeof(struct intel_uncore_box *);
for (i = 0; i < type->num_boxes; i++) {
pmus[i].func_id = setid ? i : -1;
pmus[i].pmu_idx = i;
pmus[i].type = type;
pmus[i].boxes = kzalloc(size, GFP_KERNEL);
if (!pmus[i].boxes)
goto err;
}
type->pmus = pmus;
type->unconstrainted = (struct event_constraint)
__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
0, type->num_counters, 0, 0);
if (type->event_descs) {
for (i = 0; type->event_descs[i].attr.attr.name; i++);
attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
sizeof(*attr_group), GFP_KERNEL);
if (!attr_group)
goto err;
attrs = (struct attribute **)(attr_group + 1);
attr_group->name = "events";
attr_group->attrs = attrs;
for (j = 0; j < i; j++)
attrs[j] = &type->event_descs[j].attr.attr;
type->events_group = attr_group;
}
type->pmu_group = &uncore_pmu_attr_group;
return 0;
err:
for (i = 0; i < type->num_boxes; i++)
kfree(pmus[i].boxes);
kfree(pmus);
return -ENOMEM;
}
static int __init
uncore_types_init(struct intel_uncore_type **types, bool setid)
{
int ret;
for (; *types; types++) {
ret = uncore_type_init(*types, setid);
if (ret)
return ret;
}
return 0;
}
/*
* add a pci uncore device
*/
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu = NULL;
struct intel_uncore_box *box;
int phys_id, pkg, ret;
phys_id = uncore_pcibus_to_physid(pdev->bus);
if (phys_id < 0)
return -ENODEV;
pkg = topology_phys_to_logical_pkg(phys_id);
if (pkg < 0)
return -EINVAL;
if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
uncore_extra_pci_dev[pkg].dev[idx] = pdev;
pci_set_drvdata(pdev, NULL);
return 0;
}
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
/*
* Some platforms, e.g. Knights Landing, use a common PCI device ID
* for multiple instances of an uncore PMU device type. We should check
* PCI slot and func to indicate the uncore box.
*/
if (id->driver_data & ~0xffff) {
struct pci_driver *pci_drv = pdev->driver;
const struct pci_device_id *ids = pci_drv->id_table;
unsigned int devfn;
while (ids && ids->vendor) {
if ((ids->vendor == pdev->vendor) &&
(ids->device == pdev->device)) {
devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(ids->driver_data),
UNCORE_PCI_DEV_FUNC(ids->driver_data));
if (devfn == pdev->devfn) {
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(ids->driver_data)];
break;
}
}
ids++;
}
if (pmu == NULL)
return -ENODEV;
} else {
/*
* for performance monitoring unit with multiple boxes,
* each box has a different function id.
*/
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
}
if (WARN_ON_ONCE(pmu->boxes[pkg] != NULL))
return -EINVAL;
box = uncore_alloc_box(type, NUMA_NO_NODE);
if (!box)
return -ENOMEM;
if (pmu->func_id < 0)
pmu->func_id = pdev->devfn;
else
WARN_ON_ONCE(pmu->func_id != pdev->devfn);
atomic_inc(&box->refcnt);
box->pci_phys_id = phys_id;
box->pkgid = pkg;
box->pci_dev = pdev;
box->pmu = pmu;
uncore_box_init(box);
pci_set_drvdata(pdev, box);
pmu->boxes[pkg] = box;
if (atomic_inc_return(&pmu->activeboxes) > 1)
return 0;
/* First active box registers the pmu */
ret = uncore_pmu_register(pmu);
if (ret) {
pci_set_drvdata(pdev, NULL);
pmu->boxes[pkg] = NULL;
uncore_box_exit(box);
kfree(box);
}
return ret;
}
static void uncore_pci_remove(struct pci_dev *pdev)
{
struct intel_uncore_box *box;
struct intel_uncore_pmu *pmu;
int i, phys_id, pkg;
phys_id = uncore_pcibus_to_physid(pdev->bus);
box = pci_get_drvdata(pdev);
if (!box) {
pkg = topology_phys_to_logical_pkg(phys_id);
for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
if (uncore_extra_pci_dev[pkg].dev[i] == pdev) {
uncore_extra_pci_dev[pkg].dev[i] = NULL;
break;
}
}
WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
return;
}
pmu = box->pmu;
if (WARN_ON_ONCE(phys_id != box->pci_phys_id))
return;
pci_set_drvdata(pdev, NULL);
pmu->boxes[box->pkgid] = NULL;
if (atomic_dec_return(&pmu->activeboxes) == 0)
uncore_pmu_unregister(pmu);
uncore_box_exit(box);
kfree(box);
}
static int __init uncore_pci_init(void)
{
size_t size;
int ret;
size = max_packages * sizeof(struct pci_extra_dev);
uncore_extra_pci_dev = kzalloc(size, GFP_KERNEL);
if (!uncore_extra_pci_dev) {
ret = -ENOMEM;
goto err;
}
ret = uncore_types_init(uncore_pci_uncores, false);
if (ret)
goto errtype;
uncore_pci_driver->probe = uncore_pci_probe;
uncore_pci_driver->remove = uncore_pci_remove;
ret = pci_register_driver(uncore_pci_driver);
if (ret)
goto errtype;
pcidrv_registered = true;
return 0;
errtype:
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_extra_pci_dev = NULL;
uncore_free_pcibus_map();
err:
uncore_pci_uncores = empty_uncore;
return ret;
}
static void uncore_pci_exit(void)
{
if (pcidrv_registered) {
pcidrv_registered = false;
pci_unregister_driver(uncore_pci_driver);
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_free_pcibus_map();
}
}
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
int new_cpu)
{
struct intel_uncore_pmu *pmu = type->pmus;
struct intel_uncore_box *box;
int i, pkg;
pkg = topology_logical_package_id(old_cpu < 0 ? new_cpu : old_cpu);
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[pkg];
if (!box)
continue;
if (old_cpu < 0) {
WARN_ON_ONCE(box->cpu != -1);
box->cpu = new_cpu;
continue;
}
WARN_ON_ONCE(box->cpu != old_cpu);
box->cpu = -1;
if (new_cpu < 0)
continue;
uncore_pmu_cancel_hrtimer(box);
perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
box->cpu = new_cpu;
}
}
static void uncore_change_context(struct intel_uncore_type **uncores,
int old_cpu, int new_cpu)
{
for (; *uncores; uncores++)
uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
}
static int uncore_event_cpu_offline(unsigned int cpu)
{
struct intel_uncore_type *type, **types = uncore_msr_uncores;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i, pkg, target;
/* Check if exiting cpu is used for collecting uncore events */
if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
goto unref;
/* Find a new cpu to collect uncore events */
target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
/* Migrate uncore events to the new target */
if (target < nr_cpu_ids)
cpumask_set_cpu(target, &uncore_cpu_mask);
else
target = -1;
uncore_change_context(uncore_msr_uncores, cpu, target);
uncore_change_context(uncore_pci_uncores, cpu, target);
unref:
/* Clear the references */
pkg = topology_logical_package_id(cpu);
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[pkg];
if (box && atomic_dec_return(&box->refcnt) == 0)
uncore_box_exit(box);
}
}
return 0;
}
static int allocate_boxes(struct intel_uncore_type **types,
unsigned int pkg, unsigned int cpu)
{
struct intel_uncore_box *box, *tmp;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
LIST_HEAD(allocated);
int i;
/* Try to allocate all required boxes */
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
if (pmu->boxes[pkg])
continue;
box = uncore_alloc_box(type, cpu_to_node(cpu));
if (!box)
goto cleanup;
box->pmu = pmu;
box->pkgid = pkg;
list_add(&box->active_list, &allocated);
}
}
/* Install them in the pmus */
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
box->pmu->boxes[pkg] = box;
}
return 0;
cleanup:
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
kfree(box);
}
return -ENOMEM;
}
static int uncore_event_cpu_online(unsigned int cpu)
{
struct intel_uncore_type *type, **types = uncore_msr_uncores;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i, ret, pkg, target;
pkg = topology_logical_package_id(cpu);
ret = allocate_boxes(types, pkg, cpu);
if (ret)
return ret;
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[pkg];
if (box && atomic_inc_return(&box->refcnt) == 1)
uncore_box_init(box);
}
}
/*
* Check if there is an online cpu in the package
* which collects uncore events already.
*/
target = cpumask_any_and(&uncore_cpu_mask, topology_core_cpumask(cpu));
if (target < nr_cpu_ids)
return 0;
cpumask_set_cpu(cpu, &uncore_cpu_mask);
uncore_change_context(uncore_msr_uncores, -1, cpu);
uncore_change_context(uncore_pci_uncores, -1, cpu);
return 0;
}
static int __init type_pmu_register(struct intel_uncore_type *type)
{
int i, ret;
for (i = 0; i < type->num_boxes; i++) {
ret = uncore_pmu_register(&type->pmus[i]);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_msr_pmus_register(void)
{
struct intel_uncore_type **types = uncore_msr_uncores;
int ret;
for (; *types; types++) {
ret = type_pmu_register(*types);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_cpu_init(void)
{
int ret;
ret = uncore_types_init(uncore_msr_uncores, true);
if (ret)
goto err;
ret = uncore_msr_pmus_register();
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_msr_uncores = empty_uncore;
return ret;
}
#define X86_UNCORE_MODEL_MATCH(model, init) \
{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&init }
struct intel_uncore_init_fun {
void (*cpu_init)(void);
int (*pci_init)(void);
};
static const struct intel_uncore_init_fun nhm_uncore_init __initconst = {
.cpu_init = nhm_uncore_cpu_init,
};
static const struct intel_uncore_init_fun snb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = snb_uncore_pci_init,
};
static const struct intel_uncore_init_fun ivb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = ivb_uncore_pci_init,
};
static const struct intel_uncore_init_fun hsw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = hsw_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = bdw_uncore_pci_init,
};
static const struct intel_uncore_init_fun snbep_uncore_init __initconst = {
.cpu_init = snbep_uncore_cpu_init,
.pci_init = snbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun nhmex_uncore_init __initconst = {
.cpu_init = nhmex_uncore_cpu_init,
};
static const struct intel_uncore_init_fun ivbep_uncore_init __initconst = {
.cpu_init = ivbep_uncore_cpu_init,
.pci_init = ivbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun hswep_uncore_init __initconst = {
.cpu_init = hswep_uncore_cpu_init,
.pci_init = hswep_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdx_uncore_init __initconst = {
.cpu_init = bdx_uncore_cpu_init,
.pci_init = bdx_uncore_pci_init,
};
static const struct intel_uncore_init_fun knl_uncore_init __initconst = {
.cpu_init = knl_uncore_cpu_init,
.pci_init = knl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skl_uncore_init __initconst = {
.cpu_init = skl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skx_uncore_init __initconst = {
.cpu_init = skx_uncore_cpu_init,
.pci_init = skx_uncore_pci_init,
};
static const struct x86_cpu_id intel_uncore_match[] __initconst = {
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM_EP, nhm_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM, nhm_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE, nhm_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE_EP, nhm_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE, snb_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE, ivb_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_CORE, hsw_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_ULT, hsw_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_GT3E, hsw_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_CORE, bdw_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_GT3E, bdw_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE_X, snbep_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM_EX, nhmex_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE_EX, nhmex_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE_X, ivbep_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_X, hswep_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_X, bdx_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_XEON_D, bdx_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNL, knl_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNM, knl_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_DESKTOP,skl_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_MOBILE, skl_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_X, skx_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_KABYLAKE_MOBILE, skl_uncore_init),
X86_UNCORE_MODEL_MATCH(INTEL_FAM6_KABYLAKE_DESKTOP, skl_uncore_init),
{},
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match);
static int __init intel_uncore_init(void)
{
const struct x86_cpu_id *id;
struct intel_uncore_init_fun *uncore_init;
int pret = 0, cret = 0, ret;
id = x86_match_cpu(intel_uncore_match);
if (!id)
return -ENODEV;
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return -ENODEV;
max_packages = topology_max_packages();
uncore_init = (struct intel_uncore_init_fun *)id->driver_data;
if (uncore_init->pci_init) {
pret = uncore_init->pci_init();
if (!pret)
pret = uncore_pci_init();
}
if (uncore_init->cpu_init) {
uncore_init->cpu_init();
cret = uncore_cpu_init();
}
if (cret && pret)
return -ENODEV;
/* Install hotplug callbacks to setup the targets for each package */
ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE,
"perf/x86/intel/uncore:online",
uncore_event_cpu_online,
uncore_event_cpu_offline);
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_pci_exit();
return ret;
}
module_init(intel_uncore_init);
static void __exit intel_uncore_exit(void)
{
cpuhp_remove_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE);
uncore_types_exit(uncore_msr_uncores);
uncore_pci_exit();
}
module_exit(intel_uncore_exit);