linux/drivers/dma/fsl-edma-common.c
Frank Li 4ee632c82d dmaengine: fsl-edma: fix DMA channel leak in eDMAv4
Allocate channel count consistently increases due to a missing source ID
(srcid) cleanup in the fsl_edma_free_chan_resources() function at imx93
eDMAv4.

Reset 'srcid' at fsl_edma_free_chan_resources().

Cc: stable@vger.kernel.org
Fixes: 72f5801a4e ("dmaengine: fsl-edma: integrate v3 support")
Signed-off-by: Frank Li <Frank.Li@nxp.com>
Link: https://lore.kernel.org/r/20231127214325.2477247-1-Frank.Li@nxp.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-12-11 20:14:29 +05:30

882 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Copyright (c) 2013-2014 Freescale Semiconductor, Inc
// Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it>
#include <linux/dmapool.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/pm_domain.h>
#include "fsl-edma-common.h"
#define EDMA_CR 0x00
#define EDMA_ES 0x04
#define EDMA_ERQ 0x0C
#define EDMA_EEI 0x14
#define EDMA_SERQ 0x1B
#define EDMA_CERQ 0x1A
#define EDMA_SEEI 0x19
#define EDMA_CEEI 0x18
#define EDMA_CINT 0x1F
#define EDMA_CERR 0x1E
#define EDMA_SSRT 0x1D
#define EDMA_CDNE 0x1C
#define EDMA_INTR 0x24
#define EDMA_ERR 0x2C
#define EDMA64_ERQH 0x08
#define EDMA64_EEIH 0x10
#define EDMA64_SERQ 0x18
#define EDMA64_CERQ 0x19
#define EDMA64_SEEI 0x1a
#define EDMA64_CEEI 0x1b
#define EDMA64_CINT 0x1c
#define EDMA64_CERR 0x1d
#define EDMA64_SSRT 0x1e
#define EDMA64_CDNE 0x1f
#define EDMA64_INTH 0x20
#define EDMA64_INTL 0x24
#define EDMA64_ERRH 0x28
#define EDMA64_ERRL 0x2c
void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan)
{
spin_lock(&fsl_chan->vchan.lock);
if (!fsl_chan->edesc) {
/* terminate_all called before */
spin_unlock(&fsl_chan->vchan.lock);
return;
}
if (!fsl_chan->edesc->iscyclic) {
list_del(&fsl_chan->edesc->vdesc.node);
vchan_cookie_complete(&fsl_chan->edesc->vdesc);
fsl_chan->edesc = NULL;
fsl_chan->status = DMA_COMPLETE;
fsl_chan->idle = true;
} else {
vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
}
if (!fsl_chan->edesc)
fsl_edma_xfer_desc(fsl_chan);
spin_unlock(&fsl_chan->vchan.lock);
}
static void fsl_edma3_enable_request(struct fsl_edma_chan *fsl_chan)
{
u32 val, flags;
flags = fsl_edma_drvflags(fsl_chan);
val = edma_readl_chreg(fsl_chan, ch_sbr);
/* Remote/local swapped wrongly on iMX8 QM Audio edma */
if (flags & FSL_EDMA_DRV_QUIRK_SWAPPED) {
if (!fsl_chan->is_rxchan)
val |= EDMA_V3_CH_SBR_RD;
else
val |= EDMA_V3_CH_SBR_WR;
} else {
if (fsl_chan->is_rxchan)
val |= EDMA_V3_CH_SBR_RD;
else
val |= EDMA_V3_CH_SBR_WR;
}
if (fsl_chan->is_remote)
val &= ~(EDMA_V3_CH_SBR_RD | EDMA_V3_CH_SBR_WR);
edma_writel_chreg(fsl_chan, val, ch_sbr);
if (flags & FSL_EDMA_DRV_HAS_CHMUX) {
/*
* ch_mux: With the exception of 0, attempts to write a value
* already in use will be forced to 0.
*/
if (!edma_readl_chreg(fsl_chan, ch_mux))
edma_writel_chreg(fsl_chan, fsl_chan->srcid, ch_mux);
}
val = edma_readl_chreg(fsl_chan, ch_csr);
val |= EDMA_V3_CH_CSR_ERQ;
edma_writel_chreg(fsl_chan, val, ch_csr);
}
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG)
return fsl_edma3_enable_request(fsl_chan);
if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) {
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei);
edma_writeb(fsl_chan->edma, ch, regs->serq);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(EDMA_SEEI_SEEI(ch), regs->seei);
iowrite8(ch, regs->serq);
}
}
static void fsl_edma3_disable_request(struct fsl_edma_chan *fsl_chan)
{
u32 val = edma_readl_chreg(fsl_chan, ch_csr);
u32 flags;
flags = fsl_edma_drvflags(fsl_chan);
if (flags & FSL_EDMA_DRV_HAS_CHMUX)
edma_writel_chreg(fsl_chan, 0, ch_mux);
val &= ~EDMA_V3_CH_CSR_ERQ;
edma_writel_chreg(fsl_chan, val, ch_csr);
}
void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_SPLIT_REG)
return fsl_edma3_disable_request(fsl_chan);
if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_WRAP_IO) {
edma_writeb(fsl_chan->edma, ch, regs->cerq);
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(ch, regs->cerq);
iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei);
}
}
static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
u32 off, u32 slot, bool enable)
{
u8 val8;
if (enable)
val8 = EDMAMUX_CHCFG_ENBL | slot;
else
val8 = EDMAMUX_CHCFG_DIS;
iowrite8(val8, addr + off);
}
static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
u32 off, u32 slot, bool enable)
{
u32 val;
if (enable)
val = EDMAMUX_CHCFG_ENBL << 24 | slot;
else
val = EDMAMUX_CHCFG_DIS;
iowrite32(val, addr + off * 4);
}
void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
unsigned int slot, bool enable)
{
u32 ch = fsl_chan->vchan.chan.chan_id;
void __iomem *muxaddr;
unsigned int chans_per_mux, ch_off;
int endian_diff[4] = {3, 1, -1, -3};
u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs;
if (!dmamux_nr)
return;
chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr;
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_MUX_SWAP)
ch_off += endian_diff[ch_off % 4];
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
slot = EDMAMUX_CHCFG_SOURCE(slot);
if (fsl_chan->edma->drvdata->flags & FSL_EDMA_DRV_CONFIG32)
mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable);
else
mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable);
}
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
u32 val;
if (addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
val = ffs(addr_width) - 1;
return val | (val << 8);
}
void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = to_fsl_edma_desc(vdesc);
for (i = 0; i < fsl_desc->n_tcds; i++)
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
}
int fsl_edma_terminate_all(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
fsl_chan->idle = true;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
if (fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_HAS_PD)
pm_runtime_allow(fsl_chan->pd_dev);
return 0;
}
int fsl_edma_pause(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_disable_request(fsl_chan);
fsl_chan->status = DMA_PAUSED;
fsl_chan->idle = true;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
int fsl_edma_resume(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan)
{
if (fsl_chan->dma_dir != DMA_NONE)
dma_unmap_resource(fsl_chan->vchan.chan.device->dev,
fsl_chan->dma_dev_addr,
fsl_chan->dma_dev_size,
fsl_chan->dma_dir, 0);
fsl_chan->dma_dir = DMA_NONE;
}
static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan,
enum dma_transfer_direction dir)
{
struct device *dev = fsl_chan->vchan.chan.device->dev;
enum dma_data_direction dma_dir;
phys_addr_t addr = 0;
u32 size = 0;
switch (dir) {
case DMA_MEM_TO_DEV:
dma_dir = DMA_FROM_DEVICE;
addr = fsl_chan->cfg.dst_addr;
size = fsl_chan->cfg.dst_maxburst;
break;
case DMA_DEV_TO_MEM:
dma_dir = DMA_TO_DEVICE;
addr = fsl_chan->cfg.src_addr;
size = fsl_chan->cfg.src_maxburst;
break;
default:
dma_dir = DMA_NONE;
break;
}
/* Already mapped for this config? */
if (fsl_chan->dma_dir == dma_dir)
return true;
fsl_edma_unprep_slave_dma(fsl_chan);
fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0);
if (dma_mapping_error(dev, fsl_chan->dma_dev_addr))
return false;
fsl_chan->dma_dev_size = size;
fsl_chan->dma_dir = dma_dir;
return true;
}
int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
fsl_edma_unprep_slave_dma(fsl_chan);
return 0;
}
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress)
{
struct fsl_edma_desc *edesc = fsl_chan->edesc;
enum dma_transfer_direction dir = edesc->dirn;
dma_addr_t cur_addr, dma_addr;
size_t len, size;
u32 nbytes = 0;
int i;
/* calculate the total size in this desc */
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++) {
nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes);
if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE))
nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes);
len += nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter);
}
if (!in_progress)
return len;
if (dir == DMA_MEM_TO_DEV)
cur_addr = edma_read_tcdreg(fsl_chan, saddr);
else
cur_addr = edma_read_tcdreg(fsl_chan, daddr);
/* figure out the finished and calculate the residue */
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
nbytes = le32_to_cpu(edesc->tcd[i].vtcd->nbytes);
if (nbytes & (EDMA_V3_TCD_NBYTES_DMLOE | EDMA_V3_TCD_NBYTES_SMLOE))
nbytes = EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(nbytes);
size = nbytes * le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (dir == DMA_MEM_TO_DEV)
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
else
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
len -= size;
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
len += dma_addr + size - cur_addr;
break;
}
}
return len;
}
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return fsl_chan->status;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, true);
else if (vdesc)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return fsl_chan->status;
}
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_hw_tcd *tcd)
{
u16 csr = 0;
/*
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
* endian format. However, we need to load the TCD registers in
* big- or little-endian obeying the eDMA engine model endian,
* and this is performed from specific edma_write functions
*/
edma_write_tcdreg(fsl_chan, 0, csr);
edma_write_tcdreg(fsl_chan, tcd->saddr, saddr);
edma_write_tcdreg(fsl_chan, tcd->daddr, daddr);
edma_write_tcdreg(fsl_chan, tcd->attr, attr);
edma_write_tcdreg(fsl_chan, tcd->soff, soff);
edma_write_tcdreg(fsl_chan, tcd->nbytes, nbytes);
edma_write_tcdreg(fsl_chan, tcd->slast, slast);
edma_write_tcdreg(fsl_chan, tcd->citer, citer);
edma_write_tcdreg(fsl_chan, tcd->biter, biter);
edma_write_tcdreg(fsl_chan, tcd->doff, doff);
edma_write_tcdreg(fsl_chan, tcd->dlast_sga, dlast_sga);
csr = le16_to_cpu(tcd->csr);
if (fsl_chan->is_sw) {
csr |= EDMA_TCD_CSR_START;
tcd->csr = cpu_to_le16(csr);
}
/*
* Must clear CHn_CSR[DONE] bit before enable TCDn_CSR[ESG] at EDMAv3
* eDMAv4 have not such requirement.
* Change MLINK need clear CHn_CSR[DONE] for both eDMAv3 and eDMAv4.
*/
if (((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_SG) &&
(csr & EDMA_TCD_CSR_E_SG)) ||
((fsl_edma_drvflags(fsl_chan) & FSL_EDMA_DRV_CLEAR_DONE_E_LINK) &&
(csr & EDMA_TCD_CSR_E_LINK)))
edma_writel_chreg(fsl_chan, edma_readl_chreg(fsl_chan, ch_csr), ch_csr);
edma_write_tcdreg(fsl_chan, tcd->csr, csr);
}
static inline
void fsl_edma_fill_tcd(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
bool disable_req, bool enable_sg)
{
struct dma_slave_config *cfg = &fsl_chan->cfg;
u16 csr = 0;
u32 burst;
/*
* eDMA hardware SGs require the TCDs to be stored in little
* endian format irrespective of the register endian model.
* So we put the value in little endian in memory, waiting
* for fsl_edma_set_tcd_regs doing the swap.
*/
tcd->saddr = cpu_to_le32(src);
tcd->daddr = cpu_to_le32(dst);
tcd->attr = cpu_to_le16(attr);
tcd->soff = cpu_to_le16(soff);
if (fsl_chan->is_multi_fifo) {
/* set mloff to support multiple fifo */
burst = cfg->direction == DMA_DEV_TO_MEM ?
cfg->src_addr_width : cfg->dst_addr_width;
nbytes |= EDMA_V3_TCD_NBYTES_MLOFF(-(burst * 4));
/* enable DMLOE/SMLOE */
if (cfg->direction == DMA_MEM_TO_DEV) {
nbytes |= EDMA_V3_TCD_NBYTES_DMLOE;
nbytes &= ~EDMA_V3_TCD_NBYTES_SMLOE;
} else {
nbytes |= EDMA_V3_TCD_NBYTES_SMLOE;
nbytes &= ~EDMA_V3_TCD_NBYTES_DMLOE;
}
}
tcd->nbytes = cpu_to_le32(nbytes);
tcd->slast = cpu_to_le32(slast);
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
tcd->doff = cpu_to_le16(doff);
tcd->dlast_sga = cpu_to_le32(dlast_sga);
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
if (major_int)
csr |= EDMA_TCD_CSR_INT_MAJOR;
if (disable_req)
csr |= EDMA_TCD_CSR_D_REQ;
if (enable_sg)
csr |= EDMA_TCD_CSR_E_SG;
if (fsl_chan->is_rxchan)
csr |= EDMA_TCD_CSR_ACTIVE;
if (fsl_chan->is_sw)
csr |= EDMA_TCD_CSR_START;
tcd->csr = cpu_to_le16(csr);
}
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
int sg_len)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT);
if (!fsl_desc)
return NULL;
fsl_desc->echan = fsl_chan;
fsl_desc->n_tcds = sg_len;
for (i = 0; i < sg_len; i++) {
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
if (!fsl_desc->tcd[i].vtcd)
goto err;
}
return fsl_desc;
err:
while (--i >= 0)
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
return NULL;
}
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
dma_addr_t dma_buf_next;
bool major_int = true;
int sg_len, i;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
if (!is_slave_direction(direction))
return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
sg_len = buf_len / period_len;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = true;
fsl_desc->dirn = direction;
dma_buf_next = dma_addr;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
iter = period_len / nbytes;
for (i = 0; i < sg_len; i++) {
if (dma_buf_next >= dma_addr + buf_len)
dma_buf_next = dma_addr;
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (direction == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next;
dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = fsl_chan->is_multi_fifo ? 4 : 0;
} else if (direction == DMA_DEV_TO_MEM) {
src_addr = fsl_chan->dma_dev_addr;
dst_addr = dma_buf_next;
soff = fsl_chan->is_multi_fifo ? 4 : 0;
doff = fsl_chan->cfg.src_addr_width;
} else {
/* DMA_DEV_TO_DEV */
src_addr = fsl_chan->cfg.src_addr;
dst_addr = fsl_chan->cfg.dst_addr;
soff = doff = 0;
major_int = false;
}
fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
fsl_chan->attr, soff, nbytes, 0, iter,
iter, doff, last_sg, major_int, false, true);
dma_buf_next += period_len;
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
struct scatterlist *sg;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
int i;
if (!is_slave_direction(direction))
return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
fsl_desc->dirn = direction;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
for_each_sg(sgl, sg, sg_len, i) {
if (direction == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = 0;
} else if (direction == DMA_DEV_TO_MEM) {
src_addr = fsl_chan->dma_dev_addr;
dst_addr = sg_dma_address(sg);
soff = 0;
doff = fsl_chan->cfg.src_addr_width;
} else {
/* DMA_DEV_TO_DEV */
src_addr = fsl_chan->cfg.src_addr;
dst_addr = fsl_chan->cfg.dst_addr;
soff = 0;
doff = 0;
}
/*
* Choose the suitable burst length if sg_dma_len is not
* multiple of burst length so that the whole transfer length is
* multiple of minor loop(burst length).
*/
if (sg_dma_len(sg) % nbytes) {
u32 width = (direction == DMA_DEV_TO_MEM) ? doff : soff;
u32 burst = (direction == DMA_DEV_TO_MEM) ?
fsl_chan->cfg.src_maxburst :
fsl_chan->cfg.dst_maxburst;
int j;
for (j = burst; j > 1; j--) {
if (!(sg_dma_len(sg) % (j * width))) {
nbytes = j * width;
break;
}
}
/* Set burst size as 1 if there's no suitable one */
if (j == 1)
nbytes = width;
}
iter = sg_dma_len(sg) / nbytes;
if (i < sg_len - 1) {
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
false, false, true);
} else {
last_sg = 0;
fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
true, true, false);
}
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
struct dma_async_tx_descriptor *fsl_edma_prep_memcpy(struct dma_chan *chan,
dma_addr_t dma_dst, dma_addr_t dma_src,
size_t len, unsigned long flags)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, 1);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
fsl_chan->is_sw = true;
/* To match with copy_align and max_seg_size so 1 tcd is enough */
fsl_edma_fill_tcd(fsl_chan, fsl_desc->tcd[0].vtcd, dma_src, dma_dst,
fsl_edma_get_tcd_attr(DMA_SLAVE_BUSWIDTH_32_BYTES),
32, len, 0, 1, 1, 32, 0, true, true, false);
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
{
struct virt_dma_desc *vdesc;
lockdep_assert_held(&fsl_chan->vchan.lock);
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
void fsl_edma_issue_pending(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (unlikely(fsl_chan->pm_state != RUNNING)) {
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
/* cannot submit due to suspend */
return;
}
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
fsl_edma_xfer_desc(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}
int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
sizeof(struct fsl_edma_hw_tcd),
32, 0);
return 0;
}
void fsl_edma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_engine *edma = fsl_chan->edma;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
if (edma->drvdata->dmamuxs)
fsl_edma_chan_mux(fsl_chan, 0, false);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
fsl_edma_unprep_slave_dma(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
dma_pool_destroy(fsl_chan->tcd_pool);
fsl_chan->tcd_pool = NULL;
fsl_chan->is_sw = false;
fsl_chan->srcid = 0;
}
void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_edma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
/*
* On the 32 channels Vybrid/mpc577x edma version, register offsets are
* different compared to ColdFire mcf5441x 64 channels edma.
*
* This function sets up register offsets as per proper declared version
* so must be called in xxx_edma_probe() just after setting the
* edma "version" and "membase" appropriately.
*/
void fsl_edma_setup_regs(struct fsl_edma_engine *edma)
{
bool is64 = !!(edma->drvdata->flags & FSL_EDMA_DRV_EDMA64);
edma->regs.cr = edma->membase + EDMA_CR;
edma->regs.es = edma->membase + EDMA_ES;
edma->regs.erql = edma->membase + EDMA_ERQ;
edma->regs.eeil = edma->membase + EDMA_EEI;
edma->regs.serq = edma->membase + (is64 ? EDMA64_SERQ : EDMA_SERQ);
edma->regs.cerq = edma->membase + (is64 ? EDMA64_CERQ : EDMA_CERQ);
edma->regs.seei = edma->membase + (is64 ? EDMA64_SEEI : EDMA_SEEI);
edma->regs.ceei = edma->membase + (is64 ? EDMA64_CEEI : EDMA_CEEI);
edma->regs.cint = edma->membase + (is64 ? EDMA64_CINT : EDMA_CINT);
edma->regs.cerr = edma->membase + (is64 ? EDMA64_CERR : EDMA_CERR);
edma->regs.ssrt = edma->membase + (is64 ? EDMA64_SSRT : EDMA_SSRT);
edma->regs.cdne = edma->membase + (is64 ? EDMA64_CDNE : EDMA_CDNE);
edma->regs.intl = edma->membase + (is64 ? EDMA64_INTL : EDMA_INTR);
edma->regs.errl = edma->membase + (is64 ? EDMA64_ERRL : EDMA_ERR);
if (is64) {
edma->regs.erqh = edma->membase + EDMA64_ERQH;
edma->regs.eeih = edma->membase + EDMA64_EEIH;
edma->regs.errh = edma->membase + EDMA64_ERRH;
edma->regs.inth = edma->membase + EDMA64_INTH;
}
}
MODULE_LICENSE("GPL v2");