When the bottom qdisc decides to, for example, drop some packet, it calls qdisc_tree_decrease_qlen() to update the queue length for all its ancestors, we need to update the backlog too to keep the stats on root qdisc accurate. Cc: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			737 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			737 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
 | |
|  *
 | |
|  * Copyright (C) 2013 Terry Lam <vtlam@google.com>
 | |
|  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/jhash.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <net/pkt_sched.h>
 | |
| #include <net/sock.h>
 | |
| 
 | |
| /*	Heavy-Hitter Filter (HHF)
 | |
|  *
 | |
|  * Principles :
 | |
|  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
 | |
|  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
 | |
|  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
 | |
|  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
 | |
|  * in which the heavy-hitter bucket is served with less weight.
 | |
|  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
 | |
|  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
 | |
|  * higher share of bandwidth.
 | |
|  *
 | |
|  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
 | |
|  * following paper:
 | |
|  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
 | |
|  * Accounting", in ACM SIGCOMM, 2002.
 | |
|  *
 | |
|  * Conceptually, a multi-stage filter comprises k independent hash functions
 | |
|  * and k counter arrays. Packets are indexed into k counter arrays by k hash
 | |
|  * functions, respectively. The counters are then increased by the packet sizes.
 | |
|  * Therefore,
 | |
|  *    - For a heavy-hitter flow: *all* of its k array counters must be large.
 | |
|  *    - For a non-heavy-hitter flow: some of its k array counters can be large
 | |
|  *      due to hash collision with other small flows; however, with high
 | |
|  *      probability, not *all* k counters are large.
 | |
|  *
 | |
|  * By the design of the multi-stage filter algorithm, the false negative rate
 | |
|  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
 | |
|  * susceptible to false positives (non-heavy-hitters mistakenly classified as
 | |
|  * heavy-hitters).
 | |
|  * Therefore, we also implement the following optimizations to reduce false
 | |
|  * positives by avoiding unnecessary increment of the counter values:
 | |
|  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
 | |
|  *        accounted in the array counters. This technique is called "shielding"
 | |
|  *        in Section 3.3.1 of [EV02].
 | |
|  *    - Optimization O2: conservative update of counters
 | |
|  *                       (Section 3.3.2 of [EV02]),
 | |
|  *        New counter value = max {old counter value,
 | |
|  *                                 smallest counter value + packet bytes}
 | |
|  *
 | |
|  * Finally, we refresh the counters periodically since otherwise the counter
 | |
|  * values will keep accumulating.
 | |
|  *
 | |
|  * Once a flow is classified as heavy-hitter, we also save its per-flow state
 | |
|  * in an exact-matching flow table so that its subsequent packets can be
 | |
|  * dispatched to the heavy-hitter bucket accordingly.
 | |
|  *
 | |
|  *
 | |
|  * At a high level, this qdisc works as follows:
 | |
|  * Given a packet p:
 | |
|  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
 | |
|  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
 | |
|  *     bucket.
 | |
|  *   - Otherwise, forward p to the multi-stage filter, denoted filter F
 | |
|  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
 | |
|  *          to the non-heavy-hitter bucket.
 | |
|  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
 | |
|  *          then set up a new flow entry for the flow-id of p in the table T and
 | |
|  *          send p to the heavy-hitter bucket.
 | |
|  *
 | |
|  * In this implementation:
 | |
|  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
 | |
|  *     resolved by linked-list chaining.
 | |
|  *   - F has four counter arrays, each array containing 1024 32-bit counters.
 | |
|  *     That means 4 * 1024 * 32 bits = 16KB of memory.
 | |
|  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
 | |
|  *     index into each array.
 | |
|  *     Hence, instead of having four hash functions, we chop the 32-bit
 | |
|  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
 | |
|  *     computed as XOR sum of those three chunks.
 | |
|  *   - We need to clear the counter arrays periodically; however, directly
 | |
|  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
 | |
|  *     So by representing each counter by a valid bit, we only need to reset
 | |
|  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
 | |
|  *   - The Deficit Round Robin engine is taken from fq_codel implementation
 | |
|  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
 | |
|  *     fq_codel_flow in fq_codel implementation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Non-configurable parameters */
 | |
| #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
 | |
| #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
 | |
| #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
 | |
| #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
 | |
| #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
 | |
| 
 | |
| #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
 | |
| enum wdrr_bucket_idx {
 | |
| 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
 | |
| 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
 | |
| };
 | |
| 
 | |
| #define hhf_time_before(a, b)	\
 | |
| 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
 | |
| 
 | |
| /* Heavy-hitter per-flow state */
 | |
| struct hh_flow_state {
 | |
| 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
 | |
| 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
 | |
| 	struct list_head flowchain;	/* chaining under hash collision */
 | |
| };
 | |
| 
 | |
| /* Weighted Deficit Round Robin (WDRR) scheduler */
 | |
| struct wdrr_bucket {
 | |
| 	struct sk_buff	  *head;
 | |
| 	struct sk_buff	  *tail;
 | |
| 	struct list_head  bucketchain;
 | |
| 	int		  deficit;
 | |
| };
 | |
| 
 | |
| struct hhf_sched_data {
 | |
| 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
 | |
| 	u32		   perturbation;   /* hash perturbation */
 | |
| 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
 | |
| 	u32		   drop_overlimit; /* number of times max qdisc packet
 | |
| 					    * limit was hit
 | |
| 					    */
 | |
| 	struct list_head   *hh_flows;       /* table T (currently active HHs) */
 | |
| 	u32		   hh_flows_limit;            /* max active HH allocs */
 | |
| 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
 | |
| 	u32		   hh_flows_total_cnt;          /* total admitted HHs */
 | |
| 	u32		   hh_flows_current_cnt;        /* total current HHs  */
 | |
| 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
 | |
| 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
 | |
| 							 * was reset
 | |
| 							 */
 | |
| 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
 | |
| 							     * of hhf_arrays
 | |
| 							     */
 | |
| 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
 | |
| 	struct list_head   new_buckets; /* list of new buckets */
 | |
| 	struct list_head   old_buckets; /* list of old buckets */
 | |
| 
 | |
| 	/* Configurable HHF parameters */
 | |
| 	u32		   hhf_reset_timeout; /* interval to reset counter
 | |
| 					       * arrays in filter F
 | |
| 					       * (default 40ms)
 | |
| 					       */
 | |
| 	u32		   hhf_admit_bytes;   /* counter thresh to classify as
 | |
| 					       * HH (default 128KB).
 | |
| 					       * With these default values,
 | |
| 					       * 128KB / 40ms = 25 Mbps
 | |
| 					       * i.e., we expect to capture HHs
 | |
| 					       * sending > 25 Mbps.
 | |
| 					       */
 | |
| 	u32		   hhf_evict_timeout; /* aging threshold to evict idle
 | |
| 					       * HHs out of table T. This should
 | |
| 					       * be large enough to avoid
 | |
| 					       * reordering during HH eviction.
 | |
| 					       * (default 1s)
 | |
| 					       */
 | |
| 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
 | |
| 					       * (default 2,
 | |
| 					       *  i.e., non-HH : HH = 2 : 1)
 | |
| 					       */
 | |
| };
 | |
| 
 | |
| static u32 hhf_time_stamp(void)
 | |
| {
 | |
| 	return jiffies;
 | |
| }
 | |
| 
 | |
| /* Looks up a heavy-hitter flow in a chaining list of table T. */
 | |
| static struct hh_flow_state *seek_list(const u32 hash,
 | |
| 				       struct list_head *head,
 | |
| 				       struct hhf_sched_data *q)
 | |
| {
 | |
| 	struct hh_flow_state *flow, *next;
 | |
| 	u32 now = hhf_time_stamp();
 | |
| 
 | |
| 	if (list_empty(head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	list_for_each_entry_safe(flow, next, head, flowchain) {
 | |
| 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
 | |
| 
 | |
| 		if (hhf_time_before(prev, now)) {
 | |
| 			/* Delete expired heavy-hitters, but preserve one entry
 | |
| 			 * to avoid kzalloc() when next time this slot is hit.
 | |
| 			 */
 | |
| 			if (list_is_last(&flow->flowchain, head))
 | |
| 				return NULL;
 | |
| 			list_del(&flow->flowchain);
 | |
| 			kfree(flow);
 | |
| 			q->hh_flows_current_cnt--;
 | |
| 		} else if (flow->hash_id == hash) {
 | |
| 			return flow;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
 | |
|  * entry or dynamically alloc a new entry.
 | |
|  */
 | |
| static struct hh_flow_state *alloc_new_hh(struct list_head *head,
 | |
| 					  struct hhf_sched_data *q)
 | |
| {
 | |
| 	struct hh_flow_state *flow;
 | |
| 	u32 now = hhf_time_stamp();
 | |
| 
 | |
| 	if (!list_empty(head)) {
 | |
| 		/* Find an expired heavy-hitter flow entry. */
 | |
| 		list_for_each_entry(flow, head, flowchain) {
 | |
| 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
 | |
| 
 | |
| 			if (hhf_time_before(prev, now))
 | |
| 				return flow;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
 | |
| 		q->hh_flows_overlimit++;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* Create new entry. */
 | |
| 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
 | |
| 	if (!flow)
 | |
| 		return NULL;
 | |
| 
 | |
| 	q->hh_flows_current_cnt++;
 | |
| 	INIT_LIST_HEAD(&flow->flowchain);
 | |
| 	list_add_tail(&flow->flowchain, head);
 | |
| 
 | |
| 	return flow;
 | |
| }
 | |
| 
 | |
| /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
 | |
|  * classify heavy-hitters.
 | |
|  */
 | |
| static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	u32 tmp_hash, hash;
 | |
| 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
 | |
| 	struct hh_flow_state *flow;
 | |
| 	u32 pkt_len, min_hhf_val;
 | |
| 	int i;
 | |
| 	u32 prev;
 | |
| 	u32 now = hhf_time_stamp();
 | |
| 
 | |
| 	/* Reset the HHF counter arrays if this is the right time. */
 | |
| 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
 | |
| 	if (hhf_time_before(prev, now)) {
 | |
| 		for (i = 0; i < HHF_ARRAYS_CNT; i++)
 | |
| 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
 | |
| 		q->hhf_arrays_reset_timestamp = now;
 | |
| 	}
 | |
| 
 | |
| 	/* Get hashed flow-id of the skb. */
 | |
| 	hash = skb_get_hash_perturb(skb, q->perturbation);
 | |
| 
 | |
| 	/* Check if this packet belongs to an already established HH flow. */
 | |
| 	flow_pos = hash & HHF_BIT_MASK;
 | |
| 	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
 | |
| 	if (flow) { /* found its HH flow */
 | |
| 		flow->hit_timestamp = now;
 | |
| 		return WDRR_BUCKET_FOR_HH;
 | |
| 	}
 | |
| 
 | |
| 	/* Now pass the packet through the multi-stage filter. */
 | |
| 	tmp_hash = hash;
 | |
| 	xorsum = 0;
 | |
| 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
 | |
| 		/* Split the skb_hash into three 10-bit chunks. */
 | |
| 		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
 | |
| 		xorsum ^= filter_pos[i];
 | |
| 		tmp_hash >>= HHF_BIT_MASK_LEN;
 | |
| 	}
 | |
| 	/* The last chunk is computed as XOR sum of other chunks. */
 | |
| 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
 | |
| 
 | |
| 	pkt_len = qdisc_pkt_len(skb);
 | |
| 	min_hhf_val = ~0U;
 | |
| 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 | |
| 		u32 val;
 | |
| 
 | |
| 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
 | |
| 			q->hhf_arrays[i][filter_pos[i]] = 0;
 | |
| 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
 | |
| 		}
 | |
| 
 | |
| 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
 | |
| 		if (min_hhf_val > val)
 | |
| 			min_hhf_val = val;
 | |
| 	}
 | |
| 
 | |
| 	/* Found a new HH iff all counter values > HH admit threshold. */
 | |
| 	if (min_hhf_val > q->hhf_admit_bytes) {
 | |
| 		/* Just captured a new heavy-hitter. */
 | |
| 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
 | |
| 		if (!flow) /* memory alloc problem */
 | |
| 			return WDRR_BUCKET_FOR_NON_HH;
 | |
| 		flow->hash_id = hash;
 | |
| 		flow->hit_timestamp = now;
 | |
| 		q->hh_flows_total_cnt++;
 | |
| 
 | |
| 		/* By returning without updating counters in q->hhf_arrays,
 | |
| 		 * we implicitly implement "shielding" (see Optimization O1).
 | |
| 		 */
 | |
| 		return WDRR_BUCKET_FOR_HH;
 | |
| 	}
 | |
| 
 | |
| 	/* Conservative update of HHF arrays (see Optimization O2). */
 | |
| 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 | |
| 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
 | |
| 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
 | |
| 	}
 | |
| 	return WDRR_BUCKET_FOR_NON_HH;
 | |
| }
 | |
| 
 | |
| /* Removes one skb from head of bucket. */
 | |
| static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
 | |
| {
 | |
| 	struct sk_buff *skb = bucket->head;
 | |
| 
 | |
| 	bucket->head = skb->next;
 | |
| 	skb->next = NULL;
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /* Tail-adds skb to bucket. */
 | |
| static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
 | |
| {
 | |
| 	if (bucket->head == NULL)
 | |
| 		bucket->head = skb;
 | |
| 	else
 | |
| 		bucket->tail->next = skb;
 | |
| 	bucket->tail = skb;
 | |
| 	skb->next = NULL;
 | |
| }
 | |
| 
 | |
| static unsigned int hhf_drop(struct Qdisc *sch)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	struct wdrr_bucket *bucket;
 | |
| 
 | |
| 	/* Always try to drop from heavy-hitters first. */
 | |
| 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
 | |
| 	if (!bucket->head)
 | |
| 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
 | |
| 
 | |
| 	if (bucket->head) {
 | |
| 		struct sk_buff *skb = dequeue_head(bucket);
 | |
| 
 | |
| 		sch->q.qlen--;
 | |
| 		qdisc_qstats_drop(sch);
 | |
| 		qdisc_qstats_backlog_dec(sch, skb);
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* Return id of the bucket from which the packet was dropped. */
 | |
| 	return bucket - q->buckets;
 | |
| }
 | |
| 
 | |
| static unsigned int hhf_qdisc_drop(struct Qdisc *sch)
 | |
| {
 | |
| 	unsigned int prev_backlog;
 | |
| 
 | |
| 	prev_backlog = sch->qstats.backlog;
 | |
| 	hhf_drop(sch);
 | |
| 	return prev_backlog - sch->qstats.backlog;
 | |
| }
 | |
| 
 | |
| static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	enum wdrr_bucket_idx idx;
 | |
| 	struct wdrr_bucket *bucket;
 | |
| 	unsigned int prev_backlog;
 | |
| 
 | |
| 	idx = hhf_classify(skb, sch);
 | |
| 
 | |
| 	bucket = &q->buckets[idx];
 | |
| 	bucket_add(bucket, skb);
 | |
| 	qdisc_qstats_backlog_inc(sch, skb);
 | |
| 
 | |
| 	if (list_empty(&bucket->bucketchain)) {
 | |
| 		unsigned int weight;
 | |
| 
 | |
| 		/* The logic of new_buckets vs. old_buckets is the same as
 | |
| 		 * new_flows vs. old_flows in the implementation of fq_codel,
 | |
| 		 * i.e., short bursts of non-HHs should have strict priority.
 | |
| 		 */
 | |
| 		if (idx == WDRR_BUCKET_FOR_HH) {
 | |
| 			/* Always move heavy-hitters to old bucket. */
 | |
| 			weight = 1;
 | |
| 			list_add_tail(&bucket->bucketchain, &q->old_buckets);
 | |
| 		} else {
 | |
| 			weight = q->hhf_non_hh_weight;
 | |
| 			list_add_tail(&bucket->bucketchain, &q->new_buckets);
 | |
| 		}
 | |
| 		bucket->deficit = weight * q->quantum;
 | |
| 	}
 | |
| 	if (++sch->q.qlen <= sch->limit)
 | |
| 		return NET_XMIT_SUCCESS;
 | |
| 
 | |
| 	prev_backlog = sch->qstats.backlog;
 | |
| 	q->drop_overlimit++;
 | |
| 	/* Return Congestion Notification only if we dropped a packet from this
 | |
| 	 * bucket.
 | |
| 	 */
 | |
| 	if (hhf_drop(sch) == idx)
 | |
| 		return NET_XMIT_CN;
 | |
| 
 | |
| 	/* As we dropped a packet, better let upper stack know this. */
 | |
| 	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	struct sk_buff *skb = NULL;
 | |
| 	struct wdrr_bucket *bucket;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| begin:
 | |
| 	head = &q->new_buckets;
 | |
| 	if (list_empty(head)) {
 | |
| 		head = &q->old_buckets;
 | |
| 		if (list_empty(head))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
 | |
| 
 | |
| 	if (bucket->deficit <= 0) {
 | |
| 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
 | |
| 			      1 : q->hhf_non_hh_weight;
 | |
| 
 | |
| 		bucket->deficit += weight * q->quantum;
 | |
| 		list_move_tail(&bucket->bucketchain, &q->old_buckets);
 | |
| 		goto begin;
 | |
| 	}
 | |
| 
 | |
| 	if (bucket->head) {
 | |
| 		skb = dequeue_head(bucket);
 | |
| 		sch->q.qlen--;
 | |
| 		qdisc_qstats_backlog_dec(sch, skb);
 | |
| 	}
 | |
| 
 | |
| 	if (!skb) {
 | |
| 		/* Force a pass through old_buckets to prevent starvation. */
 | |
| 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
 | |
| 			list_move_tail(&bucket->bucketchain, &q->old_buckets);
 | |
| 		else
 | |
| 			list_del_init(&bucket->bucketchain);
 | |
| 		goto begin;
 | |
| 	}
 | |
| 	qdisc_bstats_update(sch, skb);
 | |
| 	bucket->deficit -= qdisc_pkt_len(skb);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static void hhf_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	while ((skb = hhf_dequeue(sch)) != NULL)
 | |
| 		kfree_skb(skb);
 | |
| }
 | |
| 
 | |
| static void *hhf_zalloc(size_t sz)
 | |
| {
 | |
| 	void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN);
 | |
| 
 | |
| 	if (!ptr)
 | |
| 		ptr = vzalloc(sz);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void hhf_free(void *addr)
 | |
| {
 | |
| 	kvfree(addr);
 | |
| }
 | |
| 
 | |
| static void hhf_destroy(struct Qdisc *sch)
 | |
| {
 | |
| 	int i;
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 | |
| 		hhf_free(q->hhf_arrays[i]);
 | |
| 		hhf_free(q->hhf_valid_bits[i]);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < HH_FLOWS_CNT; i++) {
 | |
| 		struct hh_flow_state *flow, *next;
 | |
| 		struct list_head *head = &q->hh_flows[i];
 | |
| 
 | |
| 		if (list_empty(head))
 | |
| 			continue;
 | |
| 		list_for_each_entry_safe(flow, next, head, flowchain) {
 | |
| 			list_del(&flow->flowchain);
 | |
| 			kfree(flow);
 | |
| 		}
 | |
| 	}
 | |
| 	hhf_free(q->hh_flows);
 | |
| }
 | |
| 
 | |
| static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
 | |
| 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
 | |
| 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
 | |
| };
 | |
| 
 | |
| static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tb[TCA_HHF_MAX + 1];
 | |
| 	unsigned int qlen, prev_backlog;
 | |
| 	int err;
 | |
| 	u64 non_hh_quantum;
 | |
| 	u32 new_quantum = q->quantum;
 | |
| 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
 | |
| 
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	if (tb[TCA_HHF_QUANTUM])
 | |
| 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
 | |
| 
 | |
| 	if (tb[TCA_HHF_NON_HH_WEIGHT])
 | |
| 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
 | |
| 
 | |
| 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
 | |
| 	if (non_hh_quantum > INT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sch_tree_lock(sch);
 | |
| 
 | |
| 	if (tb[TCA_HHF_BACKLOG_LIMIT])
 | |
| 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
 | |
| 
 | |
| 	q->quantum = new_quantum;
 | |
| 	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
 | |
| 
 | |
| 	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
 | |
| 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
 | |
| 
 | |
| 	if (tb[TCA_HHF_RESET_TIMEOUT]) {
 | |
| 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
 | |
| 
 | |
| 		q->hhf_reset_timeout = usecs_to_jiffies(us);
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_HHF_ADMIT_BYTES])
 | |
| 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
 | |
| 
 | |
| 	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
 | |
| 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
 | |
| 
 | |
| 		q->hhf_evict_timeout = usecs_to_jiffies(us);
 | |
| 	}
 | |
| 
 | |
| 	qlen = sch->q.qlen;
 | |
| 	prev_backlog = sch->qstats.backlog;
 | |
| 	while (sch->q.qlen > sch->limit) {
 | |
| 		struct sk_buff *skb = hhf_dequeue(sch);
 | |
| 
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
 | |
| 				  prev_backlog - sch->qstats.backlog);
 | |
| 
 | |
| 	sch_tree_unlock(sch);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	int i;
 | |
| 
 | |
| 	sch->limit = 1000;
 | |
| 	q->quantum = psched_mtu(qdisc_dev(sch));
 | |
| 	q->perturbation = prandom_u32();
 | |
| 	INIT_LIST_HEAD(&q->new_buckets);
 | |
| 	INIT_LIST_HEAD(&q->old_buckets);
 | |
| 
 | |
| 	/* Configurable HHF parameters */
 | |
| 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
 | |
| 	q->hhf_admit_bytes = 131072;    /* 128 KB */
 | |
| 	q->hhf_evict_timeout = HZ;      /* 1  sec */
 | |
| 	q->hhf_non_hh_weight = 2;
 | |
| 
 | |
| 	if (opt) {
 | |
| 		int err = hhf_change(sch, opt);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (!q->hh_flows) {
 | |
| 		/* Initialize heavy-hitter flow table. */
 | |
| 		q->hh_flows = hhf_zalloc(HH_FLOWS_CNT *
 | |
| 					 sizeof(struct list_head));
 | |
| 		if (!q->hh_flows)
 | |
| 			return -ENOMEM;
 | |
| 		for (i = 0; i < HH_FLOWS_CNT; i++)
 | |
| 			INIT_LIST_HEAD(&q->hh_flows[i]);
 | |
| 
 | |
| 		/* Cap max active HHs at twice len of hh_flows table. */
 | |
| 		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
 | |
| 		q->hh_flows_overlimit = 0;
 | |
| 		q->hh_flows_total_cnt = 0;
 | |
| 		q->hh_flows_current_cnt = 0;
 | |
| 
 | |
| 		/* Initialize heavy-hitter filter arrays. */
 | |
| 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 | |
| 			q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN *
 | |
| 						      sizeof(u32));
 | |
| 			if (!q->hhf_arrays[i]) {
 | |
| 				hhf_destroy(sch);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
 | |
| 
 | |
| 		/* Initialize valid bits of heavy-hitter filter arrays. */
 | |
| 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
 | |
| 			q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN /
 | |
| 							  BITS_PER_BYTE);
 | |
| 			if (!q->hhf_valid_bits[i]) {
 | |
| 				hhf_destroy(sch);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Initialize Weighted DRR buckets. */
 | |
| 		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
 | |
| 			struct wdrr_bucket *bucket = q->buckets + i;
 | |
| 
 | |
| 			INIT_LIST_HEAD(&bucket->bucketchain);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *opts;
 | |
| 
 | |
| 	opts = nla_nest_start(skb, TCA_OPTIONS);
 | |
| 	if (opts == NULL)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
 | |
| 			jiffies_to_usecs(q->hhf_reset_timeout)) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
 | |
| 			jiffies_to_usecs(q->hhf_evict_timeout)) ||
 | |
| 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	return nla_nest_end(skb, opts);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 | |
| {
 | |
| 	struct hhf_sched_data *q = qdisc_priv(sch);
 | |
| 	struct tc_hhf_xstats st = {
 | |
| 		.drop_overlimit = q->drop_overlimit,
 | |
| 		.hh_overlimit	= q->hh_flows_overlimit,
 | |
| 		.hh_tot_count	= q->hh_flows_total_cnt,
 | |
| 		.hh_cur_count	= q->hh_flows_current_cnt,
 | |
| 	};
 | |
| 
 | |
| 	return gnet_stats_copy_app(d, &st, sizeof(st));
 | |
| }
 | |
| 
 | |
| static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
 | |
| 	.id		=	"hhf",
 | |
| 	.priv_size	=	sizeof(struct hhf_sched_data),
 | |
| 
 | |
| 	.enqueue	=	hhf_enqueue,
 | |
| 	.dequeue	=	hhf_dequeue,
 | |
| 	.peek		=	qdisc_peek_dequeued,
 | |
| 	.drop		=	hhf_qdisc_drop,
 | |
| 	.init		=	hhf_init,
 | |
| 	.reset		=	hhf_reset,
 | |
| 	.destroy	=	hhf_destroy,
 | |
| 	.change		=	hhf_change,
 | |
| 	.dump		=	hhf_dump,
 | |
| 	.dump_stats	=	hhf_dump_stats,
 | |
| 	.owner		=	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init hhf_module_init(void)
 | |
| {
 | |
| 	return register_qdisc(&hhf_qdisc_ops);
 | |
| }
 | |
| 
 | |
| static void __exit hhf_module_exit(void)
 | |
| {
 | |
| 	unregister_qdisc(&hhf_qdisc_ops);
 | |
| }
 | |
| 
 | |
| module_init(hhf_module_init)
 | |
| module_exit(hhf_module_exit)
 | |
| MODULE_AUTHOR("Terry Lam");
 | |
| MODULE_AUTHOR("Nandita Dukkipati");
 | |
| MODULE_LICENSE("GPL");
 |