Tomi Valkeinen 37ac60e414 OMAP: DSS2: move enable/disable/suspend/resume
Move enable/disable/suspend/resume from omap_dss_device to
omap_dss_driver.

This is part of a larger patch-set, which moves the control from omapdss
driver to the display driver.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
2010-02-24 14:31:28 +02:00

1057 lines
23 KiB
C

/*
* linux/drivers/video/omap2/dss/rfbi.c
*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "RFBI"
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/kfifo.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/seq_file.h>
#include <plat/display.h>
#include "dss.h"
#define RFBI_BASE 0x48050800
struct rfbi_reg { u16 idx; };
#define RFBI_REG(idx) ((const struct rfbi_reg) { idx })
#define RFBI_REVISION RFBI_REG(0x0000)
#define RFBI_SYSCONFIG RFBI_REG(0x0010)
#define RFBI_SYSSTATUS RFBI_REG(0x0014)
#define RFBI_CONTROL RFBI_REG(0x0040)
#define RFBI_PIXEL_CNT RFBI_REG(0x0044)
#define RFBI_LINE_NUMBER RFBI_REG(0x0048)
#define RFBI_CMD RFBI_REG(0x004c)
#define RFBI_PARAM RFBI_REG(0x0050)
#define RFBI_DATA RFBI_REG(0x0054)
#define RFBI_READ RFBI_REG(0x0058)
#define RFBI_STATUS RFBI_REG(0x005c)
#define RFBI_CONFIG(n) RFBI_REG(0x0060 + (n)*0x18)
#define RFBI_ONOFF_TIME(n) RFBI_REG(0x0064 + (n)*0x18)
#define RFBI_CYCLE_TIME(n) RFBI_REG(0x0068 + (n)*0x18)
#define RFBI_DATA_CYCLE1(n) RFBI_REG(0x006c + (n)*0x18)
#define RFBI_DATA_CYCLE2(n) RFBI_REG(0x0070 + (n)*0x18)
#define RFBI_DATA_CYCLE3(n) RFBI_REG(0x0074 + (n)*0x18)
#define RFBI_VSYNC_WIDTH RFBI_REG(0x0090)
#define RFBI_HSYNC_WIDTH RFBI_REG(0x0094)
#define REG_FLD_MOD(idx, val, start, end) \
rfbi_write_reg(idx, FLD_MOD(rfbi_read_reg(idx), val, start, end))
/* To work around an RFBI transfer rate limitation */
#define OMAP_RFBI_RATE_LIMIT 1
enum omap_rfbi_cycleformat {
OMAP_DSS_RFBI_CYCLEFORMAT_1_1 = 0,
OMAP_DSS_RFBI_CYCLEFORMAT_2_1 = 1,
OMAP_DSS_RFBI_CYCLEFORMAT_3_1 = 2,
OMAP_DSS_RFBI_CYCLEFORMAT_3_2 = 3,
};
enum omap_rfbi_datatype {
OMAP_DSS_RFBI_DATATYPE_12 = 0,
OMAP_DSS_RFBI_DATATYPE_16 = 1,
OMAP_DSS_RFBI_DATATYPE_18 = 2,
OMAP_DSS_RFBI_DATATYPE_24 = 3,
};
enum omap_rfbi_parallelmode {
OMAP_DSS_RFBI_PARALLELMODE_8 = 0,
OMAP_DSS_RFBI_PARALLELMODE_9 = 1,
OMAP_DSS_RFBI_PARALLELMODE_12 = 2,
OMAP_DSS_RFBI_PARALLELMODE_16 = 3,
};
enum update_cmd {
RFBI_CMD_UPDATE = 0,
RFBI_CMD_SYNC = 1,
};
static int rfbi_convert_timings(struct rfbi_timings *t);
static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div);
static struct {
void __iomem *base;
unsigned long l4_khz;
enum omap_rfbi_datatype datatype;
enum omap_rfbi_parallelmode parallelmode;
enum omap_rfbi_te_mode te_mode;
int te_enabled;
void (*framedone_callback)(void *data);
void *framedone_callback_data;
struct omap_dss_device *dssdev[2];
struct kfifo cmd_fifo;
spinlock_t cmd_lock;
struct completion cmd_done;
atomic_t cmd_fifo_full;
atomic_t cmd_pending;
} rfbi;
struct update_region {
u16 x;
u16 y;
u16 w;
u16 h;
};
static inline void rfbi_write_reg(const struct rfbi_reg idx, u32 val)
{
__raw_writel(val, rfbi.base + idx.idx);
}
static inline u32 rfbi_read_reg(const struct rfbi_reg idx)
{
return __raw_readl(rfbi.base + idx.idx);
}
static void rfbi_enable_clocks(bool enable)
{
if (enable)
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
else
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
}
void omap_rfbi_write_command(const void *buf, u32 len)
{
rfbi_enable_clocks(1);
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
const u8 *b = buf;
for (; len; len--)
rfbi_write_reg(RFBI_CMD, *b++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_CMD, *w++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
rfbi_enable_clocks(0);
}
EXPORT_SYMBOL(omap_rfbi_write_command);
void omap_rfbi_read_data(void *buf, u32 len)
{
rfbi_enable_clocks(1);
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
u8 *b = buf;
for (; len; len--) {
rfbi_write_reg(RFBI_READ, 0);
*b++ = rfbi_read_reg(RFBI_READ);
}
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
u16 *w = buf;
BUG_ON(len & ~1);
for (; len; len -= 2) {
rfbi_write_reg(RFBI_READ, 0);
*w++ = rfbi_read_reg(RFBI_READ);
}
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
rfbi_enable_clocks(0);
}
EXPORT_SYMBOL(omap_rfbi_read_data);
void omap_rfbi_write_data(const void *buf, u32 len)
{
rfbi_enable_clocks(1);
switch (rfbi.parallelmode) {
case OMAP_DSS_RFBI_PARALLELMODE_8:
{
const u8 *b = buf;
for (; len; len--)
rfbi_write_reg(RFBI_PARAM, *b++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_16:
{
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_PARAM, *w++);
break;
}
case OMAP_DSS_RFBI_PARALLELMODE_9:
case OMAP_DSS_RFBI_PARALLELMODE_12:
default:
BUG();
}
rfbi_enable_clocks(0);
}
EXPORT_SYMBOL(omap_rfbi_write_data);
void omap_rfbi_write_pixels(const void __iomem *buf, int scr_width,
u16 x, u16 y,
u16 w, u16 h)
{
int start_offset = scr_width * y + x;
int horiz_offset = scr_width - w;
int i;
rfbi_enable_clocks(1);
if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) {
const u16 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
const u8 __iomem *b = (const u8 __iomem *)pd;
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0));
++pd;
}
pd += horiz_offset;
}
} else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_24 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) {
const u32 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
const u8 __iomem *b = (const u8 __iomem *)pd;
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+2));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1));
rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0));
++pd;
}
pd += horiz_offset;
}
} else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 &&
rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_16) {
const u16 __iomem *pd = buf;
pd += start_offset;
for (; h; --h) {
for (i = 0; i < w; ++i) {
rfbi_write_reg(RFBI_PARAM, __raw_readw(pd));
++pd;
}
pd += horiz_offset;
}
} else {
BUG();
}
rfbi_enable_clocks(0);
}
EXPORT_SYMBOL(omap_rfbi_write_pixels);
void rfbi_transfer_area(u16 width, u16 height,
void (callback)(void *data), void *data)
{
u32 l;
/*BUG_ON(callback == 0);*/
BUG_ON(rfbi.framedone_callback != NULL);
DSSDBG("rfbi_transfer_area %dx%d\n", width, height);
dispc_set_lcd_size(width, height);
dispc_enable_channel(OMAP_DSS_CHANNEL_LCD, true);
rfbi.framedone_callback = callback;
rfbi.framedone_callback_data = data;
rfbi_enable_clocks(1);
rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
l = rfbi_read_reg(RFBI_CONTROL);
l = FLD_MOD(l, 1, 0, 0); /* enable */
if (!rfbi.te_enabled)
l = FLD_MOD(l, 1, 4, 4); /* ITE */
rfbi_write_reg(RFBI_CONTROL, l);
}
static void framedone_callback(void *data, u32 mask)
{
void (*callback)(void *data);
DSSDBG("FRAMEDONE\n");
REG_FLD_MOD(RFBI_CONTROL, 0, 0, 0);
rfbi_enable_clocks(0);
callback = rfbi.framedone_callback;
rfbi.framedone_callback = NULL;
if (callback != NULL)
callback(rfbi.framedone_callback_data);
atomic_set(&rfbi.cmd_pending, 0);
}
#if 1 /* VERBOSE */
static void rfbi_print_timings(void)
{
u32 l;
u32 time;
l = rfbi_read_reg(RFBI_CONFIG(0));
time = 1000000000 / rfbi.l4_khz;
if (l & (1 << 4))
time *= 2;
DSSDBG("Tick time %u ps\n", time);
l = rfbi_read_reg(RFBI_ONOFF_TIME(0));
DSSDBG("CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
"REONTIME %d, REOFFTIME %d\n",
l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
(l >> 20) & 0x0f, (l >> 24) & 0x3f);
l = rfbi_read_reg(RFBI_CYCLE_TIME(0));
DSSDBG("WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
"ACCESSTIME %d\n",
(l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
(l >> 22) & 0x3f);
}
#else
static void rfbi_print_timings(void) {}
#endif
static u32 extif_clk_period;
static inline unsigned long round_to_extif_ticks(unsigned long ps, int div)
{
int bus_tick = extif_clk_period * div;
return (ps + bus_tick - 1) / bus_tick * bus_tick;
}
static int calc_reg_timing(struct rfbi_timings *t, int div)
{
t->clk_div = div;
t->cs_on_time = round_to_extif_ticks(t->cs_on_time, div);
t->we_on_time = round_to_extif_ticks(t->we_on_time, div);
t->we_off_time = round_to_extif_ticks(t->we_off_time, div);
t->we_cycle_time = round_to_extif_ticks(t->we_cycle_time, div);
t->re_on_time = round_to_extif_ticks(t->re_on_time, div);
t->re_off_time = round_to_extif_ticks(t->re_off_time, div);
t->re_cycle_time = round_to_extif_ticks(t->re_cycle_time, div);
t->access_time = round_to_extif_ticks(t->access_time, div);
t->cs_off_time = round_to_extif_ticks(t->cs_off_time, div);
t->cs_pulse_width = round_to_extif_ticks(t->cs_pulse_width, div);
DSSDBG("[reg]cson %d csoff %d reon %d reoff %d\n",
t->cs_on_time, t->cs_off_time, t->re_on_time, t->re_off_time);
DSSDBG("[reg]weon %d weoff %d recyc %d wecyc %d\n",
t->we_on_time, t->we_off_time, t->re_cycle_time,
t->we_cycle_time);
DSSDBG("[reg]rdaccess %d cspulse %d\n",
t->access_time, t->cs_pulse_width);
return rfbi_convert_timings(t);
}
static int calc_extif_timings(struct rfbi_timings *t)
{
u32 max_clk_div;
int div;
rfbi_get_clk_info(&extif_clk_period, &max_clk_div);
for (div = 1; div <= max_clk_div; div++) {
if (calc_reg_timing(t, div) == 0)
break;
}
if (div <= max_clk_div)
return 0;
DSSERR("can't setup timings\n");
return -1;
}
void rfbi_set_timings(int rfbi_module, struct rfbi_timings *t)
{
int r;
if (!t->converted) {
r = calc_extif_timings(t);
if (r < 0)
DSSERR("Failed to calc timings\n");
}
BUG_ON(!t->converted);
rfbi_enable_clocks(1);
rfbi_write_reg(RFBI_ONOFF_TIME(rfbi_module), t->tim[0]);
rfbi_write_reg(RFBI_CYCLE_TIME(rfbi_module), t->tim[1]);
/* TIMEGRANULARITY */
REG_FLD_MOD(RFBI_CONFIG(rfbi_module),
(t->tim[2] ? 1 : 0), 4, 4);
rfbi_print_timings();
rfbi_enable_clocks(0);
}
static int ps_to_rfbi_ticks(int time, int div)
{
unsigned long tick_ps;
int ret;
/* Calculate in picosecs to yield more exact results */
tick_ps = 1000000000 / (rfbi.l4_khz) * div;
ret = (time + tick_ps - 1) / tick_ps;
return ret;
}
#ifdef OMAP_RFBI_RATE_LIMIT
unsigned long rfbi_get_max_tx_rate(void)
{
unsigned long l4_rate, dss1_rate;
int min_l4_ticks = 0;
int i;
/* According to TI this can't be calculated so make the
* adjustments for a couple of known frequencies and warn for
* others.
*/
static const struct {
unsigned long l4_clk; /* HZ */
unsigned long dss1_clk; /* HZ */
unsigned long min_l4_ticks;
} ftab[] = {
{ 55, 132, 7, }, /* 7.86 MPix/s */
{ 110, 110, 12, }, /* 9.16 MPix/s */
{ 110, 132, 10, }, /* 11 Mpix/s */
{ 120, 120, 10, }, /* 12 Mpix/s */
{ 133, 133, 10, }, /* 13.3 Mpix/s */
};
l4_rate = rfbi.l4_khz / 1000;
dss1_rate = dss_clk_get_rate(DSS_CLK_FCK1) / 1000000;
for (i = 0; i < ARRAY_SIZE(ftab); i++) {
/* Use a window instead of an exact match, to account
* for different DPLL multiplier / divider pairs.
*/
if (abs(ftab[i].l4_clk - l4_rate) < 3 &&
abs(ftab[i].dss1_clk - dss1_rate) < 3) {
min_l4_ticks = ftab[i].min_l4_ticks;
break;
}
}
if (i == ARRAY_SIZE(ftab)) {
/* Can't be sure, return anyway the maximum not
* rate-limited. This might cause a problem only for the
* tearing synchronisation.
*/
DSSERR("can't determine maximum RFBI transfer rate\n");
return rfbi.l4_khz * 1000;
}
return rfbi.l4_khz * 1000 / min_l4_ticks;
}
#else
int rfbi_get_max_tx_rate(void)
{
return rfbi.l4_khz * 1000;
}
#endif
static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
{
*clk_period = 1000000000 / rfbi.l4_khz;
*max_clk_div = 2;
}
static int rfbi_convert_timings(struct rfbi_timings *t)
{
u32 l;
int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
int actim, recyc, wecyc;
int div = t->clk_div;
if (div <= 0 || div > 2)
return -1;
/* Make sure that after conversion it still holds that:
* weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
* csoff > cson, csoff >= max(weoff, reoff), actim > reon
*/
weon = ps_to_rfbi_ticks(t->we_on_time, div);
weoff = ps_to_rfbi_ticks(t->we_off_time, div);
if (weoff <= weon)
weoff = weon + 1;
if (weon > 0x0f)
return -1;
if (weoff > 0x3f)
return -1;
reon = ps_to_rfbi_ticks(t->re_on_time, div);
reoff = ps_to_rfbi_ticks(t->re_off_time, div);
if (reoff <= reon)
reoff = reon + 1;
if (reon > 0x0f)
return -1;
if (reoff > 0x3f)
return -1;
cson = ps_to_rfbi_ticks(t->cs_on_time, div);
csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
if (csoff <= cson)
csoff = cson + 1;
if (csoff < max(weoff, reoff))
csoff = max(weoff, reoff);
if (cson > 0x0f)
return -1;
if (csoff > 0x3f)
return -1;
l = cson;
l |= csoff << 4;
l |= weon << 10;
l |= weoff << 14;
l |= reon << 20;
l |= reoff << 24;
t->tim[0] = l;
actim = ps_to_rfbi_ticks(t->access_time, div);
if (actim <= reon)
actim = reon + 1;
if (actim > 0x3f)
return -1;
wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
if (wecyc < weoff)
wecyc = weoff;
if (wecyc > 0x3f)
return -1;
recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
if (recyc < reoff)
recyc = reoff;
if (recyc > 0x3f)
return -1;
cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
if (cs_pulse > 0x3f)
return -1;
l = wecyc;
l |= recyc << 6;
l |= cs_pulse << 12;
l |= actim << 22;
t->tim[1] = l;
t->tim[2] = div - 1;
t->converted = 1;
return 0;
}
/* xxx FIX module selection missing */
int omap_rfbi_setup_te(enum omap_rfbi_te_mode mode,
unsigned hs_pulse_time, unsigned vs_pulse_time,
int hs_pol_inv, int vs_pol_inv, int extif_div)
{
int hs, vs;
int min;
u32 l;
hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
if (hs < 2)
return -EDOM;
if (mode == OMAP_DSS_RFBI_TE_MODE_2)
min = 2;
else /* OMAP_DSS_RFBI_TE_MODE_1 */
min = 4;
if (vs < min)
return -EDOM;
if (vs == hs)
return -EINVAL;
rfbi.te_mode = mode;
DSSDBG("setup_te: mode %d hs %d vs %d hs_inv %d vs_inv %d\n",
mode, hs, vs, hs_pol_inv, vs_pol_inv);
rfbi_enable_clocks(1);
rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
l = rfbi_read_reg(RFBI_CONFIG(0));
if (hs_pol_inv)
l &= ~(1 << 21);
else
l |= 1 << 21;
if (vs_pol_inv)
l &= ~(1 << 20);
else
l |= 1 << 20;
rfbi_enable_clocks(0);
return 0;
}
EXPORT_SYMBOL(omap_rfbi_setup_te);
/* xxx FIX module selection missing */
int omap_rfbi_enable_te(bool enable, unsigned line)
{
u32 l;
DSSDBG("te %d line %d mode %d\n", enable, line, rfbi.te_mode);
if (line > (1 << 11) - 1)
return -EINVAL;
rfbi_enable_clocks(1);
l = rfbi_read_reg(RFBI_CONFIG(0));
l &= ~(0x3 << 2);
if (enable) {
rfbi.te_enabled = 1;
l |= rfbi.te_mode << 2;
} else
rfbi.te_enabled = 0;
rfbi_write_reg(RFBI_CONFIG(0), l);
rfbi_write_reg(RFBI_LINE_NUMBER, line);
rfbi_enable_clocks(0);
return 0;
}
EXPORT_SYMBOL(omap_rfbi_enable_te);
#if 0
static void rfbi_enable_config(int enable1, int enable2)
{
u32 l;
int cs = 0;
if (enable1)
cs |= 1<<0;
if (enable2)
cs |= 1<<1;
rfbi_enable_clocks(1);
l = rfbi_read_reg(RFBI_CONTROL);
l = FLD_MOD(l, cs, 3, 2);
l = FLD_MOD(l, 0, 1, 1);
rfbi_write_reg(RFBI_CONTROL, l);
l = rfbi_read_reg(RFBI_CONFIG(0));
l = FLD_MOD(l, 0, 3, 2); /* TRIGGERMODE: ITE */
/*l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */
/*l |= FLD_VAL(0, 8, 7); */ /* L4FORMAT, 1pix/L4 */
l = FLD_MOD(l, 0, 16, 16); /* A0POLARITY */
l = FLD_MOD(l, 1, 20, 20); /* TE_VSYNC_POLARITY */
l = FLD_MOD(l, 1, 21, 21); /* HSYNCPOLARITY */
l = FLD_MOD(l, OMAP_DSS_RFBI_PARALLELMODE_8, 1, 0);
rfbi_write_reg(RFBI_CONFIG(0), l);
rfbi_enable_clocks(0);
}
#endif
int rfbi_configure(int rfbi_module, int bpp, int lines)
{
u32 l;
int cycle1 = 0, cycle2 = 0, cycle3 = 0;
enum omap_rfbi_cycleformat cycleformat;
enum omap_rfbi_datatype datatype;
enum omap_rfbi_parallelmode parallelmode;
switch (bpp) {
case 12:
datatype = OMAP_DSS_RFBI_DATATYPE_12;
break;
case 16:
datatype = OMAP_DSS_RFBI_DATATYPE_16;
break;
case 18:
datatype = OMAP_DSS_RFBI_DATATYPE_18;
break;
case 24:
datatype = OMAP_DSS_RFBI_DATATYPE_24;
break;
default:
BUG();
return 1;
}
rfbi.datatype = datatype;
switch (lines) {
case 8:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_8;
break;
case 9:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_9;
break;
case 12:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_12;
break;
case 16:
parallelmode = OMAP_DSS_RFBI_PARALLELMODE_16;
break;
default:
BUG();
return 1;
}
rfbi.parallelmode = parallelmode;
if ((bpp % lines) == 0) {
switch (bpp / lines) {
case 1:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_1_1;
break;
case 2:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_2_1;
break;
case 3:
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_1;
break;
default:
BUG();
return 1;
}
} else if ((2 * bpp % lines) == 0) {
if ((2 * bpp / lines) == 3)
cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_2;
else {
BUG();
return 1;
}
} else {
BUG();
return 1;
}
switch (cycleformat) {
case OMAP_DSS_RFBI_CYCLEFORMAT_1_1:
cycle1 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_2_1:
cycle1 = lines;
cycle2 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_3_1:
cycle1 = lines;
cycle2 = lines;
cycle3 = lines;
break;
case OMAP_DSS_RFBI_CYCLEFORMAT_3_2:
cycle1 = lines;
cycle2 = (lines / 2) | ((lines / 2) << 16);
cycle3 = (lines << 16);
break;
}
rfbi_enable_clocks(1);
REG_FLD_MOD(RFBI_CONTROL, 0, 3, 2); /* clear CS */
l = 0;
l |= FLD_VAL(parallelmode, 1, 0);
l |= FLD_VAL(0, 3, 2); /* TRIGGERMODE: ITE */
l |= FLD_VAL(0, 4, 4); /* TIMEGRANULARITY */
l |= FLD_VAL(datatype, 6, 5);
/* l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */
l |= FLD_VAL(0, 8, 7); /* L4FORMAT, 1pix/L4 */
l |= FLD_VAL(cycleformat, 10, 9);
l |= FLD_VAL(0, 12, 11); /* UNUSEDBITS */
l |= FLD_VAL(0, 16, 16); /* A0POLARITY */
l |= FLD_VAL(0, 17, 17); /* REPOLARITY */
l |= FLD_VAL(0, 18, 18); /* WEPOLARITY */
l |= FLD_VAL(0, 19, 19); /* CSPOLARITY */
l |= FLD_VAL(1, 20, 20); /* TE_VSYNC_POLARITY */
l |= FLD_VAL(1, 21, 21); /* HSYNCPOLARITY */
rfbi_write_reg(RFBI_CONFIG(rfbi_module), l);
rfbi_write_reg(RFBI_DATA_CYCLE1(rfbi_module), cycle1);
rfbi_write_reg(RFBI_DATA_CYCLE2(rfbi_module), cycle2);
rfbi_write_reg(RFBI_DATA_CYCLE3(rfbi_module), cycle3);
l = rfbi_read_reg(RFBI_CONTROL);
l = FLD_MOD(l, rfbi_module+1, 3, 2); /* Select CSx */
l = FLD_MOD(l, 0, 1, 1); /* clear bypass */
rfbi_write_reg(RFBI_CONTROL, l);
DSSDBG("RFBI config: bpp %d, lines %d, cycles: 0x%x 0x%x 0x%x\n",
bpp, lines, cycle1, cycle2, cycle3);
rfbi_enable_clocks(0);
return 0;
}
EXPORT_SYMBOL(rfbi_configure);
int omap_rfbi_prepare_update(struct omap_dss_device *dssdev,
u16 *x, u16 *y, u16 *w, u16 *h)
{
u16 dw, dh;
dssdev->driver->get_resolution(dssdev, &dw, &dh);
if (*x > dw || *y > dh)
return -EINVAL;
if (*x + *w > dw)
return -EINVAL;
if (*y + *h > dh)
return -EINVAL;
if (*w == 1)
return -EINVAL;
if (*w == 0 || *h == 0)
return -EINVAL;
if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) {
dss_setup_partial_planes(dssdev, x, y, w, h);
dispc_set_lcd_size(*w, *h);
}
return 0;
}
EXPORT_SYMBOL(omap_rfbi_prepare_update);
int omap_rfbi_update(struct omap_dss_device *dssdev,
u16 x, u16 y, u16 w, u16 h,
void (*callback)(void *), void *data)
{
if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) {
rfbi_transfer_area(w, h, callback, data);
} else {
struct omap_overlay *ovl;
void __iomem *addr;
int scr_width;
ovl = dssdev->manager->overlays[0];
scr_width = ovl->info.screen_width;
addr = ovl->info.vaddr;
omap_rfbi_write_pixels(addr, scr_width, x, y, w, h);
callback(data);
}
return 0;
}
EXPORT_SYMBOL(omap_rfbi_update);
void rfbi_dump_regs(struct seq_file *s)
{
#define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, rfbi_read_reg(r))
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
DUMPREG(RFBI_REVISION);
DUMPREG(RFBI_SYSCONFIG);
DUMPREG(RFBI_SYSSTATUS);
DUMPREG(RFBI_CONTROL);
DUMPREG(RFBI_PIXEL_CNT);
DUMPREG(RFBI_LINE_NUMBER);
DUMPREG(RFBI_CMD);
DUMPREG(RFBI_PARAM);
DUMPREG(RFBI_DATA);
DUMPREG(RFBI_READ);
DUMPREG(RFBI_STATUS);
DUMPREG(RFBI_CONFIG(0));
DUMPREG(RFBI_ONOFF_TIME(0));
DUMPREG(RFBI_CYCLE_TIME(0));
DUMPREG(RFBI_DATA_CYCLE1(0));
DUMPREG(RFBI_DATA_CYCLE2(0));
DUMPREG(RFBI_DATA_CYCLE3(0));
DUMPREG(RFBI_CONFIG(1));
DUMPREG(RFBI_ONOFF_TIME(1));
DUMPREG(RFBI_CYCLE_TIME(1));
DUMPREG(RFBI_DATA_CYCLE1(1));
DUMPREG(RFBI_DATA_CYCLE2(1));
DUMPREG(RFBI_DATA_CYCLE3(1));
DUMPREG(RFBI_VSYNC_WIDTH);
DUMPREG(RFBI_HSYNC_WIDTH);
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
#undef DUMPREG
}
int rfbi_init(void)
{
u32 rev;
u32 l;
spin_lock_init(&rfbi.cmd_lock);
init_completion(&rfbi.cmd_done);
atomic_set(&rfbi.cmd_fifo_full, 0);
atomic_set(&rfbi.cmd_pending, 0);
rfbi.base = ioremap(RFBI_BASE, SZ_256);
if (!rfbi.base) {
DSSERR("can't ioremap RFBI\n");
return -ENOMEM;
}
rfbi_enable_clocks(1);
msleep(10);
rfbi.l4_khz = dss_clk_get_rate(DSS_CLK_ICK) / 1000;
/* Enable autoidle and smart-idle */
l = rfbi_read_reg(RFBI_SYSCONFIG);
l |= (1 << 0) | (2 << 3);
rfbi_write_reg(RFBI_SYSCONFIG, l);
rev = rfbi_read_reg(RFBI_REVISION);
printk(KERN_INFO "OMAP RFBI rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
rfbi_enable_clocks(0);
return 0;
}
void rfbi_exit(void)
{
DSSDBG("rfbi_exit\n");
iounmap(rfbi.base);
}
int omapdss_rfbi_display_enable(struct omap_dss_device *dssdev)
{
int r;
r = omap_dss_start_device(dssdev);
if (r) {
DSSERR("failed to start device\n");
goto err0;
}
r = omap_dispc_register_isr(framedone_callback, NULL,
DISPC_IRQ_FRAMEDONE);
if (r) {
DSSERR("can't get FRAMEDONE irq\n");
goto err1;
}
dispc_set_lcd_display_type(OMAP_DSS_LCD_DISPLAY_TFT);
dispc_set_parallel_interface_mode(OMAP_DSS_PARALLELMODE_RFBI);
dispc_set_tft_data_lines(dssdev->ctrl.pixel_size);
rfbi_configure(dssdev->phy.rfbi.channel,
dssdev->ctrl.pixel_size,
dssdev->phy.rfbi.data_lines);
rfbi_set_timings(dssdev->phy.rfbi.channel,
&dssdev->ctrl.rfbi_timings);
return 0;
err1:
omap_dss_stop_device(dssdev);
err0:
return r;
}
EXPORT_SYMBOL(omapdss_rfbi_display_enable);
void omapdss_rfbi_display_disable(struct omap_dss_device *dssdev)
{
omap_dispc_unregister_isr(framedone_callback, NULL,
DISPC_IRQ_FRAMEDONE);
omap_dss_stop_device(dssdev);
}
EXPORT_SYMBOL(omapdss_rfbi_display_disable);
int rfbi_init_display(struct omap_dss_device *dssdev)
{
rfbi.dssdev[dssdev->phy.rfbi.channel] = dssdev;
dssdev->caps = OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE;
return 0;
}