27da93d8e6
If we end up with a writable migration entry that has the uffd-wp bit set,
we already messed up: the source PTE/PMD was writable, which means we
could have modified the page without notifying uffd first. Setting the
uffd-wp bit always implies converting migration entries to !writable
migration entries.
Commit 8f34f1eac3
("mm/userfaultfd: fix uffd-wp special cases for
fork()") documents that "3. Forget to carry over uffd-wp bit for a write
migration huge pmd entry", but it doesn't really say why that should be
relevant.
So let's remove that code to avoid hiding an eventual underlying issue (in
the future, we might want to warn when creating writable migration entries
that have the uffd-wp bit set -- or even better when turning a PTE
writable that still has the uffd-wp bit set).
This now matches the handling for hugetlb migration entries in
hugetlb_change_protection().
In copy_huge_pmd()/copy_nonpresent_pte()/copy_hugetlb_page_range(), we
still transfer the uffd-bit also for writable migration entries, but
simply because we have unified handling for "writable" and
"readable-exclusive" migration entries, and we care about transferring the
uffd-wp bit for the latter.
Link: https://lkml.kernel.org/r/20230405160236.587705-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
938 lines
24 KiB
C
938 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* mm/mprotect.c
|
|
*
|
|
* (C) Copyright 1994 Linus Torvalds
|
|
* (C) Copyright 2002 Christoph Hellwig
|
|
*
|
|
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
|
|
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
|
|
*/
|
|
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/security.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/memory-tiers.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include "internal.h"
|
|
|
|
bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
|
|
return false;
|
|
|
|
/* Don't touch entries that are not even readable. */
|
|
if (pte_protnone(pte))
|
|
return false;
|
|
|
|
/* Do we need write faults for softdirty tracking? */
|
|
if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
|
|
return false;
|
|
|
|
/* Do we need write faults for uffd-wp tracking? */
|
|
if (userfaultfd_pte_wp(vma, pte))
|
|
return false;
|
|
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
|
/*
|
|
* Writable MAP_PRIVATE mapping: We can only special-case on
|
|
* exclusive anonymous pages, because we know that our
|
|
* write-fault handler similarly would map them writable without
|
|
* any additional checks while holding the PT lock.
|
|
*/
|
|
page = vm_normal_page(vma, addr, pte);
|
|
return page && PageAnon(page) && PageAnonExclusive(page);
|
|
}
|
|
|
|
/*
|
|
* Writable MAP_SHARED mapping: "clean" might indicate that the FS still
|
|
* needs a real write-fault for writenotify
|
|
* (see vma_wants_writenotify()). If "dirty", the assumption is that the
|
|
* FS was already notified and we can simply mark the PTE writable
|
|
* just like the write-fault handler would do.
|
|
*/
|
|
return pte_dirty(pte);
|
|
}
|
|
|
|
static long change_pte_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, pgprot_t newprot, unsigned long cp_flags)
|
|
{
|
|
pte_t *pte, oldpte;
|
|
spinlock_t *ptl;
|
|
long pages = 0;
|
|
int target_node = NUMA_NO_NODE;
|
|
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
|
|
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
|
|
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
|
|
|
|
tlb_change_page_size(tlb, PAGE_SIZE);
|
|
|
|
/*
|
|
* Can be called with only the mmap_lock for reading by
|
|
* prot_numa so we must check the pmd isn't constantly
|
|
* changing from under us from pmd_none to pmd_trans_huge
|
|
* and/or the other way around.
|
|
*/
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
|
|
/*
|
|
* The pmd points to a regular pte so the pmd can't change
|
|
* from under us even if the mmap_lock is only hold for
|
|
* reading.
|
|
*/
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
|
|
/* Get target node for single threaded private VMAs */
|
|
if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
|
|
atomic_read(&vma->vm_mm->mm_users) == 1)
|
|
target_node = numa_node_id();
|
|
|
|
flush_tlb_batched_pending(vma->vm_mm);
|
|
arch_enter_lazy_mmu_mode();
|
|
do {
|
|
oldpte = *pte;
|
|
if (pte_present(oldpte)) {
|
|
pte_t ptent;
|
|
|
|
/*
|
|
* Avoid trapping faults against the zero or KSM
|
|
* pages. See similar comment in change_huge_pmd.
|
|
*/
|
|
if (prot_numa) {
|
|
struct page *page;
|
|
int nid;
|
|
bool toptier;
|
|
|
|
/* Avoid TLB flush if possible */
|
|
if (pte_protnone(oldpte))
|
|
continue;
|
|
|
|
page = vm_normal_page(vma, addr, oldpte);
|
|
if (!page || is_zone_device_page(page) || PageKsm(page))
|
|
continue;
|
|
|
|
/* Also skip shared copy-on-write pages */
|
|
if (is_cow_mapping(vma->vm_flags) &&
|
|
page_count(page) != 1)
|
|
continue;
|
|
|
|
/*
|
|
* While migration can move some dirty pages,
|
|
* it cannot move them all from MIGRATE_ASYNC
|
|
* context.
|
|
*/
|
|
if (page_is_file_lru(page) && PageDirty(page))
|
|
continue;
|
|
|
|
/*
|
|
* Don't mess with PTEs if page is already on the node
|
|
* a single-threaded process is running on.
|
|
*/
|
|
nid = page_to_nid(page);
|
|
if (target_node == nid)
|
|
continue;
|
|
toptier = node_is_toptier(nid);
|
|
|
|
/*
|
|
* Skip scanning top tier node if normal numa
|
|
* balancing is disabled
|
|
*/
|
|
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
|
|
toptier)
|
|
continue;
|
|
if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
|
|
!toptier)
|
|
xchg_page_access_time(page,
|
|
jiffies_to_msecs(jiffies));
|
|
}
|
|
|
|
oldpte = ptep_modify_prot_start(vma, addr, pte);
|
|
ptent = pte_modify(oldpte, newprot);
|
|
|
|
if (uffd_wp)
|
|
ptent = pte_mkuffd_wp(ptent);
|
|
else if (uffd_wp_resolve)
|
|
ptent = pte_clear_uffd_wp(ptent);
|
|
|
|
/*
|
|
* In some writable, shared mappings, we might want
|
|
* to catch actual write access -- see
|
|
* vma_wants_writenotify().
|
|
*
|
|
* In all writable, private mappings, we have to
|
|
* properly handle COW.
|
|
*
|
|
* In both cases, we can sometimes still change PTEs
|
|
* writable and avoid the write-fault handler, for
|
|
* example, if a PTE is already dirty and no other
|
|
* COW or special handling is required.
|
|
*/
|
|
if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
|
|
!pte_write(ptent) &&
|
|
can_change_pte_writable(vma, addr, ptent))
|
|
ptent = pte_mkwrite(ptent);
|
|
|
|
ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
|
|
if (pte_needs_flush(oldpte, ptent))
|
|
tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
|
|
pages++;
|
|
} else if (is_swap_pte(oldpte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(oldpte);
|
|
pte_t newpte;
|
|
|
|
if (is_writable_migration_entry(entry)) {
|
|
struct page *page = pfn_swap_entry_to_page(entry);
|
|
|
|
/*
|
|
* A protection check is difficult so
|
|
* just be safe and disable write
|
|
*/
|
|
if (PageAnon(page))
|
|
entry = make_readable_exclusive_migration_entry(
|
|
swp_offset(entry));
|
|
else
|
|
entry = make_readable_migration_entry(swp_offset(entry));
|
|
newpte = swp_entry_to_pte(entry);
|
|
if (pte_swp_soft_dirty(oldpte))
|
|
newpte = pte_swp_mksoft_dirty(newpte);
|
|
} else if (is_writable_device_private_entry(entry)) {
|
|
/*
|
|
* We do not preserve soft-dirtiness. See
|
|
* copy_one_pte() for explanation.
|
|
*/
|
|
entry = make_readable_device_private_entry(
|
|
swp_offset(entry));
|
|
newpte = swp_entry_to_pte(entry);
|
|
if (pte_swp_uffd_wp(oldpte))
|
|
newpte = pte_swp_mkuffd_wp(newpte);
|
|
} else if (is_writable_device_exclusive_entry(entry)) {
|
|
entry = make_readable_device_exclusive_entry(
|
|
swp_offset(entry));
|
|
newpte = swp_entry_to_pte(entry);
|
|
if (pte_swp_soft_dirty(oldpte))
|
|
newpte = pte_swp_mksoft_dirty(newpte);
|
|
if (pte_swp_uffd_wp(oldpte))
|
|
newpte = pte_swp_mkuffd_wp(newpte);
|
|
} else if (is_pte_marker_entry(entry)) {
|
|
/*
|
|
* Ignore swapin errors unconditionally,
|
|
* because any access should sigbus anyway.
|
|
*/
|
|
if (is_swapin_error_entry(entry))
|
|
continue;
|
|
/*
|
|
* If this is uffd-wp pte marker and we'd like
|
|
* to unprotect it, drop it; the next page
|
|
* fault will trigger without uffd trapping.
|
|
*/
|
|
if (uffd_wp_resolve) {
|
|
pte_clear(vma->vm_mm, addr, pte);
|
|
pages++;
|
|
}
|
|
continue;
|
|
} else {
|
|
newpte = oldpte;
|
|
}
|
|
|
|
if (uffd_wp)
|
|
newpte = pte_swp_mkuffd_wp(newpte);
|
|
else if (uffd_wp_resolve)
|
|
newpte = pte_swp_clear_uffd_wp(newpte);
|
|
|
|
if (!pte_same(oldpte, newpte)) {
|
|
set_pte_at(vma->vm_mm, addr, pte, newpte);
|
|
pages++;
|
|
}
|
|
} else {
|
|
/* It must be an none page, or what else?.. */
|
|
WARN_ON_ONCE(!pte_none(oldpte));
|
|
|
|
/*
|
|
* Nobody plays with any none ptes besides
|
|
* userfaultfd when applying the protections.
|
|
*/
|
|
if (likely(!uffd_wp))
|
|
continue;
|
|
|
|
if (userfaultfd_wp_use_markers(vma)) {
|
|
/*
|
|
* For file-backed mem, we need to be able to
|
|
* wr-protect a none pte, because even if the
|
|
* pte is none, the page/swap cache could
|
|
* exist. Doing that by install a marker.
|
|
*/
|
|
set_pte_at(vma->vm_mm, addr, pte,
|
|
make_pte_marker(PTE_MARKER_UFFD_WP));
|
|
pages++;
|
|
}
|
|
}
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/*
|
|
* Used when setting automatic NUMA hinting protection where it is
|
|
* critical that a numa hinting PMD is not confused with a bad PMD.
|
|
*/
|
|
static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
|
|
{
|
|
pmd_t pmdval = pmdp_get_lockless(pmd);
|
|
|
|
/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
barrier();
|
|
#endif
|
|
|
|
if (pmd_none(pmdval))
|
|
return 1;
|
|
if (pmd_trans_huge(pmdval))
|
|
return 0;
|
|
if (unlikely(pmd_bad(pmdval))) {
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return true if we want to split THPs into PTE mappings in change
|
|
* protection procedure, false otherwise.
|
|
*/
|
|
static inline bool
|
|
pgtable_split_needed(struct vm_area_struct *vma, unsigned long cp_flags)
|
|
{
|
|
/*
|
|
* pte markers only resides in pte level, if we need pte markers,
|
|
* we need to split. We cannot wr-protect shmem thp because file
|
|
* thp is handled differently when split by erasing the pmd so far.
|
|
*/
|
|
return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
|
|
}
|
|
|
|
/*
|
|
* Return true if we want to populate pgtables in change protection
|
|
* procedure, false otherwise
|
|
*/
|
|
static inline bool
|
|
pgtable_populate_needed(struct vm_area_struct *vma, unsigned long cp_flags)
|
|
{
|
|
/* If not within ioctl(UFFDIO_WRITEPROTECT), then don't bother */
|
|
if (!(cp_flags & MM_CP_UFFD_WP))
|
|
return false;
|
|
|
|
/* Populate if the userfaultfd mode requires pte markers */
|
|
return userfaultfd_wp_use_markers(vma);
|
|
}
|
|
|
|
/*
|
|
* Populate the pgtable underneath for whatever reason if requested.
|
|
* When {pte|pmd|...}_alloc() failed we treat it the same way as pgtable
|
|
* allocation failures during page faults by kicking OOM and returning
|
|
* error.
|
|
*/
|
|
#define change_pmd_prepare(vma, pmd, cp_flags) \
|
|
({ \
|
|
long err = 0; \
|
|
if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
|
|
if (pte_alloc(vma->vm_mm, pmd)) \
|
|
err = -ENOMEM; \
|
|
} \
|
|
err; \
|
|
})
|
|
|
|
/*
|
|
* This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
|
|
* have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
|
|
* while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
|
|
*/
|
|
#define change_prepare(vma, high, low, addr, cp_flags) \
|
|
({ \
|
|
long err = 0; \
|
|
if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
|
|
low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
|
|
if (p == NULL) \
|
|
err = -ENOMEM; \
|
|
} \
|
|
err; \
|
|
})
|
|
|
|
static inline long change_pmd_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
|
|
unsigned long end, pgprot_t newprot, unsigned long cp_flags)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
long pages = 0;
|
|
unsigned long nr_huge_updates = 0;
|
|
struct mmu_notifier_range range;
|
|
|
|
range.start = 0;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
long ret;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
ret = change_pmd_prepare(vma, pmd, cp_flags);
|
|
if (ret) {
|
|
pages = ret;
|
|
break;
|
|
}
|
|
/*
|
|
* Automatic NUMA balancing walks the tables with mmap_lock
|
|
* held for read. It's possible a parallel update to occur
|
|
* between pmd_trans_huge() and a pmd_none_or_clear_bad()
|
|
* check leading to a false positive and clearing.
|
|
* Hence, it's necessary to atomically read the PMD value
|
|
* for all the checks.
|
|
*/
|
|
if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
|
|
pmd_none_or_clear_bad_unless_trans_huge(pmd))
|
|
goto next;
|
|
|
|
/* invoke the mmu notifier if the pmd is populated */
|
|
if (!range.start) {
|
|
mmu_notifier_range_init(&range,
|
|
MMU_NOTIFY_PROTECTION_VMA, 0,
|
|
vma->vm_mm, addr, end);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
}
|
|
|
|
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
|
|
if ((next - addr != HPAGE_PMD_SIZE) ||
|
|
pgtable_split_needed(vma, cp_flags)) {
|
|
__split_huge_pmd(vma, pmd, addr, false, NULL);
|
|
/*
|
|
* For file-backed, the pmd could have been
|
|
* cleared; make sure pmd populated if
|
|
* necessary, then fall-through to pte level.
|
|
*/
|
|
ret = change_pmd_prepare(vma, pmd, cp_flags);
|
|
if (ret) {
|
|
pages = ret;
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* change_huge_pmd() does not defer TLB flushes,
|
|
* so no need to propagate the tlb argument.
|
|
*/
|
|
int nr_ptes = change_huge_pmd(tlb, vma, pmd,
|
|
addr, newprot, cp_flags);
|
|
|
|
if (nr_ptes) {
|
|
if (nr_ptes == HPAGE_PMD_NR) {
|
|
pages += HPAGE_PMD_NR;
|
|
nr_huge_updates++;
|
|
}
|
|
|
|
/* huge pmd was handled */
|
|
goto next;
|
|
}
|
|
}
|
|
/* fall through, the trans huge pmd just split */
|
|
}
|
|
pages += change_pte_range(tlb, vma, pmd, addr, next,
|
|
newprot, cp_flags);
|
|
next:
|
|
cond_resched();
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
if (range.start)
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
|
|
if (nr_huge_updates)
|
|
count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
|
|
return pages;
|
|
}
|
|
|
|
static inline long change_pud_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
|
|
unsigned long end, pgprot_t newprot, unsigned long cp_flags)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
long pages = 0, ret;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
ret = change_prepare(vma, pud, pmd, addr, cp_flags);
|
|
if (ret)
|
|
return ret;
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
|
|
cp_flags);
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static inline long change_p4d_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, pgprot_t newprot, unsigned long cp_flags)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
long pages = 0, ret;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
ret = change_prepare(vma, p4d, pud, addr, cp_flags);
|
|
if (ret)
|
|
return ret;
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
continue;
|
|
pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
|
|
cp_flags);
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static long change_protection_range(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long end, pgprot_t newprot, unsigned long cp_flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
long pages = 0, ret;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset(mm, addr);
|
|
tlb_start_vma(tlb, vma);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
ret = change_prepare(vma, pgd, p4d, addr, cp_flags);
|
|
if (ret) {
|
|
pages = ret;
|
|
break;
|
|
}
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
|
|
cp_flags);
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
tlb_end_vma(tlb, vma);
|
|
|
|
return pages;
|
|
}
|
|
|
|
long change_protection(struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, unsigned long cp_flags)
|
|
{
|
|
pgprot_t newprot = vma->vm_page_prot;
|
|
long pages;
|
|
|
|
BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/*
|
|
* Ordinary protection updates (mprotect, uffd-wp, softdirty tracking)
|
|
* are expected to reflect their requirements via VMA flags such that
|
|
* vma_set_page_prot() will adjust vma->vm_page_prot accordingly.
|
|
*/
|
|
if (cp_flags & MM_CP_PROT_NUMA)
|
|
newprot = PAGE_NONE;
|
|
#else
|
|
WARN_ON_ONCE(cp_flags & MM_CP_PROT_NUMA);
|
|
#endif
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
pages = hugetlb_change_protection(vma, start, end, newprot,
|
|
cp_flags);
|
|
else
|
|
pages = change_protection_range(tlb, vma, start, end, newprot,
|
|
cp_flags);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk)
|
|
{
|
|
return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
|
|
0 : -EACCES;
|
|
}
|
|
|
|
static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long next,
|
|
struct mm_walk *walk)
|
|
{
|
|
return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
|
|
0 : -EACCES;
|
|
}
|
|
|
|
static int prot_none_test(unsigned long addr, unsigned long next,
|
|
struct mm_walk *walk)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct mm_walk_ops prot_none_walk_ops = {
|
|
.pte_entry = prot_none_pte_entry,
|
|
.hugetlb_entry = prot_none_hugetlb_entry,
|
|
.test_walk = prot_none_test,
|
|
};
|
|
|
|
int
|
|
mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
|
|
struct vm_area_struct *vma, struct vm_area_struct **pprev,
|
|
unsigned long start, unsigned long end, unsigned long newflags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long oldflags = vma->vm_flags;
|
|
long nrpages = (end - start) >> PAGE_SHIFT;
|
|
unsigned int mm_cp_flags = 0;
|
|
unsigned long charged = 0;
|
|
pgoff_t pgoff;
|
|
int error;
|
|
|
|
if (newflags == oldflags) {
|
|
*pprev = vma;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do PROT_NONE PFN permission checks here when we can still
|
|
* bail out without undoing a lot of state. This is a rather
|
|
* uncommon case, so doesn't need to be very optimized.
|
|
*/
|
|
if (arch_has_pfn_modify_check() &&
|
|
(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
(newflags & VM_ACCESS_FLAGS) == 0) {
|
|
pgprot_t new_pgprot = vm_get_page_prot(newflags);
|
|
|
|
error = walk_page_range(current->mm, start, end,
|
|
&prot_none_walk_ops, &new_pgprot);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If we make a private mapping writable we increase our commit;
|
|
* but (without finer accounting) cannot reduce our commit if we
|
|
* make it unwritable again. hugetlb mapping were accounted for
|
|
* even if read-only so there is no need to account for them here
|
|
*/
|
|
if (newflags & VM_WRITE) {
|
|
/* Check space limits when area turns into data. */
|
|
if (!may_expand_vm(mm, newflags, nrpages) &&
|
|
may_expand_vm(mm, oldflags, nrpages))
|
|
return -ENOMEM;
|
|
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
|
|
VM_SHARED|VM_NORESERVE))) {
|
|
charged = nrpages;
|
|
if (security_vm_enough_memory_mm(mm, charged))
|
|
return -ENOMEM;
|
|
newflags |= VM_ACCOUNT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* First try to merge with previous and/or next vma.
|
|
*/
|
|
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
|
|
*pprev = vma_merge(vmi, mm, *pprev, start, end, newflags,
|
|
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
|
|
vma->vm_userfaultfd_ctx, anon_vma_name(vma));
|
|
if (*pprev) {
|
|
vma = *pprev;
|
|
VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
|
|
goto success;
|
|
}
|
|
|
|
*pprev = vma;
|
|
|
|
if (start != vma->vm_start) {
|
|
error = split_vma(vmi, vma, start, 1);
|
|
if (error)
|
|
goto fail;
|
|
}
|
|
|
|
if (end != vma->vm_end) {
|
|
error = split_vma(vmi, vma, end, 0);
|
|
if (error)
|
|
goto fail;
|
|
}
|
|
|
|
success:
|
|
/*
|
|
* vm_flags and vm_page_prot are protected by the mmap_lock
|
|
* held in write mode.
|
|
*/
|
|
vm_flags_reset(vma, newflags);
|
|
if (vma_wants_manual_pte_write_upgrade(vma))
|
|
mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
|
|
vma_set_page_prot(vma);
|
|
|
|
change_protection(tlb, vma, start, end, mm_cp_flags);
|
|
|
|
/*
|
|
* Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
|
|
* fault on access.
|
|
*/
|
|
if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
|
|
(newflags & VM_WRITE)) {
|
|
populate_vma_page_range(vma, start, end, NULL);
|
|
}
|
|
|
|
vm_stat_account(mm, oldflags, -nrpages);
|
|
vm_stat_account(mm, newflags, nrpages);
|
|
perf_event_mmap(vma);
|
|
return 0;
|
|
|
|
fail:
|
|
vm_unacct_memory(charged);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* pkey==-1 when doing a legacy mprotect()
|
|
*/
|
|
static int do_mprotect_pkey(unsigned long start, size_t len,
|
|
unsigned long prot, int pkey)
|
|
{
|
|
unsigned long nstart, end, tmp, reqprot;
|
|
struct vm_area_struct *vma, *prev;
|
|
int error;
|
|
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
|
|
const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
|
|
(prot & PROT_READ);
|
|
struct mmu_gather tlb;
|
|
struct vma_iterator vmi;
|
|
|
|
start = untagged_addr(start);
|
|
|
|
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
|
|
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
|
|
return -EINVAL;
|
|
|
|
if (start & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
if (!len)
|
|
return 0;
|
|
len = PAGE_ALIGN(len);
|
|
end = start + len;
|
|
if (end <= start)
|
|
return -ENOMEM;
|
|
if (!arch_validate_prot(prot, start))
|
|
return -EINVAL;
|
|
|
|
reqprot = prot;
|
|
|
|
if (mmap_write_lock_killable(current->mm))
|
|
return -EINTR;
|
|
|
|
/*
|
|
* If userspace did not allocate the pkey, do not let
|
|
* them use it here.
|
|
*/
|
|
error = -EINVAL;
|
|
if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
|
|
goto out;
|
|
|
|
vma_iter_init(&vmi, current->mm, start);
|
|
vma = vma_find(&vmi, end);
|
|
error = -ENOMEM;
|
|
if (!vma)
|
|
goto out;
|
|
|
|
if (unlikely(grows & PROT_GROWSDOWN)) {
|
|
if (vma->vm_start >= end)
|
|
goto out;
|
|
start = vma->vm_start;
|
|
error = -EINVAL;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto out;
|
|
} else {
|
|
if (vma->vm_start > start)
|
|
goto out;
|
|
if (unlikely(grows & PROT_GROWSUP)) {
|
|
end = vma->vm_end;
|
|
error = -EINVAL;
|
|
if (!(vma->vm_flags & VM_GROWSUP))
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
prev = vma_prev(&vmi);
|
|
if (start > vma->vm_start)
|
|
prev = vma;
|
|
|
|
tlb_gather_mmu(&tlb, current->mm);
|
|
nstart = start;
|
|
tmp = vma->vm_start;
|
|
for_each_vma_range(vmi, vma, end) {
|
|
unsigned long mask_off_old_flags;
|
|
unsigned long newflags;
|
|
int new_vma_pkey;
|
|
|
|
if (vma->vm_start != tmp) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/* Does the application expect PROT_READ to imply PROT_EXEC */
|
|
if (rier && (vma->vm_flags & VM_MAYEXEC))
|
|
prot |= PROT_EXEC;
|
|
|
|
/*
|
|
* Each mprotect() call explicitly passes r/w/x permissions.
|
|
* If a permission is not passed to mprotect(), it must be
|
|
* cleared from the VMA.
|
|
*/
|
|
mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR;
|
|
|
|
new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
|
|
newflags = calc_vm_prot_bits(prot, new_vma_pkey);
|
|
newflags |= (vma->vm_flags & ~mask_off_old_flags);
|
|
|
|
/* newflags >> 4 shift VM_MAY% in place of VM_% */
|
|
if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
|
|
error = -EACCES;
|
|
break;
|
|
}
|
|
|
|
if (map_deny_write_exec(vma, newflags)) {
|
|
error = -EACCES;
|
|
break;
|
|
}
|
|
|
|
/* Allow architectures to sanity-check the new flags */
|
|
if (!arch_validate_flags(newflags)) {
|
|
error = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
error = security_file_mprotect(vma, reqprot, prot);
|
|
if (error)
|
|
break;
|
|
|
|
tmp = vma->vm_end;
|
|
if (tmp > end)
|
|
tmp = end;
|
|
|
|
if (vma->vm_ops && vma->vm_ops->mprotect) {
|
|
error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
error = mprotect_fixup(&vmi, &tlb, vma, &prev, nstart, tmp, newflags);
|
|
if (error)
|
|
break;
|
|
|
|
tmp = vma_iter_end(&vmi);
|
|
nstart = tmp;
|
|
prot = reqprot;
|
|
}
|
|
tlb_finish_mmu(&tlb);
|
|
|
|
if (!error && vma_iter_end(&vmi) < end)
|
|
error = -ENOMEM;
|
|
|
|
out:
|
|
mmap_write_unlock(current->mm);
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
|
|
unsigned long, prot)
|
|
{
|
|
return do_mprotect_pkey(start, len, prot, -1);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
|
|
|
SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
|
|
unsigned long, prot, int, pkey)
|
|
{
|
|
return do_mprotect_pkey(start, len, prot, pkey);
|
|
}
|
|
|
|
SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
|
|
{
|
|
int pkey;
|
|
int ret;
|
|
|
|
/* No flags supported yet. */
|
|
if (flags)
|
|
return -EINVAL;
|
|
/* check for unsupported init values */
|
|
if (init_val & ~PKEY_ACCESS_MASK)
|
|
return -EINVAL;
|
|
|
|
mmap_write_lock(current->mm);
|
|
pkey = mm_pkey_alloc(current->mm);
|
|
|
|
ret = -ENOSPC;
|
|
if (pkey == -1)
|
|
goto out;
|
|
|
|
ret = arch_set_user_pkey_access(current, pkey, init_val);
|
|
if (ret) {
|
|
mm_pkey_free(current->mm, pkey);
|
|
goto out;
|
|
}
|
|
ret = pkey;
|
|
out:
|
|
mmap_write_unlock(current->mm);
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE1(pkey_free, int, pkey)
|
|
{
|
|
int ret;
|
|
|
|
mmap_write_lock(current->mm);
|
|
ret = mm_pkey_free(current->mm, pkey);
|
|
mmap_write_unlock(current->mm);
|
|
|
|
/*
|
|
* We could provide warnings or errors if any VMA still
|
|
* has the pkey set here.
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_ARCH_HAS_PKEYS */
|