linux/fs/xfs/scrub/agheader_repair.c
Darrick J. Wong ab97f4b1c0 xfs: repair AGI unlinked inode bucket lists
Teach the AGI repair code to rebuild the unlinked buckets and lists.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-04-15 14:58:58 -07:00

1811 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_ag.h"
#include "xfs_inode.h"
#include "xfs_iunlink_item.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/agino_bitmap.h"
#include "scrub/reap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
/* Superblock */
/* Repair the superblock. */
int
xrep_superblock(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
struct xfs_buf *bp;
xfs_agnumber_t agno;
int error;
/* Don't try to repair AG 0's sb; let xfs_repair deal with it. */
agno = sc->sm->sm_agno;
if (agno == 0)
return -EOPNOTSUPP;
error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
return error;
/* Copy AG 0's superblock to this one. */
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
/*
* Don't write out a secondary super with NEEDSREPAIR or log incompat
* features set, since both are ignored when set on a secondary.
*/
if (xfs_has_crc(mp)) {
struct xfs_dsb *sb = bp->b_addr;
sb->sb_features_incompat &=
~cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR);
sb->sb_features_log_incompat = 0;
}
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1);
return 0;
}
/* AGF */
struct xrep_agf_allocbt {
struct xfs_scrub *sc;
xfs_agblock_t freeblks;
xfs_agblock_t longest;
};
/* Record free space shape information. */
STATIC int
xrep_agf_walk_allocbt(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xrep_agf_allocbt *raa = priv;
int error = 0;
if (xchk_should_terminate(raa->sc, &error))
return error;
raa->freeblks += rec->ar_blockcount;
if (rec->ar_blockcount > raa->longest)
raa->longest = rec->ar_blockcount;
return error;
}
/* Does this AGFL block look sane? */
STATIC int
xrep_agf_check_agfl_block(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xfs_scrub *sc = priv;
if (!xfs_verify_agbno(sc->sa.pag, agbno))
return -EFSCORRUPTED;
return 0;
}
/*
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
* XFS_BTNUM_ names here to avoid creating a sparse array.
*/
enum {
XREP_AGF_BNOBT = 0,
XREP_AGF_CNTBT,
XREP_AGF_RMAPBT,
XREP_AGF_REFCOUNTBT,
XREP_AGF_END,
XREP_AGF_MAX
};
/* Check a btree root candidate. */
static inline bool
xrep_check_btree_root(
struct xfs_scrub *sc,
struct xrep_find_ag_btree *fab)
{
return xfs_verify_agbno(sc->sa.pag, fab->root) &&
fab->height <= fab->maxlevels;
}
/*
* Given the btree roots described by *fab, find the roots, check them for
* sanity, and pass the root data back out via *fab.
*
* This is /also/ a chicken and egg problem because we have to use the rmapbt
* (rooted in the AGF) to find the btrees rooted in the AGF. We also have no
* idea if the btrees make any sense. If we hit obvious corruptions in those
* btrees we'll bail out.
*/
STATIC int
xrep_agf_find_btrees(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xrep_find_ag_btree *fab,
struct xfs_buf *agfl_bp)
{
struct xfs_agf *old_agf = agf_bp->b_addr;
int error;
/* Go find the root data. */
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp);
if (error)
return error;
/* We must find the bnobt, cntbt, and rmapbt roots. */
if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) ||
!xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) ||
!xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT]))
return -EFSCORRUPTED;
/*
* We relied on the rmapbt to reconstruct the AGF. If we get a
* different root then something's seriously wrong.
*/
if (fab[XREP_AGF_RMAPBT].root != be32_to_cpu(old_agf->agf_rmap_root))
return -EFSCORRUPTED;
/* We must find the refcountbt root if that feature is enabled. */
if (xfs_has_reflink(sc->mp) &&
!xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT]))
return -EFSCORRUPTED;
return 0;
}
/*
* Reinitialize the AGF header, making an in-core copy of the old contents so
* that we know which in-core state needs to be reinitialized.
*/
STATIC void
xrep_agf_init_header(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xfs_agf *old_agf)
{
struct xfs_mount *mp = sc->mp;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = agf_bp->b_addr;
memcpy(old_agf, agf, sizeof(*old_agf));
memset(agf, 0, BBTOB(agf_bp->b_length));
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(pag->pag_agno);
agf->agf_length = cpu_to_be32(pag->block_count);
agf->agf_flfirst = old_agf->agf_flfirst;
agf->agf_fllast = old_agf->agf_fllast;
agf->agf_flcount = old_agf->agf_flcount;
if (xfs_has_crc(mp))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
/* Mark the incore AGF data stale until we're done fixing things. */
ASSERT(xfs_perag_initialised_agf(pag));
clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
}
/* Set btree root information in an AGF. */
STATIC void
xrep_agf_set_roots(
struct xfs_scrub *sc,
struct xfs_agf *agf,
struct xrep_find_ag_btree *fab)
{
agf->agf_bno_root = cpu_to_be32(fab[XREP_AGF_BNOBT].root);
agf->agf_bno_level = cpu_to_be32(fab[XREP_AGF_BNOBT].height);
agf->agf_cnt_root = cpu_to_be32(fab[XREP_AGF_CNTBT].root);
agf->agf_cnt_level = cpu_to_be32(fab[XREP_AGF_CNTBT].height);
agf->agf_rmap_root = cpu_to_be32(fab[XREP_AGF_RMAPBT].root);
agf->agf_rmap_level = cpu_to_be32(fab[XREP_AGF_RMAPBT].height);
if (xfs_has_reflink(sc->mp)) {
agf->agf_refcount_root =
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root);
agf->agf_refcount_level =
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height);
}
}
/* Update all AGF fields which derive from btree contents. */
STATIC int
xrep_agf_calc_from_btrees(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp)
{
struct xrep_agf_allocbt raa = { .sc = sc };
struct xfs_btree_cur *cur = NULL;
struct xfs_agf *agf = agf_bp->b_addr;
struct xfs_mount *mp = sc->mp;
xfs_agblock_t btreeblks;
xfs_agblock_t blocks;
int error;
/* Update the AGF counters from the bnobt. */
cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa);
if (error)
goto err;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
btreeblks = blocks - 1;
agf->agf_freeblks = cpu_to_be32(raa.freeblks);
agf->agf_longest = cpu_to_be32(raa.longest);
/* Update the AGF counters from the cntbt. */
cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
btreeblks += blocks - 1;
/* Update the AGF counters from the rmapbt. */
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agf->agf_rmap_blocks = cpu_to_be32(blocks);
btreeblks += blocks - 1;
agf->agf_btreeblks = cpu_to_be32(btreeblks);
/* Update the AGF counters from the refcountbt. */
if (xfs_has_reflink(mp)) {
cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agf->agf_refcount_blocks = cpu_to_be32(blocks);
}
return 0;
err:
xfs_btree_del_cursor(cur, error);
return error;
}
/* Commit the new AGF and reinitialize the incore state. */
STATIC int
xrep_agf_commit_new(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp)
{
struct xfs_perag *pag;
struct xfs_agf *agf = agf_bp->b_addr;
/* Trigger fdblocks recalculation */
xfs_force_summary_recalc(sc->mp);
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF);
xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1);
/* Now reinitialize the in-core counters we changed. */
pag = sc->sa.pag;
pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
pag->pagf_longest = be32_to_cpu(agf->agf_longest);
pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
return xrep_roll_ag_trans(sc);
}
/* Repair the AGF. v5 filesystems only. */
int
xrep_agf(
struct xfs_scrub *sc)
{
struct xrep_find_ag_btree fab[XREP_AGF_MAX] = {
[XREP_AGF_BNOBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_bnobt_buf_ops,
.maxlevels = sc->mp->m_alloc_maxlevels,
},
[XREP_AGF_CNTBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_cntbt_buf_ops,
.maxlevels = sc->mp->m_alloc_maxlevels,
},
[XREP_AGF_RMAPBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_rmapbt_buf_ops,
.maxlevels = sc->mp->m_rmap_maxlevels,
},
[XREP_AGF_REFCOUNTBT] = {
.rmap_owner = XFS_RMAP_OWN_REFC,
.buf_ops = &xfs_refcountbt_buf_ops,
.maxlevels = sc->mp->m_refc_maxlevels,
},
[XREP_AGF_END] = {
.buf_ops = NULL,
},
};
struct xfs_agf old_agf;
struct xfs_mount *mp = sc->mp;
struct xfs_buf *agf_bp;
struct xfs_buf *agfl_bp;
struct xfs_agf *agf;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
/*
* Make sure we have the AGF buffer, as scrub might have decided it
* was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGF_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL);
if (error)
return error;
agf_bp->b_ops = &xfs_agf_buf_ops;
agf = agf_bp->b_addr;
/*
* Load the AGFL so that we can screen out OWN_AG blocks that are on
* the AGFL now; these blocks might have once been part of the
* bno/cnt/rmap btrees but are not now. This is a chicken and egg
* problem: the AGF is corrupt, so we have to trust the AGFL contents
* because we can't do any serious cross-referencing with any of the
* btrees rooted in the AGF. If the AGFL contents are obviously bad
* then we'll bail out.
*/
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
return error;
/*
* Spot-check the AGFL blocks; if they're obviously corrupt then
* there's nothing we can do but bail out.
*/
error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp,
xrep_agf_check_agfl_block, sc);
if (error)
return error;
/*
* Find the AGF btree roots. This is also a chicken-and-egg situation;
* see the function for more details.
*/
error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
return error;
/* Start rewriting the header and implant the btrees we found. */
xrep_agf_init_header(sc, agf_bp, &old_agf);
xrep_agf_set_roots(sc, agf, fab);
error = xrep_agf_calc_from_btrees(sc, agf_bp);
if (error)
goto out_revert;
/* Commit the changes and reinitialize incore state. */
return xrep_agf_commit_new(sc, agf_bp);
out_revert:
/* Mark the incore AGF state stale and revert the AGF. */
clear_bit(XFS_AGSTATE_AGF_INIT, &sc->sa.pag->pag_opstate);
memcpy(agf, &old_agf, sizeof(old_agf));
return error;
}
/* AGFL */
struct xrep_agfl {
/* Bitmap of alleged AGFL blocks that we're not going to add. */
struct xagb_bitmap crossed;
/* Bitmap of other OWN_AG metadata blocks. */
struct xagb_bitmap agmetablocks;
/* Bitmap of free space. */
struct xagb_bitmap *freesp;
/* rmapbt cursor for finding crosslinked blocks */
struct xfs_btree_cur *rmap_cur;
struct xfs_scrub *sc;
};
/* Record all OWN_AG (free space btree) information from the rmap data. */
STATIC int
xrep_agfl_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_agfl *ra = priv;
int error = 0;
if (xchk_should_terminate(ra->sc, &error))
return error;
/* Record all the OWN_AG blocks. */
if (rec->rm_owner == XFS_RMAP_OWN_AG) {
error = xagb_bitmap_set(ra->freesp, rec->rm_startblock,
rec->rm_blockcount);
if (error)
return error;
}
return xagb_bitmap_set_btcur_path(&ra->agmetablocks, cur);
}
/* Strike out the blocks that are cross-linked according to the rmapbt. */
STATIC int
xrep_agfl_check_extent(
uint32_t agbno,
uint32_t len,
void *priv)
{
struct xrep_agfl *ra = priv;
xfs_agblock_t last_agbno = agbno + len - 1;
int error;
while (agbno <= last_agbno) {
bool other_owners;
error = xfs_rmap_has_other_keys(ra->rmap_cur, agbno, 1,
&XFS_RMAP_OINFO_AG, &other_owners);
if (error)
return error;
if (other_owners) {
error = xagb_bitmap_set(&ra->crossed, agbno, 1);
if (error)
return error;
}
if (xchk_should_terminate(ra->sc, &error))
return error;
agbno++;
}
return 0;
}
/*
* Map out all the non-AGFL OWN_AG space in this AG so that we can deduce
* which blocks belong to the AGFL.
*
* Compute the set of old AGFL blocks by subtracting from the list of OWN_AG
* blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt,
* rmapbt). These are the old AGFL blocks, so return that list and the number
* of blocks we're actually going to put back on the AGFL.
*/
STATIC int
xrep_agfl_collect_blocks(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xagb_bitmap *agfl_extents,
xfs_agblock_t *flcount)
{
struct xrep_agfl ra;
struct xfs_mount *mp = sc->mp;
struct xfs_btree_cur *cur;
int error;
ra.sc = sc;
ra.freesp = agfl_extents;
xagb_bitmap_init(&ra.agmetablocks);
xagb_bitmap_init(&ra.crossed);
/* Find all space used by the free space btrees & rmapbt. */
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/* Find all blocks currently being used by the bnobt. */
cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/* Find all blocks currently being used by the cntbt. */
cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/*
* Drop the freesp meta blocks that are in use by btrees.
* The remaining blocks /should/ be AGFL blocks.
*/
error = xagb_bitmap_disunion(agfl_extents, &ra.agmetablocks);
if (error)
goto out_bmp;
/* Strike out the blocks that are cross-linked. */
ra.rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xagb_bitmap_walk(agfl_extents, xrep_agfl_check_extent, &ra);
xfs_btree_del_cursor(ra.rmap_cur, error);
if (error)
goto out_bmp;
error = xagb_bitmap_disunion(agfl_extents, &ra.crossed);
if (error)
goto out_bmp;
/*
* Calculate the new AGFL size. If we found more blocks than fit in
* the AGFL we'll free them later.
*/
*flcount = min_t(uint64_t, xagb_bitmap_hweight(agfl_extents),
xfs_agfl_size(mp));
out_bmp:
xagb_bitmap_destroy(&ra.crossed);
xagb_bitmap_destroy(&ra.agmetablocks);
return error;
}
/* Update the AGF and reset the in-core state. */
STATIC void
xrep_agfl_update_agf(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
xfs_agblock_t flcount)
{
struct xfs_agf *agf = agf_bp->b_addr;
ASSERT(flcount <= xfs_agfl_size(sc->mp));
/* Trigger fdblocks recalculation */
xfs_force_summary_recalc(sc->mp);
/* Update the AGF counters. */
if (xfs_perag_initialised_agf(sc->sa.pag)) {
sc->sa.pag->pagf_flcount = flcount;
clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET,
&sc->sa.pag->pag_opstate);
}
agf->agf_flfirst = cpu_to_be32(0);
agf->agf_flcount = cpu_to_be32(flcount);
if (flcount)
agf->agf_fllast = cpu_to_be32(flcount - 1);
else
agf->agf_fllast = cpu_to_be32(xfs_agfl_size(sc->mp) - 1);
xfs_alloc_log_agf(sc->tp, agf_bp,
XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT);
}
struct xrep_agfl_fill {
struct xagb_bitmap used_extents;
struct xfs_scrub *sc;
__be32 *agfl_bno;
xfs_agblock_t flcount;
unsigned int fl_off;
};
/* Fill the AGFL with whatever blocks are in this extent. */
static int
xrep_agfl_fill(
uint32_t start,
uint32_t len,
void *priv)
{
struct xrep_agfl_fill *af = priv;
struct xfs_scrub *sc = af->sc;
xfs_agblock_t agbno = start;
int error;
trace_xrep_agfl_insert(sc->sa.pag, agbno, len);
while (agbno < start + len && af->fl_off < af->flcount)
af->agfl_bno[af->fl_off++] = cpu_to_be32(agbno++);
error = xagb_bitmap_set(&af->used_extents, start, agbno - 1);
if (error)
return error;
if (af->fl_off == af->flcount)
return -ECANCELED;
return 0;
}
/* Write out a totally new AGFL. */
STATIC int
xrep_agfl_init_header(
struct xfs_scrub *sc,
struct xfs_buf *agfl_bp,
struct xagb_bitmap *agfl_extents,
xfs_agblock_t flcount)
{
struct xrep_agfl_fill af = {
.sc = sc,
.flcount = flcount,
};
struct xfs_mount *mp = sc->mp;
struct xfs_agfl *agfl;
int error;
ASSERT(flcount <= xfs_agfl_size(mp));
/*
* Start rewriting the header by setting the bno[] array to
* NULLAGBLOCK, then setting AGFL header fields.
*/
agfl = XFS_BUF_TO_AGFL(agfl_bp);
memset(agfl, 0xFF, BBTOB(agfl_bp->b_length));
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(sc->sa.pag->pag_agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
/*
* Fill the AGFL with the remaining blocks. If agfl_extents has more
* blocks than fit in the AGFL, they will be freed in a subsequent
* step.
*/
xagb_bitmap_init(&af.used_extents);
af.agfl_bno = xfs_buf_to_agfl_bno(agfl_bp),
xagb_bitmap_walk(agfl_extents, xrep_agfl_fill, &af);
error = xagb_bitmap_disunion(agfl_extents, &af.used_extents);
if (error)
return error;
/* Write new AGFL to disk. */
xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF);
xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1);
xagb_bitmap_destroy(&af.used_extents);
return 0;
}
/* Repair the AGFL. */
int
xrep_agfl(
struct xfs_scrub *sc)
{
struct xagb_bitmap agfl_extents;
struct xfs_mount *mp = sc->mp;
struct xfs_buf *agf_bp;
struct xfs_buf *agfl_bp;
xfs_agblock_t flcount;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
xagb_bitmap_init(&agfl_extents);
/*
* Read the AGF so that we can query the rmapbt. We hope that there's
* nothing wrong with the AGF, but all the AG header repair functions
* have this chicken-and-egg problem.
*/
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
if (error)
return error;
/*
* Make sure we have the AGFL buffer, as scrub might have decided it
* was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGFL_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL);
if (error)
return error;
agfl_bp->b_ops = &xfs_agfl_buf_ops;
/* Gather all the extents we're going to put on the new AGFL. */
error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount);
if (error)
goto err;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
goto err;
/*
* Update AGF and AGFL. We reset the global free block counter when
* we adjust the AGF flcount (which can fail) so avoid updating any
* buffers until we know that part works.
*/
xrep_agfl_update_agf(sc, agf_bp, flcount);
error = xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount);
if (error)
goto err;
/*
* Ok, the AGFL should be ready to go now. Roll the transaction to
* make the new AGFL permanent before we start using it to return
* freespace overflow to the freespace btrees.
*/
sc->sa.agf_bp = agf_bp;
error = xrep_roll_ag_trans(sc);
if (error)
goto err;
/* Dump any AGFL overflow. */
error = xrep_reap_agblocks(sc, &agfl_extents, &XFS_RMAP_OINFO_AG,
XFS_AG_RESV_AGFL);
if (error)
goto err;
err:
xagb_bitmap_destroy(&agfl_extents);
return error;
}
/* AGI */
/*
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
* XFS_BTNUM_ names here to avoid creating a sparse array.
*/
enum {
XREP_AGI_INOBT = 0,
XREP_AGI_FINOBT,
XREP_AGI_END,
XREP_AGI_MAX
};
#define XREP_AGI_LOOKUP_BATCH 32
struct xrep_agi {
struct xfs_scrub *sc;
/* AGI buffer, tracked separately */
struct xfs_buf *agi_bp;
/* context for finding btree roots */
struct xrep_find_ag_btree fab[XREP_AGI_MAX];
/* old AGI contents in case we have to revert */
struct xfs_agi old_agi;
/* bitmap of which inodes are unlinked */
struct xagino_bitmap iunlink_bmp;
/* heads of the unlinked inode bucket lists */
xfs_agino_t iunlink_heads[XFS_AGI_UNLINKED_BUCKETS];
/* scratchpad for batched lookups of the radix tree */
struct xfs_inode *lookup_batch[XREP_AGI_LOOKUP_BATCH];
/* Map of ino -> next_ino for unlinked inode processing. */
struct xfarray *iunlink_next;
/* Map of ino -> prev_ino for unlinked inode processing. */
struct xfarray *iunlink_prev;
};
static void
xrep_agi_buf_cleanup(
void *buf)
{
struct xrep_agi *ragi = buf;
xfarray_destroy(ragi->iunlink_prev);
xfarray_destroy(ragi->iunlink_next);
xagino_bitmap_destroy(&ragi->iunlink_bmp);
}
/*
* Given the inode btree roots described by *fab, find the roots, check them
* for sanity, and pass the root data back out via *fab.
*/
STATIC int
xrep_agi_find_btrees(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xrep_find_ag_btree *fab = ragi->fab;
struct xfs_buf *agf_bp;
struct xfs_mount *mp = sc->mp;
int error;
/* Read the AGF. */
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
if (error)
return error;
/* Find the btree roots. */
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL);
if (error)
return error;
/* We must find the inobt root. */
if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT]))
return -EFSCORRUPTED;
/* We must find the finobt root if that feature is enabled. */
if (xfs_has_finobt(mp) &&
!xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT]))
return -EFSCORRUPTED;
return 0;
}
/*
* Reinitialize the AGI header, making an in-core copy of the old contents so
* that we know which in-core state needs to be reinitialized.
*/
STATIC void
xrep_agi_init_header(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_buf *agi_bp = ragi->agi_bp;
struct xfs_agi *old_agi = &ragi->old_agi;
struct xfs_agi *agi = agi_bp->b_addr;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_mount *mp = sc->mp;
memcpy(old_agi, agi, sizeof(*old_agi));
memset(agi, 0, BBTOB(agi_bp->b_length));
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(pag->pag_agno);
agi->agi_length = cpu_to_be32(pag->block_count);
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_has_crc(mp))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
/* Mark the incore AGF data stale until we're done fixing things. */
ASSERT(xfs_perag_initialised_agi(pag));
clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
}
/* Set btree root information in an AGI. */
STATIC void
xrep_agi_set_roots(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_agi *agi = ragi->agi_bp->b_addr;
struct xrep_find_ag_btree *fab = ragi->fab;
agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root);
agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height);
if (xfs_has_finobt(sc->mp)) {
agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root);
agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height);
}
}
/* Update the AGI counters. */
STATIC int
xrep_agi_calc_from_btrees(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_buf *agi_bp = ragi->agi_bp;
struct xfs_btree_cur *cur;
struct xfs_agi *agi = agi_bp->b_addr;
struct xfs_mount *mp = sc->mp;
xfs_agino_t count;
xfs_agino_t freecount;
int error;
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
error = xfs_ialloc_count_inodes(cur, &count, &freecount);
if (error)
goto err;
if (xfs_has_inobtcounts(mp)) {
xfs_agblock_t blocks;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
agi->agi_iblocks = cpu_to_be32(blocks);
}
xfs_btree_del_cursor(cur, error);
agi->agi_count = cpu_to_be32(count);
agi->agi_freecount = cpu_to_be32(freecount);
if (xfs_has_finobt(mp) && xfs_has_inobtcounts(mp)) {
xfs_agblock_t blocks;
cur = xfs_finobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agi->agi_fblocks = cpu_to_be32(blocks);
}
return 0;
err:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Record a forwards unlinked chain pointer from agino -> next_agino in our
* staging information.
*/
static inline int
xrep_iunlink_store_next(
struct xrep_agi *ragi,
xfs_agino_t agino,
xfs_agino_t next_agino)
{
ASSERT(next_agino != 0);
return xfarray_store(ragi->iunlink_next, agino, &next_agino);
}
/*
* Record a backwards unlinked chain pointer from prev_ino <- agino in our
* staging information.
*/
static inline int
xrep_iunlink_store_prev(
struct xrep_agi *ragi,
xfs_agino_t agino,
xfs_agino_t prev_agino)
{
ASSERT(prev_agino != 0);
return xfarray_store(ragi->iunlink_prev, agino, &prev_agino);
}
/*
* Given an @agino, look up the next inode in the iunlink bucket. Returns
* NULLAGINO if we're at the end of the chain, 0 if @agino is not in memory
* like it should be, or a per-AG inode number.
*/
static inline xfs_agino_t
xrep_iunlink_next(
struct xfs_scrub *sc,
xfs_agino_t agino)
{
struct xfs_inode *ip;
ip = xfs_iunlink_lookup(sc->sa.pag, agino);
if (!ip)
return 0;
return ip->i_next_unlinked;
}
/*
* Load the inode @agino into memory, set its i_prev_unlinked, and drop the
* inode so it can be inactivated. Returns NULLAGINO if we're at the end of
* the chain or if we should stop walking the chain due to corruption; or a
* per-AG inode number.
*/
STATIC xfs_agino_t
xrep_iunlink_reload_next(
struct xrep_agi *ragi,
xfs_agino_t prev_agino,
xfs_agino_t agino)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_inode *ip;
xfs_ino_t ino;
xfs_agino_t ret = NULLAGINO;
int error;
ino = XFS_AGINO_TO_INO(sc->mp, sc->sa.pag->pag_agno, agino);
error = xchk_iget(ragi->sc, ino, &ip);
if (error)
return ret;
trace_xrep_iunlink_reload_next(ip, prev_agino);
/* If this is a linked inode, stop processing the chain. */
if (VFS_I(ip)->i_nlink != 0) {
xrep_iunlink_store_next(ragi, agino, NULLAGINO);
goto rele;
}
ip->i_prev_unlinked = prev_agino;
ret = ip->i_next_unlinked;
/*
* Drop the inode reference that we just took. We hold the AGI, so
* this inode cannot move off the unlinked list and hence cannot be
* reclaimed.
*/
rele:
xchk_irele(sc, ip);
return ret;
}
/*
* Walk an AGI unlinked bucket's list to load incore any unlinked inodes that
* still existed at mount time. This can happen if iunlink processing fails
* during log recovery.
*/
STATIC int
xrep_iunlink_walk_ondisk_bucket(
struct xrep_agi *ragi,
unsigned int bucket)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
xfs_agino_t prev_agino = NULLAGINO;
xfs_agino_t next_agino;
int error = 0;
next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
while (next_agino != NULLAGINO) {
xfs_agino_t agino = next_agino;
if (xchk_should_terminate(ragi->sc, &error))
return error;
trace_xrep_iunlink_walk_ondisk_bucket(sc->sa.pag, bucket,
prev_agino, agino);
if (bucket != agino % XFS_AGI_UNLINKED_BUCKETS)
break;
next_agino = xrep_iunlink_next(sc, agino);
if (!next_agino)
next_agino = xrep_iunlink_reload_next(ragi, prev_agino,
agino);
prev_agino = agino;
}
return 0;
}
/* Decide if this is an unlinked inode in this AG. */
STATIC bool
xrep_iunlink_igrab(
struct xfs_perag *pag,
struct xfs_inode *ip)
{
struct xfs_mount *mp = pag->pag_mount;
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
return false;
if (!xfs_inode_on_unlinked_list(ip))
return false;
return true;
}
/*
* Mark the given inode in the lookup batch in our unlinked inode bitmap, and
* remember if this inode is the start of the unlinked chain.
*/
STATIC int
xrep_iunlink_visit(
struct xrep_agi *ragi,
unsigned int batch_idx)
{
struct xfs_mount *mp = ragi->sc->mp;
struct xfs_inode *ip = ragi->lookup_batch[batch_idx];
xfs_agino_t agino;
unsigned int bucket;
int error;
ASSERT(XFS_INO_TO_AGNO(mp, ip->i_ino) == ragi->sc->sa.pag->pag_agno);
ASSERT(xfs_inode_on_unlinked_list(ip));
agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
trace_xrep_iunlink_visit(ragi->sc->sa.pag, bucket,
ragi->iunlink_heads[bucket], ip);
error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1);
if (error)
return error;
if (ip->i_prev_unlinked == NULLAGINO) {
if (ragi->iunlink_heads[bucket] == NULLAGINO)
ragi->iunlink_heads[bucket] = agino;
}
return 0;
}
/*
* Find all incore unlinked inodes so that we can rebuild the unlinked buckets.
* We hold the AGI so there should not be any modifications to the unlinked
* list.
*/
STATIC int
xrep_iunlink_mark_incore(
struct xrep_agi *ragi)
{
struct xfs_perag *pag = ragi->sc->sa.pag;
struct xfs_mount *mp = pag->pag_mount;
uint32_t first_index = 0;
bool done = false;
unsigned int nr_found = 0;
do {
unsigned int i;
int error = 0;
if (xchk_should_terminate(ragi->sc, &error))
return error;
rcu_read_lock();
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
(void **)&ragi->lookup_batch, first_index,
XREP_AGI_LOOKUP_BATCH);
if (!nr_found) {
rcu_read_unlock();
return 0;
}
for (i = 0; i < nr_found; i++) {
struct xfs_inode *ip = ragi->lookup_batch[i];
if (done || !xrep_iunlink_igrab(pag, ip))
ragi->lookup_batch[i] = NULL;
/*
* Update the index for the next lookup. Catch
* overflows into the next AG range which can occur if
* we have inodes in the last block of the AG and we
* are currently pointing to the last inode.
*
* Because we may see inodes that are from the wrong AG
* due to RCU freeing and reallocation, only update the
* index if it lies in this AG. It was a race that lead
* us to see this inode, so another lookup from the
* same index will not find it again.
*/
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
continue;
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
done = true;
}
/* unlock now we've grabbed the inodes. */
rcu_read_unlock();
for (i = 0; i < nr_found; i++) {
if (!ragi->lookup_batch[i])
continue;
error = xrep_iunlink_visit(ragi, i);
if (error)
return error;
}
} while (!done);
return 0;
}
/* Mark all the unlinked ondisk inodes in this inobt record in iunlink_bmp. */
STATIC int
xrep_iunlink_mark_ondisk_rec(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *rec,
void *priv)
{
struct xfs_inobt_rec_incore irec;
struct xrep_agi *ragi = priv;
struct xfs_scrub *sc = ragi->sc;
struct xfs_mount *mp = cur->bc_mp;
xfs_agino_t agino;
unsigned int i;
int error = 0;
xfs_inobt_btrec_to_irec(mp, rec, &irec);
for (i = 0, agino = irec.ir_startino;
i < XFS_INODES_PER_CHUNK;
i++, agino++) {
struct xfs_inode *ip;
unsigned int len = 1;
/* Skip free inodes */
if (XFS_INOBT_MASK(i) & irec.ir_free)
continue;
/* Skip inodes we've seen before */
if (xagino_bitmap_test(&ragi->iunlink_bmp, agino, &len))
continue;
/*
* Skip incore inodes; these were already picked up by
* the _mark_incore step.
*/
rcu_read_lock();
ip = radix_tree_lookup(&sc->sa.pag->pag_ici_root, agino);
rcu_read_unlock();
if (ip)
continue;
/*
* Try to look up this inode. If we can't get it, just move
* on because we haven't actually scrubbed the inobt or the
* inodes yet.
*/
error = xchk_iget(ragi->sc,
XFS_AGINO_TO_INO(mp, sc->sa.pag->pag_agno,
agino),
&ip);
if (error)
continue;
trace_xrep_iunlink_reload_ondisk(ip);
if (VFS_I(ip)->i_nlink == 0)
error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1);
xchk_irele(sc, ip);
if (error)
break;
}
return error;
}
/*
* Find ondisk inodes that are unlinked and not in cache, and mark them in
* iunlink_bmp. We haven't checked the inobt yet, so we don't error out if
* the btree is corrupt.
*/
STATIC void
xrep_iunlink_mark_ondisk(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_buf *agi_bp = ragi->agi_bp;
struct xfs_btree_cur *cur;
int error;
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp);
error = xfs_btree_query_all(cur, xrep_iunlink_mark_ondisk_rec, ragi);
xfs_btree_del_cursor(cur, error);
}
/*
* Walk an iunlink bucket's inode list. For each inode that should be on this
* chain, clear its entry in in iunlink_bmp because it's ok and we don't need
* to touch it further.
*/
STATIC int
xrep_iunlink_resolve_bucket(
struct xrep_agi *ragi,
unsigned int bucket)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_inode *ip;
xfs_agino_t prev_agino = NULLAGINO;
xfs_agino_t next_agino = ragi->iunlink_heads[bucket];
int error = 0;
while (next_agino != NULLAGINO) {
if (xchk_should_terminate(ragi->sc, &error))
return error;
/* Find the next inode in the chain. */
ip = xfs_iunlink_lookup(sc->sa.pag, next_agino);
if (!ip) {
/* Inode not incore? Terminate the chain. */
trace_xrep_iunlink_resolve_uncached(sc->sa.pag,
bucket, prev_agino, next_agino);
next_agino = NULLAGINO;
break;
}
if (next_agino % XFS_AGI_UNLINKED_BUCKETS != bucket) {
/*
* Inode is in the wrong bucket. Advance the list,
* but pretend we didn't see this inode.
*/
trace_xrep_iunlink_resolve_wronglist(sc->sa.pag,
bucket, prev_agino, next_agino);
next_agino = ip->i_next_unlinked;
continue;
}
if (!xfs_inode_on_unlinked_list(ip)) {
/*
* Incore inode doesn't think this inode is on an
* unlinked list. This is probably because we reloaded
* it from disk. Advance the list, but pretend we
* didn't see this inode; we'll fix that later.
*/
trace_xrep_iunlink_resolve_nolist(sc->sa.pag,
bucket, prev_agino, next_agino);
next_agino = ip->i_next_unlinked;
continue;
}
trace_xrep_iunlink_resolve_ok(sc->sa.pag, bucket, prev_agino,
next_agino);
/*
* Otherwise, this inode's unlinked pointers are ok. Clear it
* from the unlinked bitmap since we're done with it, and make
* sure the chain is still correct.
*/
error = xagino_bitmap_clear(&ragi->iunlink_bmp, next_agino, 1);
if (error)
return error;
/* Remember the previous inode's next pointer. */
if (prev_agino != NULLAGINO) {
error = xrep_iunlink_store_next(ragi, prev_agino,
next_agino);
if (error)
return error;
}
/* Remember this inode's previous pointer. */
error = xrep_iunlink_store_prev(ragi, next_agino, prev_agino);
if (error)
return error;
/* Advance the list and remember this inode. */
prev_agino = next_agino;
next_agino = ip->i_next_unlinked;
}
/* Update the previous inode's next pointer. */
if (prev_agino != NULLAGINO) {
error = xrep_iunlink_store_next(ragi, prev_agino, next_agino);
if (error)
return error;
}
return 0;
}
/* Reinsert this unlinked inode into the head of the staged bucket list. */
STATIC int
xrep_iunlink_add_to_bucket(
struct xrep_agi *ragi,
xfs_agino_t agino)
{
xfs_agino_t current_head;
unsigned int bucket;
int error;
bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
/* Point this inode at the current head of the bucket list. */
current_head = ragi->iunlink_heads[bucket];
trace_xrep_iunlink_add_to_bucket(ragi->sc->sa.pag, bucket, agino,
current_head);
error = xrep_iunlink_store_next(ragi, agino, current_head);
if (error)
return error;
/* Remember the head inode's previous pointer. */
if (current_head != NULLAGINO) {
error = xrep_iunlink_store_prev(ragi, current_head, agino);
if (error)
return error;
}
ragi->iunlink_heads[bucket] = agino;
return 0;
}
/* Reinsert unlinked inodes into the staged iunlink buckets. */
STATIC int
xrep_iunlink_add_lost_inodes(
uint32_t start,
uint32_t len,
void *priv)
{
struct xrep_agi *ragi = priv;
int error;
for (; len > 0; start++, len--) {
error = xrep_iunlink_add_to_bucket(ragi, start);
if (error)
return error;
}
return 0;
}
/*
* Figure out the iunlink bucket values and find inodes that need to be
* reinserted into the list.
*/
STATIC int
xrep_iunlink_rebuild_buckets(
struct xrep_agi *ragi)
{
unsigned int i;
int error;
/*
* Walk the ondisk AGI unlinked list to find inodes that are on the
* list but aren't in memory. This can happen if a past log recovery
* tried to clear the iunlinked list but failed. Our scan rebuilds the
* unlinked list using incore inodes, so we must load and link them
* properly.
*/
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
error = xrep_iunlink_walk_ondisk_bucket(ragi, i);
if (error)
return error;
}
/*
* Record all the incore unlinked inodes in iunlink_bmp that we didn't
* find by walking the ondisk iunlink buckets. This shouldn't happen,
* but we can't risk forgetting an inode somewhere.
*/
error = xrep_iunlink_mark_incore(ragi);
if (error)
return error;
/*
* If there are ondisk inodes that are unlinked and are not been loaded
* into cache, record them in iunlink_bmp.
*/
xrep_iunlink_mark_ondisk(ragi);
/*
* Walk each iunlink bucket to (re)construct as much of the incore list
* as would be correct. For each inode that survives this step, mark
* it clear in iunlink_bmp; we're done with those inodes.
*/
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
error = xrep_iunlink_resolve_bucket(ragi, i);
if (error)
return error;
}
/*
* Any unlinked inodes that we didn't find through the bucket list
* walk (or was ignored by the walk) must be inserted into the bucket
* list. Stage this in memory for now.
*/
return xagino_bitmap_walk(&ragi->iunlink_bmp,
xrep_iunlink_add_lost_inodes, ragi);
}
/* Update i_next_iunlinked for the inode @agino. */
STATIC int
xrep_iunlink_relink_next(
struct xrep_agi *ragi,
xfarray_idx_t idx,
xfs_agino_t next_agino)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_inode *ip;
xfarray_idx_t agino = idx - 1;
bool want_rele = false;
int error = 0;
ip = xfs_iunlink_lookup(pag, agino);
if (!ip) {
xfs_ino_t ino;
xfs_agino_t prev_agino;
/*
* No inode exists in cache. Load it off the disk so that we
* can reinsert it into the incore unlinked list.
*/
ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
error = xchk_iget(sc, ino, &ip);
if (error)
return -EFSCORRUPTED;
want_rele = true;
/* Set the backward pointer since this just came off disk. */
error = xfarray_load(ragi->iunlink_prev, agino, &prev_agino);
if (error)
goto out_rele;
trace_xrep_iunlink_relink_prev(ip, prev_agino);
ip->i_prev_unlinked = prev_agino;
}
/* Update the forward pointer. */
if (ip->i_next_unlinked != next_agino) {
error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino);
if (error)
goto out_rele;
trace_xrep_iunlink_relink_next(ip, next_agino);
ip->i_next_unlinked = next_agino;
}
out_rele:
/*
* The iunlink lookup doesn't igrab because we hold the AGI buffer lock
* and the inode cannot be reclaimed. However, if we used iget to load
* a missing inode, we must irele it here.
*/
if (want_rele)
xchk_irele(sc, ip);
return error;
}
/* Update i_prev_iunlinked for the inode @agino. */
STATIC int
xrep_iunlink_relink_prev(
struct xrep_agi *ragi,
xfarray_idx_t idx,
xfs_agino_t prev_agino)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_inode *ip;
xfarray_idx_t agino = idx - 1;
bool want_rele = false;
int error = 0;
ASSERT(prev_agino != 0);
ip = xfs_iunlink_lookup(pag, agino);
if (!ip) {
xfs_ino_t ino;
xfs_agino_t next_agino;
/*
* No inode exists in cache. Load it off the disk so that we
* can reinsert it into the incore unlinked list.
*/
ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
error = xchk_iget(sc, ino, &ip);
if (error)
return -EFSCORRUPTED;
want_rele = true;
/* Set the forward pointer since this just came off disk. */
error = xfarray_load(ragi->iunlink_prev, agino, &next_agino);
if (error)
goto out_rele;
error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino);
if (error)
goto out_rele;
trace_xrep_iunlink_relink_next(ip, next_agino);
ip->i_next_unlinked = next_agino;
}
/* Update the backward pointer. */
if (ip->i_prev_unlinked != prev_agino) {
trace_xrep_iunlink_relink_prev(ip, prev_agino);
ip->i_prev_unlinked = prev_agino;
}
out_rele:
/*
* The iunlink lookup doesn't igrab because we hold the AGI buffer lock
* and the inode cannot be reclaimed. However, if we used iget to load
* a missing inode, we must irele it here.
*/
if (want_rele)
xchk_irele(sc, ip);
return error;
}
/* Log all the iunlink updates we need to finish regenerating the AGI. */
STATIC int
xrep_iunlink_commit(
struct xrep_agi *ragi)
{
struct xfs_agi *agi = ragi->agi_bp->b_addr;
xfarray_idx_t idx = XFARRAY_CURSOR_INIT;
xfs_agino_t agino;
unsigned int i;
int error;
/* Fix all the forward links */
while ((error = xfarray_iter(ragi->iunlink_next, &idx, &agino)) == 1) {
error = xrep_iunlink_relink_next(ragi, idx, agino);
if (error)
return error;
}
/* Fix all the back links */
idx = XFARRAY_CURSOR_INIT;
while ((error = xfarray_iter(ragi->iunlink_prev, &idx, &agino)) == 1) {
error = xrep_iunlink_relink_prev(ragi, idx, agino);
if (error)
return error;
}
/* Copy the staged iunlink buckets to the new AGI. */
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
trace_xrep_iunlink_commit_bucket(ragi->sc->sa.pag, i,
be32_to_cpu(ragi->old_agi.agi_unlinked[i]),
ragi->iunlink_heads[i]);
agi->agi_unlinked[i] = cpu_to_be32(ragi->iunlink_heads[i]);
}
return 0;
}
/* Trigger reinitialization of the in-core data. */
STATIC int
xrep_agi_commit_new(
struct xrep_agi *ragi)
{
struct xfs_scrub *sc = ragi->sc;
struct xfs_buf *agi_bp = ragi->agi_bp;
struct xfs_perag *pag;
struct xfs_agi *agi = agi_bp->b_addr;
/* Trigger inode count recalculation */
xfs_force_summary_recalc(sc->mp);
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF);
xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1);
/* Now reinitialize the in-core counters if necessary. */
pag = sc->sa.pag;
pag->pagi_count = be32_to_cpu(agi->agi_count);
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
return xrep_roll_ag_trans(sc);
}
/* Repair the AGI. */
int
xrep_agi(
struct xfs_scrub *sc)
{
struct xrep_agi *ragi;
struct xfs_mount *mp = sc->mp;
char *descr;
unsigned int i;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
sc->buf = kzalloc(sizeof(struct xrep_agi), XCHK_GFP_FLAGS);
if (!sc->buf)
return -ENOMEM;
ragi = sc->buf;
ragi->sc = sc;
ragi->fab[XREP_AGI_INOBT] = (struct xrep_find_ag_btree){
.rmap_owner = XFS_RMAP_OWN_INOBT,
.buf_ops = &xfs_inobt_buf_ops,
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
};
ragi->fab[XREP_AGI_FINOBT] = (struct xrep_find_ag_btree){
.rmap_owner = XFS_RMAP_OWN_INOBT,
.buf_ops = &xfs_finobt_buf_ops,
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
};
ragi->fab[XREP_AGI_END] = (struct xrep_find_ag_btree){
.buf_ops = NULL,
};
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
ragi->iunlink_heads[i] = NULLAGINO;
xagino_bitmap_init(&ragi->iunlink_bmp);
sc->buf_cleanup = xrep_agi_buf_cleanup;
descr = xchk_xfile_ag_descr(sc, "iunlinked next pointers");
error = xfarray_create(descr, 0, sizeof(xfs_agino_t),
&ragi->iunlink_next);
kfree(descr);
if (error)
return error;
descr = xchk_xfile_ag_descr(sc, "iunlinked prev pointers");
error = xfarray_create(descr, 0, sizeof(xfs_agino_t),
&ragi->iunlink_prev);
kfree(descr);
if (error)
return error;
/*
* Make sure we have the AGI buffer, as scrub might have decided it
* was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &ragi->agi_bp, NULL);
if (error)
return error;
ragi->agi_bp->b_ops = &xfs_agi_buf_ops;
/* Find the AGI btree roots. */
error = xrep_agi_find_btrees(ragi);
if (error)
return error;
error = xrep_iunlink_rebuild_buckets(ragi);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(sc, &error))
return error;
/* Start rewriting the header and implant the btrees we found. */
xrep_agi_init_header(ragi);
xrep_agi_set_roots(ragi);
error = xrep_agi_calc_from_btrees(ragi);
if (error)
goto out_revert;
error = xrep_iunlink_commit(ragi);
if (error)
goto out_revert;
/* Reinitialize in-core state. */
return xrep_agi_commit_new(ragi);
out_revert:
/* Mark the incore AGI state stale and revert the AGI. */
clear_bit(XFS_AGSTATE_AGI_INIT, &sc->sa.pag->pag_opstate);
memcpy(ragi->agi_bp->b_addr, &ragi->old_agi, sizeof(struct xfs_agi));
return error;
}