Robert P. J. Day beb7dd86a1 Fix misspellings collected by members of KJ list.
Fix the misspellings of "propogate", "writting" and (oh, the shame
:-) "kenrel" in the source tree.

Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
2007-05-09 07:14:03 +02:00

1020 lines
30 KiB
C

/*
* Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
*
* Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
#include "dvb_frontend.h"
#include "dib7000p.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P:"); printk(args); } } while (0)
struct dib7000p_state {
struct dvb_frontend demod;
struct dib7000p_config cfg;
u8 i2c_addr;
struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master;
u16 wbd_ref;
u8 current_band;
fe_bandwidth_t current_bandwidth;
struct dibx000_agc_config *current_agc;
u32 timf;
u16 gpio_dir;
u16 gpio_val;
};
enum dib7000p_power_mode {
DIB7000P_POWER_ALL = 0,
DIB7000P_POWER_INTERFACE_ONLY,
};
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{
u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2];
struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
};
if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d\n",reg);
return (rb[0] << 8) | rb[1];
}
static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
{
u8 b[4] = {
(reg >> 8) & 0xff, reg & 0xff,
(val >> 8) & 0xff, val & 0xff,
};
struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
};
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{
int ret = 0;
u16 outreg, fifo_threshold, smo_mode;
outreg = 0;
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1);
dprintk("-I- Setting output mode for demod %p to %d\n",
&state->demod, mode);
switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outreg = (1 << 10); /* 0x0400 */
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break;
case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity)
outreg = (1 << 10) | (4 << 6); /* 0x0500 */
else
outreg = (1 << 11);
break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
smo_mode |= (3 << 1);
fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6);
break;
case OUTMODE_HIGH_Z: // disable
outreg = 0;
break;
default:
dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
break;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5) ;
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
return ret;
}
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{
/* by default everything is powered off */
u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003,
reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
/* now, depending on the requested mode, we power on */
switch (mode) {
/* power up everything in the demod */
case DIB7000P_POWER_ALL:
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff;
break;
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break;
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */
}
dib7000p_write_word(state, 774, reg_774);
dib7000p_write_word(state, 775, reg_775);
dib7000p_write_word(state, 776, reg_776);
dib7000p_write_word(state, 899, reg_899);
dib7000p_write_word(state, 1280, reg_1280);
return 0;
}
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{
u16 reg_908 = dib7000p_read_word(state, 908),
reg_909 = dib7000p_read_word(state, 909);
switch (no) {
case DIBX000_SLOW_ADC_ON:
reg_909 |= (1 << 1) | (1 << 0);
dib7000p_write_word(state, 909, reg_909);
reg_909 &= ~(1 << 1);
break;
case DIBX000_SLOW_ADC_OFF:
reg_909 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON:
reg_908 &= 0x0fff;
reg_909 &= 0x0003;
break;
case DIBX000_ADC_OFF: // leave the VBG voltage on
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break;
case DIBX000_VBG_ENABLE:
reg_908 &= ~(1 << 15);
break;
case DIBX000_VBG_DISABLE:
reg_908 |= (1 << 15);
break;
default:
break;
}
// dprintk("908: %x, 909: %x\n", reg_908, reg_909);
dib7000p_write_word(state, 908, reg_908);
dib7000p_write_word(state, 909, reg_909);
}
static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx)
{
struct dib7000p_state *state = demod->demodulator_priv;
u32 timf;
// store the current bandwidth for later use
state->current_bandwidth = BW_Idx;
if (state->timf == 0) {
dprintk("-D- Using default timf\n");
timf = state->cfg.bw->timf;
} else {
dprintk("-D- Using updated timf\n");
timf = state->timf;
}
timf = timf * (BW_INDEX_TO_KHZ(BW_Idx) / 100) / 80;
dprintk("timf: %d\n",timf);
dib7000p_write_word(state, 23, (timf >> 16) & 0xffff);
dib7000p_write_word(state, 24, (timf ) & 0xffff);
return 0;
}
static int dib7000p_sad_calib(struct dib7000p_state *state)
{
/* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
/* do the calibration */
dib7000p_write_word(state, 73, (1 << 0));
dib7000p_write_word(state, 73, (0 << 0));
msleep(1);
return 0;
}
static void dib7000p_reset_pll(struct dib7000p_state *state)
{
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
dib7000p_write_word(state, 900, ((bw->pll_ratio & 0x3f) << 9) | (bw->pll_bypass << 15) | (bw->modulo << 7) | (bw->ADClkSrc << 6) |
(bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0));
dib7000p_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff);
dib7000p_write_word(state, 19, (bw->internal*1000 ) & 0xffff);
dib7000p_write_word(state, 21, (bw->ifreq >> 16) & 0xffff);
dib7000p_write_word(state, 22, (bw->ifreq ) & 0xffff);
dib7000p_write_word(state, 72, bw->sad_cfg);
}
static int dib7000p_reset_gpio(struct dib7000p_state *st)
{
/* reset the GPIOs */
dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val);
/* TODO 1031 is P_gpio_od */
dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
return 0;
}
static int dib7000p_demod_reset(struct dib7000p_state *state)
{
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */
dib7000p_write_word(state, 770, 0xffff);
dib7000p_write_word(state, 771, 0xffff);
dib7000p_write_word(state, 772, 0x001f);
dib7000p_write_word(state, 898, 0x0003);
/* except i2c, sdio, gpio - control interfaces */
dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) );
dib7000p_write_word(state, 770, 0);
dib7000p_write_word(state, 771, 0);
dib7000p_write_word(state, 772, 0);
dib7000p_write_word(state, 898, 0);
dib7000p_write_word(state, 1280, 0);
/* default */
dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0)
dprintk("-E- GPIO reset was not successful.\n");
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("-E- OUTPUT_MODE could not be resetted.\n");
/* unforce divstr regardless whether i2c enumeration was done or not */
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) );
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0;
}
static void dib7000p_restart_agc(struct dib7000p_state *state)
{
// P_restart_iqc & P_restart_agc
dib7000p_write_word(state, 770, 0x0c00);
dib7000p_write_word(state, 770, 0x0000);
}
static void dib7000p_update_lna(struct dib7000p_state *state)
{
int i;
u16 dyn_gain;
// when there is no LNA to program return immediatly
if (state->cfg.update_lna == NULL)
return;
for (i = 0; i < 5; i++) {
// read dyn_gain here (because it is demod-dependent and not tuner)
dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
dib7000p_restart_agc(state);
msleep(5);
} else
break;
}
}
static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{
u16 tmp = 0;
tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
}
static void dib7000p_update_timf_freq(struct dib7000p_state *state)
{
u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100);
dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf);
}
static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_ofdm_channel *ch, u8 seq)
{
u16 tmp, est[4]; // reg_26, reg_32, reg_33, reg_187, reg_188, reg_189, reg_190, reg_207, reg_208;
/* nfft, guard, qam, alpha */
dib7000p_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha));
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
/* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */
tmp = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1);
if (ch->vit_hrch == 0 || ch->vit_select_hp == 1)
tmp |= (ch->vit_code_rate_hp << 1);
else
tmp |= (ch->vit_code_rate_lp << 1);
dib7000p_write_word(state, 208, tmp);
/* P_dvsy_sync_wait */
switch (ch->nfft) {
case 1: tmp = 256; break;
case 2: tmp = 128; break;
case 0:
default: tmp = 64; break;
}
tmp *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin
tmp <<= 4;
/* deactive the possibility of diversity reception if extended interleave */
/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
if (ch->intlv_native || ch->nfft == 1)
tmp |= (1 << 2) | (2 << 0);
dib7000p_write_word(state, 207, tmp);
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
dib7000p_write_word(state, 29, 0x1273); // isi inh1273 on1073
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
/* channel estimation fine configuration */
switch (ch->nqam) {
case 2:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break;
case 1:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
break;
default:
est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break;
}
for (tmp = 0; tmp < 4; tmp++)
dib7000p_write_word(state, 187 + tmp, est[tmp]);
// set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state);
msleep(7);
// AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
dib7000p_restart_agc(state);
// wait AGC rough lock time
msleep(5);
dib7000p_update_lna(state);
// wait AGC accurate lock time
msleep(7);
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
}
static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
{
struct dib7000p_state *state = demod->demodulator_priv;
struct dibx000_ofdm_channel auto_ch;
u32 value;
INIT_OFDM_CHANNEL(&auto_ch);
auto_ch.RF_kHz = ch->RF_kHz;
auto_ch.Bw = ch->Bw;
auto_ch.nqam = 2;
auto_ch.guard = 0;
auto_ch.nfft = 1;
auto_ch.vit_alpha = 1;
auto_ch.vit_select_hp = 1;
auto_ch.vit_code_rate_hp = 2;
auto_ch.vit_code_rate_lp = 3;
auto_ch.vit_hrch = 0;
auto_ch.intlv_native = 1;
dib7000p_set_channel(state, &auto_ch, 7);
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (1 << 9) | value);
dib7000p_read_word(state, 1284);
dib7000p_write_word(state, 0, (u16) value);
return 0;
}
static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284);
if (irq_pending & 0x1) // failed
return 1;
if (irq_pending & 0x2) // succeeded
return 2;
return 0; // still pending
}
static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
{
struct dib7000p_state *state = demod->demodulator_priv;
u16 tmp = 0;
if (ch != NULL)
dib7000p_set_channel(state, ch, 0);
else
return -EINVAL;
// restart demod
dib7000p_write_word(state, 770, 0x4000);
dib7000p_write_word(state, 770, 0x0000);
msleep(45);
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
dib7000p_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
// never achieved a lock with that bandwidth so far - wait for osc-freq to update
if (state->timf == 0)
msleep(200);
/* offset loop parameters */
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80;
switch (ch->nfft) {
case 0: tmp |= (7 << 12); break;
case 1: tmp |= (9 << 12); break;
case 2: tmp |= (8 << 12); break;
}
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4);
switch (ch->nfft) {
case 0: tmp |= 0x6; break;
case 1: tmp |= 0x8; break;
case 2: tmp |= 0x7; break;
}
dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4);
switch (ch->nfft) {
case 0: tmp |= 0x6; break;
case 1: tmp |= 0x8; break;
case 2: tmp |= 0x7; break;
}
dib7000p_write_word(state, 33, tmp);
tmp = dib7000p_read_word(state,509);
if (!((tmp >> 6) & 0x1)) {
/* restart the fec */
tmp = dib7000p_read_word(state,771);
dib7000p_write_word(state, 771, tmp | (1 << 1));
dib7000p_write_word(state, 771, tmp);
msleep(10);
tmp = dib7000p_read_word(state,509);
}
// we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1)
dib7000p_update_timf_freq(state);
return 0;
}
static int dib7000p_init(struct dvb_frontend *demod)
{
struct dibx000_agc_config *agc;
struct dib7000p_state *state = demod->demodulator_priv;
int ret = 0;
// Demodulator default configuration
agc = state->cfg.agc;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
/* AGC */
ret |= dib7000p_write_word(state, 75 , agc->setup );
ret |= dib7000p_write_word(state, 76 , agc->inv_gain );
ret |= dib7000p_write_word(state, 77 , agc->time_stabiliz );
ret |= dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration
ret |= dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
ret |= dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */
dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0)
ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
else
ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
ret |= dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
ret |= dib7000p_write_word(state, 107, agc->agc1_max);
ret |= dib7000p_write_word(state, 108, agc->agc1_min);
ret |= dib7000p_write_word(state, 109, agc->agc2_max);
ret |= dib7000p_write_word(state, 110, agc->agc2_min);
ret |= dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
ret |= dib7000p_write_word(state, 112, agc->agc1_pt3);
ret |= dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
ret |= dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
ret |= dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
/* disable power smoothing */
ret |= dib7000p_write_word(state, 145, 0);
ret |= dib7000p_write_word(state, 146, 0);
ret |= dib7000p_write_word(state, 147, 0);
ret |= dib7000p_write_word(state, 148, 0);
ret |= dib7000p_write_word(state, 149, 0);
ret |= dib7000p_write_word(state, 150, 0);
ret |= dib7000p_write_word(state, 151, 0);
ret |= dib7000p_write_word(state, 152, 0);
// P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
ret |= dib7000p_write_word(state, 26 ,0x6680);
// P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
ret |= dib7000p_write_word(state, 142,0x0410);
// P_fft_freq_dir=1, P_fft_nb_to_cut=0
ret |= dib7000p_write_word(state, 154,1 << 13);
// P_pha3_thres, default 0x3000
ret |= dib7000p_write_word(state, 168,0x0ccd);
// P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
//ret |= dib7000p_write_word(state, 169,0x0010);
// P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
ret |= dib7000p_write_word(state, 183,0x200f);
// P_adp_regul_cnt=573, default: 410
ret |= dib7000p_write_word(state, 187,0x023d);
// P_adp_noise_cnt=
ret |= dib7000p_write_word(state, 188,0x00a4);
// P_adp_regul_ext
ret |= dib7000p_write_word(state, 189,0x00a4);
// P_adp_noise_ext
ret |= dib7000p_write_word(state, 190,0x7ff0);
// P_adp_fil
ret |= dib7000p_write_word(state, 191,0x3ccc);
ret |= dib7000p_write_word(state, 222,0x0010);
// P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
ret |= dib7000p_write_word(state, 235,0x0062);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if(state->cfg.tuner_is_baseband)
ret |= dib7000p_write_word(state, 36,0x0755);
else
ret |= dib7000p_write_word(state, 36,0x1f55);
// auto search configuration
ret |= dib7000p_write_word(state, 2 ,0x0004);
ret |= dib7000p_write_word(state, 3 ,0x1000);
/* Equal Lock */
ret |= dib7000p_write_word(state, 4 ,0x0814);
ret |= dib7000p_write_word(state, 6 ,0x001b);
ret |= dib7000p_write_word(state, 7 ,0x7740);
ret |= dib7000p_write_word(state, 8 ,0x005b);
ret |= dib7000p_write_word(state, 9 ,0x8d80);
ret |= dib7000p_write_word(state, 10 ,0x01c9);
ret |= dib7000p_write_word(state, 11 ,0xc380);
ret |= dib7000p_write_word(state, 12 ,0x0000);
ret |= dib7000p_write_word(state, 13 ,0x0080);
ret |= dib7000p_write_word(state, 14 ,0x0000);
ret |= dib7000p_write_word(state, 15 ,0x0090);
ret |= dib7000p_write_word(state, 16 ,0x0001);
ret |= dib7000p_write_word(state, 17 ,0xd4c0);
// P_clk_cfg1
ret |= dib7000p_write_word(state, 901, 0x0006);
// P_divclksel=3 P_divbitsel=1
ret |= dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
// Tuner IO bank: max drive (14mA) + divout pads max drive
ret |= dib7000p_write_word(state, 905, 0x2c8e);
ret |= dib7000p_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ);
dib7000p_sad_calib(state);
return ret;
}
static int dib7000p_sleep(struct dvb_frontend *demod)
{
struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
}
static int dib7000p_identify(struct dib7000p_state *st)
{
u16 value;
dprintk("-I- DiB7000PC: checking demod on I2C address: %d (%x)\n",
st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk("-E- DiB7000PC: wrong Vendor ID (read=0x%x)\n",value);
return -EREMOTEIO;
}
if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk("-E- DiB7000PC: wrong Device ID (%x)\n",value);
return -EREMOTEIO;
}
return 0;
}
static int dib7000p_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 tps = dib7000p_read_word(state,463);
fep->inversion = INVERSION_AUTO;
fep->u.ofdm.bandwidth = state->current_bandwidth;
switch ((tps >> 8) & 0x3) {
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
}
switch (tps & 0x3) {
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
}
switch ((tps >> 14) & 0x3) {
case 0: fep->u.ofdm.constellation = QPSK; break;
case 1: fep->u.ofdm.constellation = QAM_16; break;
case 2:
default: fep->u.ofdm.constellation = QAM_64; break;
}
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) {
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
}
switch ((tps >> 2) & 0x7) {
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
case 7:
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
}
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
return 0;
}
static int dib7000p_set_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{
struct dib7000p_state *state = fe->demodulator_priv;
struct dibx000_ofdm_channel ch;
INIT_OFDM_CHANNEL(&ch);
FEP2DIB(fep,&ch);
state->current_bandwidth = fep->u.ofdm.bandwidth;
dib7000p_set_bandwidth(fe, fep->u.ofdm.bandwidth);
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe, fep);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found;
dib7000p_autosearch_start(fe, &ch);
do {
msleep(1);
found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--);
dprintk("autosearch returns: %d\n",found);
if (found == 0 || found == 1)
return 0; // no channel found
dib7000p_get_frontend(fe, fep);
FEP2DIB(fep, &ch);
}
/* make this a config parameter */
dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO);
return dib7000p_tune(fe, &ch);
}
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 lock = dib7000p_read_word(state, 509);
*stat = 0;
if (lock & 0x8000)
*stat |= FE_HAS_SIGNAL;
if (lock & 0x3000)
*stat |= FE_HAS_CARRIER;
if (lock & 0x0100)
*stat |= FE_HAS_VITERBI;
if (lock & 0x0010)
*stat |= FE_HAS_SYNC;
if (lock & 0x0008)
*stat |= FE_HAS_LOCK;
return 0;
}
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct dib7000p_state *state = fe->demodulator_priv;
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
return 0;
}
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
{
struct dib7000p_state *state = fe->demodulator_priv;
*unc = dib7000p_read_word(state, 506);
return 0;
}
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 394);
*strength = 65535 - val;
return 0;
}
static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
{
*snr = 0x0000;
return 0;
}
static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void dib7000p_release(struct dvb_frontend *demod)
{
struct dib7000p_state *st = demod->demodulator_priv;
dibx000_exit_i2c_master(&st->i2c_master);
kfree(st);
}
int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{
u8 tx[2], rx[2];
struct i2c_msg msg[2] = {
{ .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 },
{ .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 },
};
tx[0] = 0x03;
tx[1] = 0x00;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n");
return 1;
}
msg[0].addr = msg[1].addr = 0x40;
if (i2c_transfer(i2c_adap, msg, 2) == 2)
if (rx[0] == 0x01 && rx[1] == 0xb3) {
dprintk("-D- DiB7000PC detected\n");
return 1;
}
dprintk("-D- DiB7000PC not detected\n");
return 0;
}
EXPORT_SYMBOL(dib7000pc_detection);
struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
{
struct dib7000p_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}
EXPORT_SYMBOL(dib7000p_get_i2c_master);
int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
{
struct dib7000p_state st = { .i2c_adap = i2c };
int k = 0;
u8 new_addr = 0;
for (k = no_of_demods-1; k >= 0; k--) {
st.cfg = cfg[k];
/* designated i2c address */
new_addr = (0x40 + k) << 1;
st.i2c_addr = new_addr;
if (dib7000p_identify(&st) != 0) {
st.i2c_addr = default_addr;
if (dib7000p_identify(&st) != 0) {
dprintk("DiB7000P #%d: not identified\n", k);
return -EIO;
}
}
/* start diversity to pull_down div_str - just for i2c-enumeration */
dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY);
/* set new i2c address and force divstart */
dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2);
dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
}
for (k = 0; k < no_of_demods; k++) {
st.cfg = cfg[k];
st.i2c_addr = (0x40 + k) << 1;
// unforce divstr
dib7000p_write_word(&st, 1285, st.i2c_addr << 2);
/* deactivate div - it was just for i2c-enumeration */
dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z);
}
return 0;
}
EXPORT_SYMBOL(dib7000p_i2c_enumeration);
static struct dvb_frontend_ops dib7000p_ops;
struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
{
struct dvb_frontend *demod;
struct dib7000p_state *st;
st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
if (st == NULL)
return NULL;
memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
st->i2c_adap = i2c_adap;
st->i2c_addr = i2c_addr;
st->gpio_val = cfg->gpio_val;
st->gpio_dir = cfg->gpio_dir;
demod = &st->demod;
demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
if (dib7000p_identify(st) != 0)
goto error;
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
dib7000p_demod_reset(st);
return demod;
error:
kfree(st);
return NULL;
}
EXPORT_SYMBOL(dib7000p_attach);
static struct dvb_frontend_ops dib7000p_ops = {
.info = {
.name = "DiBcom 7000PC",
.type = FE_OFDM,
.frequency_min = 44250000,
.frequency_max = 867250000,
.frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO,
},
.release = dib7000p_release,
.init = dib7000p_init,
.sleep = dib7000p_sleep,
.set_frontend = dib7000p_set_frontend,
.get_tune_settings = dib7000p_fe_get_tune_settings,
.get_frontend = dib7000p_get_frontend,
.read_status = dib7000p_read_status,
.read_ber = dib7000p_read_ber,
.read_signal_strength = dib7000p_read_signal_strength,
.read_snr = dib7000p_read_snr,
.read_ucblocks = dib7000p_read_unc_blocks,
};
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL");