01925efdf7
Conflicts: drivers/net/wireless/iwlwifi/pcie/drv.c
1554 lines
41 KiB
C
1554 lines
41 KiB
C
/*
|
|
* Copyright (c) 2008-2011 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/relay.h>
|
|
#include "ath9k.h"
|
|
#include "ar9003_mac.h"
|
|
|
|
#define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb))
|
|
|
|
static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
|
|
{
|
|
return sc->ps_enabled &&
|
|
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
|
|
}
|
|
|
|
/*
|
|
* Setup and link descriptors.
|
|
*
|
|
* 11N: we can no longer afford to self link the last descriptor.
|
|
* MAC acknowledges BA status as long as it copies frames to host
|
|
* buffer (or rx fifo). This can incorrectly acknowledge packets
|
|
* to a sender if last desc is self-linked.
|
|
*/
|
|
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_desc *ds;
|
|
struct sk_buff *skb;
|
|
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0; /* link to null */
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
/* virtual addr of the beginning of the buffer. */
|
|
skb = bf->bf_mpdu;
|
|
BUG_ON(skb == NULL);
|
|
ds->ds_vdata = skb->data;
|
|
|
|
/*
|
|
* setup rx descriptors. The rx_bufsize here tells the hardware
|
|
* how much data it can DMA to us and that we are prepared
|
|
* to process
|
|
*/
|
|
ath9k_hw_setuprxdesc(ah, ds,
|
|
common->rx_bufsize,
|
|
0);
|
|
|
|
if (sc->rx.rxlink == NULL)
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
else
|
|
*sc->rx.rxlink = bf->bf_daddr;
|
|
|
|
sc->rx.rxlink = &ds->ds_link;
|
|
}
|
|
|
|
static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf)
|
|
{
|
|
if (sc->rx.buf_hold)
|
|
ath_rx_buf_link(sc, sc->rx.buf_hold);
|
|
|
|
sc->rx.buf_hold = bf;
|
|
}
|
|
|
|
static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
|
|
{
|
|
/* XXX block beacon interrupts */
|
|
ath9k_hw_setantenna(sc->sc_ah, antenna);
|
|
sc->rx.defant = antenna;
|
|
sc->rx.rxotherant = 0;
|
|
}
|
|
|
|
static void ath_opmode_init(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
u32 rfilt, mfilt[2];
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath9k_hw_setrxfilter(ah, rfilt);
|
|
|
|
/* configure bssid mask */
|
|
ath_hw_setbssidmask(common);
|
|
|
|
/* configure operational mode */
|
|
ath9k_hw_setopmode(ah);
|
|
|
|
/* calculate and install multicast filter */
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
static bool ath_rx_edma_buf_link(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_rx_edma *rx_edma;
|
|
struct sk_buff *skb;
|
|
struct ath_rxbuf *bf;
|
|
|
|
rx_edma = &sc->rx.rx_edma[qtype];
|
|
if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
|
|
return false;
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
|
|
list_del_init(&bf->list);
|
|
|
|
skb = bf->bf_mpdu;
|
|
|
|
memset(skb->data, 0, ah->caps.rx_status_len);
|
|
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
|
|
ah->caps.rx_status_len, DMA_TO_DEVICE);
|
|
|
|
SKB_CB_ATHBUF(skb) = bf;
|
|
ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
|
|
__skb_queue_tail(&rx_edma->rx_fifo, skb);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath_rx_addbuffer_edma(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath_rxbuf *bf, *tbf;
|
|
|
|
if (list_empty(&sc->rx.rxbuf)) {
|
|
ath_dbg(common, QUEUE, "No free rx buf available\n");
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
|
|
if (!ath_rx_edma_buf_link(sc, qtype))
|
|
break;
|
|
|
|
}
|
|
|
|
static void ath_rx_remove_buffer(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_rxbuf *bf;
|
|
struct ath_rx_edma *rx_edma;
|
|
struct sk_buff *skb;
|
|
|
|
rx_edma = &sc->rx.rx_edma[qtype];
|
|
|
|
while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
}
|
|
}
|
|
|
|
static void ath_rx_edma_cleanup(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_rxbuf *bf;
|
|
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
|
|
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
if (bf->bf_mpdu) {
|
|
dma_unmap_single(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
DMA_BIDIRECTIONAL);
|
|
dev_kfree_skb_any(bf->bf_mpdu);
|
|
bf->bf_buf_addr = 0;
|
|
bf->bf_mpdu = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
|
|
{
|
|
__skb_queue_head_init(&rx_edma->rx_fifo);
|
|
rx_edma->rx_fifo_hwsize = size;
|
|
}
|
|
|
|
static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct sk_buff *skb;
|
|
struct ath_rxbuf *bf;
|
|
int error = 0, i;
|
|
u32 size;
|
|
|
|
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
|
|
ah->caps.rx_status_len);
|
|
|
|
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
|
|
ah->caps.rx_lp_qdepth);
|
|
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
|
|
ah->caps.rx_hp_qdepth);
|
|
|
|
size = sizeof(struct ath_rxbuf) * nbufs;
|
|
bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
|
|
if (!bf)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&sc->rx.rxbuf);
|
|
|
|
for (i = 0; i < nbufs; i++, bf++) {
|
|
skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
|
|
if (!skb) {
|
|
error = -ENOMEM;
|
|
goto rx_init_fail;
|
|
}
|
|
|
|
memset(skb->data, 0, common->rx_bufsize);
|
|
bf->bf_mpdu = skb;
|
|
|
|
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
|
|
common->rx_bufsize,
|
|
DMA_BIDIRECTIONAL);
|
|
if (unlikely(dma_mapping_error(sc->dev,
|
|
bf->bf_buf_addr))) {
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
bf->bf_buf_addr = 0;
|
|
ath_err(common,
|
|
"dma_mapping_error() on RX init\n");
|
|
error = -ENOMEM;
|
|
goto rx_init_fail;
|
|
}
|
|
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
}
|
|
|
|
return 0;
|
|
|
|
rx_init_fail:
|
|
ath_rx_edma_cleanup(sc);
|
|
return error;
|
|
}
|
|
|
|
static void ath_edma_start_recv(struct ath_softc *sc)
|
|
{
|
|
ath9k_hw_rxena(sc->sc_ah);
|
|
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
|
|
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
|
|
ath_opmode_init(sc);
|
|
ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
|
|
}
|
|
|
|
static void ath_edma_stop_recv(struct ath_softc *sc)
|
|
{
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
|
|
}
|
|
|
|
int ath_rx_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct sk_buff *skb;
|
|
struct ath_rxbuf *bf;
|
|
int error = 0;
|
|
|
|
spin_lock_init(&sc->sc_pcu_lock);
|
|
|
|
common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
|
|
sc->sc_ah->caps.rx_status_len;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
|
|
return ath_rx_edma_init(sc, nbufs);
|
|
|
|
ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
|
|
common->cachelsz, common->rx_bufsize);
|
|
|
|
/* Initialize rx descriptors */
|
|
|
|
error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
|
|
"rx", nbufs, 1, 0);
|
|
if (error != 0) {
|
|
ath_err(common,
|
|
"failed to allocate rx descriptors: %d\n",
|
|
error);
|
|
goto err;
|
|
}
|
|
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
skb = ath_rxbuf_alloc(common, common->rx_bufsize,
|
|
GFP_KERNEL);
|
|
if (skb == NULL) {
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
bf->bf_mpdu = skb;
|
|
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(sc->dev,
|
|
bf->bf_buf_addr))) {
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
bf->bf_buf_addr = 0;
|
|
ath_err(common,
|
|
"dma_mapping_error() on RX init\n");
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
}
|
|
sc->rx.rxlink = NULL;
|
|
err:
|
|
if (error)
|
|
ath_rx_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
void ath_rx_cleanup(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct sk_buff *skb;
|
|
struct ath_rxbuf *bf;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
|
|
ath_rx_edma_cleanup(sc);
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
skb = bf->bf_mpdu;
|
|
if (skb) {
|
|
dma_unmap_single(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
bf->bf_buf_addr = 0;
|
|
bf->bf_mpdu = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o maintain current state of phy error reception (the hal
|
|
* may enable phy error frames for noise immunity work)
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, or monitor modes
|
|
* o enable promiscuous mode according to the interface state
|
|
* o accept beacons:
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when operating as a repeater so we see repeater-sta beacons
|
|
* - when scanning
|
|
*/
|
|
|
|
u32 ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
u32 rfilt;
|
|
|
|
if (config_enabled(CONFIG_ATH9K_TX99))
|
|
return 0;
|
|
|
|
rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
|
|
| ATH9K_RX_FILTER_MCAST;
|
|
|
|
/* if operating on a DFS channel, enable radar pulse detection */
|
|
if (sc->hw->conf.radar_enabled)
|
|
rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
|
|
|
|
if (sc->rx.rxfilter & FIF_PROBE_REQ)
|
|
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
|
|
|
|
/*
|
|
* Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
|
|
* mode interface or when in monitor mode. AP mode does not need this
|
|
* since it receives all in-BSS frames anyway.
|
|
*/
|
|
if (sc->sc_ah->is_monitoring)
|
|
rfilt |= ATH9K_RX_FILTER_PROM;
|
|
|
|
if (sc->rx.rxfilter & FIF_CONTROL)
|
|
rfilt |= ATH9K_RX_FILTER_CONTROL;
|
|
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
|
|
(sc->nvifs <= 1) &&
|
|
!(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
|
|
rfilt |= ATH9K_RX_FILTER_MYBEACON;
|
|
else
|
|
rfilt |= ATH9K_RX_FILTER_BEACON;
|
|
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
|
|
(sc->rx.rxfilter & FIF_PSPOLL))
|
|
rfilt |= ATH9K_RX_FILTER_PSPOLL;
|
|
|
|
if (conf_is_ht(&sc->hw->conf))
|
|
rfilt |= ATH9K_RX_FILTER_COMP_BAR;
|
|
|
|
if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
|
|
/* This is needed for older chips */
|
|
if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
|
|
rfilt |= ATH9K_RX_FILTER_PROM;
|
|
rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
|
|
}
|
|
|
|
if (AR_SREV_9550(sc->sc_ah))
|
|
rfilt |= ATH9K_RX_FILTER_4ADDRESS;
|
|
|
|
return rfilt;
|
|
|
|
}
|
|
|
|
int ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_rxbuf *bf, *tbf;
|
|
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
|
|
ath_edma_start_recv(sc);
|
|
return 0;
|
|
}
|
|
|
|
if (list_empty(&sc->rx.rxbuf))
|
|
goto start_recv;
|
|
|
|
sc->rx.buf_hold = NULL;
|
|
sc->rx.rxlink = NULL;
|
|
list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
|
|
ath_rx_buf_link(sc, bf);
|
|
}
|
|
|
|
/* We could have deleted elements so the list may be empty now */
|
|
if (list_empty(&sc->rx.rxbuf))
|
|
goto start_recv;
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
ath9k_hw_rxena(ah);
|
|
|
|
start_recv:
|
|
ath_opmode_init(sc);
|
|
ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath_flushrecv(struct ath_softc *sc)
|
|
{
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
|
|
ath_rx_tasklet(sc, 1, true);
|
|
ath_rx_tasklet(sc, 1, false);
|
|
}
|
|
|
|
bool ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
bool stopped, reset = false;
|
|
|
|
ath9k_hw_abortpcurecv(ah);
|
|
ath9k_hw_setrxfilter(ah, 0);
|
|
stopped = ath9k_hw_stopdmarecv(ah, &reset);
|
|
|
|
ath_flushrecv(sc);
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
|
|
ath_edma_stop_recv(sc);
|
|
else
|
|
sc->rx.rxlink = NULL;
|
|
|
|
if (!(ah->ah_flags & AH_UNPLUGGED) &&
|
|
unlikely(!stopped)) {
|
|
ath_err(ath9k_hw_common(sc->sc_ah),
|
|
"Could not stop RX, we could be "
|
|
"confusing the DMA engine when we start RX up\n");
|
|
ATH_DBG_WARN_ON_ONCE(!stopped);
|
|
}
|
|
return stopped && !reset;
|
|
}
|
|
|
|
static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
|
|
{
|
|
/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
|
|
struct ieee80211_mgmt *mgmt;
|
|
u8 *pos, *end, id, elen;
|
|
struct ieee80211_tim_ie *tim;
|
|
|
|
mgmt = (struct ieee80211_mgmt *)skb->data;
|
|
pos = mgmt->u.beacon.variable;
|
|
end = skb->data + skb->len;
|
|
|
|
while (pos + 2 < end) {
|
|
id = *pos++;
|
|
elen = *pos++;
|
|
if (pos + elen > end)
|
|
break;
|
|
|
|
if (id == WLAN_EID_TIM) {
|
|
if (elen < sizeof(*tim))
|
|
break;
|
|
tim = (struct ieee80211_tim_ie *) pos;
|
|
if (tim->dtim_count != 0)
|
|
break;
|
|
return tim->bitmap_ctrl & 0x01;
|
|
}
|
|
|
|
pos += elen;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
|
|
if (skb->len < 24 + 8 + 2 + 2)
|
|
return;
|
|
|
|
sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
|
|
|
|
if (sc->ps_flags & PS_BEACON_SYNC) {
|
|
sc->ps_flags &= ~PS_BEACON_SYNC;
|
|
ath_dbg(common, PS,
|
|
"Reconfigure beacon timers based on synchronized timestamp\n");
|
|
ath9k_set_beacon(sc);
|
|
}
|
|
|
|
if (ath_beacon_dtim_pending_cab(skb)) {
|
|
/*
|
|
* Remain awake waiting for buffered broadcast/multicast
|
|
* frames. If the last broadcast/multicast frame is not
|
|
* received properly, the next beacon frame will work as
|
|
* a backup trigger for returning into NETWORK SLEEP state,
|
|
* so we are waiting for it as well.
|
|
*/
|
|
ath_dbg(common, PS,
|
|
"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
|
|
sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
|
|
return;
|
|
}
|
|
|
|
if (sc->ps_flags & PS_WAIT_FOR_CAB) {
|
|
/*
|
|
* This can happen if a broadcast frame is dropped or the AP
|
|
* fails to send a frame indicating that all CAB frames have
|
|
* been delivered.
|
|
*/
|
|
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
|
|
ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
|
|
}
|
|
}
|
|
|
|
static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
/* Process Beacon and CAB receive in PS state */
|
|
if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
|
|
&& mybeacon) {
|
|
ath_rx_ps_beacon(sc, skb);
|
|
} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
|
|
(ieee80211_is_data(hdr->frame_control) ||
|
|
ieee80211_is_action(hdr->frame_control)) &&
|
|
is_multicast_ether_addr(hdr->addr1) &&
|
|
!ieee80211_has_moredata(hdr->frame_control)) {
|
|
/*
|
|
* No more broadcast/multicast frames to be received at this
|
|
* point.
|
|
*/
|
|
sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
|
|
ath_dbg(common, PS,
|
|
"All PS CAB frames received, back to sleep\n");
|
|
} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
|
|
!is_multicast_ether_addr(hdr->addr1) &&
|
|
!ieee80211_has_morefrags(hdr->frame_control)) {
|
|
sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
|
|
ath_dbg(common, PS,
|
|
"Going back to sleep after having received PS-Poll data (0x%lx)\n",
|
|
sc->ps_flags & (PS_WAIT_FOR_BEACON |
|
|
PS_WAIT_FOR_CAB |
|
|
PS_WAIT_FOR_PSPOLL_DATA |
|
|
PS_WAIT_FOR_TX_ACK));
|
|
}
|
|
}
|
|
|
|
static bool ath_edma_get_buffers(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype,
|
|
struct ath_rx_status *rs,
|
|
struct ath_rxbuf **dest)
|
|
{
|
|
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct sk_buff *skb;
|
|
struct ath_rxbuf *bf;
|
|
int ret;
|
|
|
|
skb = skb_peek(&rx_edma->rx_fifo);
|
|
if (!skb)
|
|
return false;
|
|
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
|
|
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize, DMA_FROM_DEVICE);
|
|
|
|
ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
|
|
if (ret == -EINPROGRESS) {
|
|
/*let device gain the buffer again*/
|
|
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize, DMA_FROM_DEVICE);
|
|
return false;
|
|
}
|
|
|
|
__skb_unlink(skb, &rx_edma->rx_fifo);
|
|
if (ret == -EINVAL) {
|
|
/* corrupt descriptor, skip this one and the following one */
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
|
|
skb = skb_peek(&rx_edma->rx_fifo);
|
|
if (skb) {
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
|
|
__skb_unlink(skb, &rx_edma->rx_fifo);
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
}
|
|
|
|
bf = NULL;
|
|
}
|
|
|
|
*dest = bf;
|
|
return true;
|
|
}
|
|
|
|
static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
|
|
struct ath_rx_status *rs,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_rxbuf *bf = NULL;
|
|
|
|
while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
|
|
if (!bf)
|
|
continue;
|
|
|
|
return bf;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
|
|
struct ath_rx_status *rs)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_desc *ds;
|
|
struct ath_rxbuf *bf;
|
|
int ret;
|
|
|
|
if (list_empty(&sc->rx.rxbuf)) {
|
|
sc->rx.rxlink = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
|
|
if (bf == sc->rx.buf_hold)
|
|
return NULL;
|
|
|
|
ds = bf->bf_desc;
|
|
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
ret = ath9k_hw_rxprocdesc(ah, ds, rs);
|
|
if (ret == -EINPROGRESS) {
|
|
struct ath_rx_status trs;
|
|
struct ath_rxbuf *tbf;
|
|
struct ath_desc *tds;
|
|
|
|
memset(&trs, 0, sizeof(trs));
|
|
if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
|
|
sc->rx.rxlink = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
|
|
|
|
/*
|
|
* On some hardware the descriptor status words could
|
|
* get corrupted, including the done bit. Because of
|
|
* this, check if the next descriptor's done bit is
|
|
* set or not.
|
|
*
|
|
* If the next descriptor's done bit is set, the current
|
|
* descriptor has been corrupted. Force s/w to discard
|
|
* this descriptor and continue...
|
|
*/
|
|
|
|
tds = tbf->bf_desc;
|
|
ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
|
|
if (ret == -EINPROGRESS)
|
|
return NULL;
|
|
|
|
/*
|
|
* mark descriptor as zero-length and set the 'more'
|
|
* flag to ensure that both buffers get discarded
|
|
*/
|
|
rs->rs_datalen = 0;
|
|
rs->rs_more = true;
|
|
}
|
|
|
|
list_del(&bf->list);
|
|
if (!bf->bf_mpdu)
|
|
return bf;
|
|
|
|
/*
|
|
* Synchronize the DMA transfer with CPU before
|
|
* 1. accessing the frame
|
|
* 2. requeueing the same buffer to h/w
|
|
*/
|
|
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
|
|
return bf;
|
|
}
|
|
|
|
/* Assumes you've already done the endian to CPU conversion */
|
|
static bool ath9k_rx_accept(struct ath_common *common,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *rxs,
|
|
struct ath_rx_status *rx_stats,
|
|
bool *decrypt_error)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) common->priv;
|
|
bool is_mc, is_valid_tkip, strip_mic, mic_error;
|
|
struct ath_hw *ah = common->ah;
|
|
__le16 fc;
|
|
|
|
fc = hdr->frame_control;
|
|
|
|
is_mc = !!is_multicast_ether_addr(hdr->addr1);
|
|
is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
|
|
test_bit(rx_stats->rs_keyix, common->tkip_keymap);
|
|
strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
|
|
ieee80211_has_protected(fc) &&
|
|
!(rx_stats->rs_status &
|
|
(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
|
|
ATH9K_RXERR_KEYMISS));
|
|
|
|
/*
|
|
* Key miss events are only relevant for pairwise keys where the
|
|
* descriptor does contain a valid key index. This has been observed
|
|
* mostly with CCMP encryption.
|
|
*/
|
|
if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
|
|
!test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
|
|
rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
|
|
|
|
mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
|
|
!ieee80211_has_morefrags(fc) &&
|
|
!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
|
|
(rx_stats->rs_status & ATH9K_RXERR_MIC);
|
|
|
|
/*
|
|
* The rx_stats->rs_status will not be set until the end of the
|
|
* chained descriptors so it can be ignored if rs_more is set. The
|
|
* rs_more will be false at the last element of the chained
|
|
* descriptors.
|
|
*/
|
|
if (rx_stats->rs_status != 0) {
|
|
u8 status_mask;
|
|
|
|
if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
|
|
rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
mic_error = false;
|
|
}
|
|
|
|
if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
|
|
(!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
|
|
*decrypt_error = true;
|
|
mic_error = false;
|
|
}
|
|
|
|
/*
|
|
* Reject error frames with the exception of
|
|
* decryption and MIC failures. For monitor mode,
|
|
* we also ignore the CRC error.
|
|
*/
|
|
status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
|
|
ATH9K_RXERR_KEYMISS;
|
|
|
|
if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
|
|
status_mask |= ATH9K_RXERR_CRC;
|
|
|
|
if (rx_stats->rs_status & ~status_mask)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For unicast frames the MIC error bit can have false positives,
|
|
* so all MIC error reports need to be validated in software.
|
|
* False negatives are not common, so skip software verification
|
|
* if the hardware considers the MIC valid.
|
|
*/
|
|
if (strip_mic)
|
|
rxs->flag |= RX_FLAG_MMIC_STRIPPED;
|
|
else if (is_mc && mic_error)
|
|
rxs->flag |= RX_FLAG_MMIC_ERROR;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int ath9k_process_rate(struct ath_common *common,
|
|
struct ieee80211_hw *hw,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rxs)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
enum ieee80211_band band;
|
|
unsigned int i = 0;
|
|
struct ath_softc __maybe_unused *sc = common->priv;
|
|
|
|
band = hw->conf.chandef.chan->band;
|
|
sband = hw->wiphy->bands[band];
|
|
|
|
switch (hw->conf.chandef.width) {
|
|
case NL80211_CHAN_WIDTH_5:
|
|
rxs->flag |= RX_FLAG_5MHZ;
|
|
break;
|
|
case NL80211_CHAN_WIDTH_10:
|
|
rxs->flag |= RX_FLAG_10MHZ;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (rx_stats->rs_rate & 0x80) {
|
|
/* HT rate */
|
|
rxs->flag |= RX_FLAG_HT;
|
|
rxs->flag |= rx_stats->flag;
|
|
rxs->rate_idx = rx_stats->rs_rate & 0x7f;
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
|
|
rxs->rate_idx = i;
|
|
return 0;
|
|
}
|
|
if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
|
|
rxs->flag |= RX_FLAG_SHORTPRE;
|
|
rxs->rate_idx = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No valid hardware bitrate found -- we should not get here
|
|
* because hardware has already validated this frame as OK.
|
|
*/
|
|
ath_dbg(common, ANY,
|
|
"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
|
|
rx_stats->rs_rate);
|
|
RX_STAT_INC(rx_rate_err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void ath9k_process_rssi(struct ath_common *common,
|
|
struct ieee80211_hw *hw,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rxs)
|
|
{
|
|
struct ath_softc *sc = hw->priv;
|
|
struct ath_hw *ah = common->ah;
|
|
int last_rssi;
|
|
int rssi = rx_stats->rs_rssi;
|
|
|
|
/*
|
|
* RSSI is not available for subframes in an A-MPDU.
|
|
*/
|
|
if (rx_stats->rs_moreaggr) {
|
|
rxs->flag |= RX_FLAG_NO_SIGNAL_VAL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check if the RSSI for the last subframe in an A-MPDU
|
|
* or an unaggregated frame is valid.
|
|
*/
|
|
if (rx_stats->rs_rssi == ATH9K_RSSI_BAD) {
|
|
rxs->flag |= RX_FLAG_NO_SIGNAL_VAL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Update Beacon RSSI, this is used by ANI.
|
|
*/
|
|
if (rx_stats->is_mybeacon &&
|
|
((ah->opmode == NL80211_IFTYPE_STATION) ||
|
|
(ah->opmode == NL80211_IFTYPE_ADHOC))) {
|
|
ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
|
|
last_rssi = sc->last_rssi;
|
|
|
|
if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
|
|
rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
|
|
if (rssi < 0)
|
|
rssi = 0;
|
|
|
|
ah->stats.avgbrssi = rssi;
|
|
}
|
|
|
|
rxs->signal = ah->noise + rx_stats->rs_rssi;
|
|
}
|
|
|
|
static void ath9k_process_tsf(struct ath_rx_status *rs,
|
|
struct ieee80211_rx_status *rxs,
|
|
u64 tsf)
|
|
{
|
|
u32 tsf_lower = tsf & 0xffffffff;
|
|
|
|
rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
|
|
if (rs->rs_tstamp > tsf_lower &&
|
|
unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
|
|
rxs->mactime -= 0x100000000ULL;
|
|
|
|
if (rs->rs_tstamp < tsf_lower &&
|
|
unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
|
|
rxs->mactime += 0x100000000ULL;
|
|
}
|
|
|
|
#ifdef CONFIG_ATH9K_DEBUGFS
|
|
static s8 fix_rssi_inv_only(u8 rssi_val)
|
|
{
|
|
if (rssi_val == 128)
|
|
rssi_val = 0;
|
|
return (s8) rssi_val;
|
|
}
|
|
#endif
|
|
|
|
/* returns 1 if this was a spectral frame, even if not handled. */
|
|
static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
|
|
struct ath_rx_status *rs, u64 tsf)
|
|
{
|
|
#ifdef CONFIG_ATH9K_DEBUGFS
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
u8 num_bins, *bins, *vdata = (u8 *)hdr;
|
|
struct fft_sample_ht20 fft_sample_20;
|
|
struct fft_sample_ht20_40 fft_sample_40;
|
|
struct fft_sample_tlv *tlv;
|
|
struct ath_radar_info *radar_info;
|
|
int len = rs->rs_datalen;
|
|
int dc_pos;
|
|
u16 fft_len, length, freq = ah->curchan->chan->center_freq;
|
|
enum nl80211_channel_type chan_type;
|
|
|
|
/* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
|
|
* via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
|
|
* yet, but this is supposed to be possible as well.
|
|
*/
|
|
if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
|
|
rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
|
|
rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
|
|
return 0;
|
|
|
|
/* check if spectral scan bit is set. This does not have to be checked
|
|
* if received through a SPECTRAL phy error, but shouldn't hurt.
|
|
*/
|
|
radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
|
|
if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
|
|
return 0;
|
|
|
|
chan_type = cfg80211_get_chandef_type(&sc->hw->conf.chandef);
|
|
if ((chan_type == NL80211_CHAN_HT40MINUS) ||
|
|
(chan_type == NL80211_CHAN_HT40PLUS)) {
|
|
fft_len = SPECTRAL_HT20_40_TOTAL_DATA_LEN;
|
|
num_bins = SPECTRAL_HT20_40_NUM_BINS;
|
|
bins = (u8 *)fft_sample_40.data;
|
|
} else {
|
|
fft_len = SPECTRAL_HT20_TOTAL_DATA_LEN;
|
|
num_bins = SPECTRAL_HT20_NUM_BINS;
|
|
bins = (u8 *)fft_sample_20.data;
|
|
}
|
|
|
|
/* Variation in the data length is possible and will be fixed later */
|
|
if ((len > fft_len + 2) || (len < fft_len - 1))
|
|
return 1;
|
|
|
|
switch (len - fft_len) {
|
|
case 0:
|
|
/* length correct, nothing to do. */
|
|
memcpy(bins, vdata, num_bins);
|
|
break;
|
|
case -1:
|
|
/* first byte missing, duplicate it. */
|
|
memcpy(&bins[1], vdata, num_bins - 1);
|
|
bins[0] = vdata[0];
|
|
break;
|
|
case 2:
|
|
/* MAC added 2 extra bytes at bin 30 and 32, remove them. */
|
|
memcpy(bins, vdata, 30);
|
|
bins[30] = vdata[31];
|
|
memcpy(&bins[31], &vdata[33], num_bins - 31);
|
|
break;
|
|
case 1:
|
|
/* MAC added 2 extra bytes AND first byte is missing. */
|
|
bins[0] = vdata[0];
|
|
memcpy(&bins[1], vdata, 30);
|
|
bins[31] = vdata[31];
|
|
memcpy(&bins[32], &vdata[33], num_bins - 32);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
/* DC value (value in the middle) is the blind spot of the spectral
|
|
* sample and invalid, interpolate it.
|
|
*/
|
|
dc_pos = num_bins / 2;
|
|
bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
|
|
|
|
if ((chan_type == NL80211_CHAN_HT40MINUS) ||
|
|
(chan_type == NL80211_CHAN_HT40PLUS)) {
|
|
s8 lower_rssi, upper_rssi;
|
|
s16 ext_nf;
|
|
u8 lower_max_index, upper_max_index;
|
|
u8 lower_bitmap_w, upper_bitmap_w;
|
|
u16 lower_mag, upper_mag;
|
|
struct ath9k_hw_cal_data *caldata = ah->caldata;
|
|
struct ath_ht20_40_mag_info *mag_info;
|
|
|
|
if (caldata)
|
|
ext_nf = ath9k_hw_getchan_noise(ah, ah->curchan,
|
|
caldata->nfCalHist[3].privNF);
|
|
else
|
|
ext_nf = ATH_DEFAULT_NOISE_FLOOR;
|
|
|
|
length = sizeof(fft_sample_40) - sizeof(struct fft_sample_tlv);
|
|
fft_sample_40.tlv.type = ATH_FFT_SAMPLE_HT20_40;
|
|
fft_sample_40.tlv.length = __cpu_to_be16(length);
|
|
fft_sample_40.freq = __cpu_to_be16(freq);
|
|
fft_sample_40.channel_type = chan_type;
|
|
|
|
if (chan_type == NL80211_CHAN_HT40PLUS) {
|
|
lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
|
|
upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0);
|
|
|
|
fft_sample_40.lower_noise = ah->noise;
|
|
fft_sample_40.upper_noise = ext_nf;
|
|
} else {
|
|
lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0);
|
|
upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
|
|
|
|
fft_sample_40.lower_noise = ext_nf;
|
|
fft_sample_40.upper_noise = ah->noise;
|
|
}
|
|
fft_sample_40.lower_rssi = lower_rssi;
|
|
fft_sample_40.upper_rssi = upper_rssi;
|
|
|
|
mag_info = ((struct ath_ht20_40_mag_info *)radar_info) - 1;
|
|
lower_mag = spectral_max_magnitude(mag_info->lower_bins);
|
|
upper_mag = spectral_max_magnitude(mag_info->upper_bins);
|
|
fft_sample_40.lower_max_magnitude = __cpu_to_be16(lower_mag);
|
|
fft_sample_40.upper_max_magnitude = __cpu_to_be16(upper_mag);
|
|
lower_max_index = spectral_max_index(mag_info->lower_bins);
|
|
upper_max_index = spectral_max_index(mag_info->upper_bins);
|
|
fft_sample_40.lower_max_index = lower_max_index;
|
|
fft_sample_40.upper_max_index = upper_max_index;
|
|
lower_bitmap_w = spectral_bitmap_weight(mag_info->lower_bins);
|
|
upper_bitmap_w = spectral_bitmap_weight(mag_info->upper_bins);
|
|
fft_sample_40.lower_bitmap_weight = lower_bitmap_w;
|
|
fft_sample_40.upper_bitmap_weight = upper_bitmap_w;
|
|
fft_sample_40.max_exp = mag_info->max_exp & 0xf;
|
|
|
|
fft_sample_40.tsf = __cpu_to_be64(tsf);
|
|
|
|
tlv = (struct fft_sample_tlv *)&fft_sample_40;
|
|
} else {
|
|
u8 max_index, bitmap_w;
|
|
u16 magnitude;
|
|
struct ath_ht20_mag_info *mag_info;
|
|
|
|
length = sizeof(fft_sample_20) - sizeof(struct fft_sample_tlv);
|
|
fft_sample_20.tlv.type = ATH_FFT_SAMPLE_HT20;
|
|
fft_sample_20.tlv.length = __cpu_to_be16(length);
|
|
fft_sample_20.freq = __cpu_to_be16(freq);
|
|
|
|
fft_sample_20.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
|
|
fft_sample_20.noise = ah->noise;
|
|
|
|
mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
|
|
magnitude = spectral_max_magnitude(mag_info->all_bins);
|
|
fft_sample_20.max_magnitude = __cpu_to_be16(magnitude);
|
|
max_index = spectral_max_index(mag_info->all_bins);
|
|
fft_sample_20.max_index = max_index;
|
|
bitmap_w = spectral_bitmap_weight(mag_info->all_bins);
|
|
fft_sample_20.bitmap_weight = bitmap_w;
|
|
fft_sample_20.max_exp = mag_info->max_exp & 0xf;
|
|
|
|
fft_sample_20.tsf = __cpu_to_be64(tsf);
|
|
|
|
tlv = (struct fft_sample_tlv *)&fft_sample_20;
|
|
}
|
|
|
|
ath_debug_send_fft_sample(sc, tlv);
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static bool ath9k_is_mybeacon(struct ath_softc *sc, struct ieee80211_hdr *hdr)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (ieee80211_is_beacon(hdr->frame_control)) {
|
|
RX_STAT_INC(rx_beacons);
|
|
if (!is_zero_ether_addr(common->curbssid) &&
|
|
ether_addr_equal(hdr->addr3, common->curbssid))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* For Decrypt or Demic errors, we only mark packet status here and always push
|
|
* up the frame up to let mac80211 handle the actual error case, be it no
|
|
* decryption key or real decryption error. This let us keep statistics there.
|
|
*/
|
|
static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
|
|
struct sk_buff *skb,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rx_status,
|
|
bool *decrypt_error, u64 tsf)
|
|
{
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ieee80211_hdr *hdr;
|
|
bool discard_current = sc->rx.discard_next;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Discard corrupt descriptors which are marked in
|
|
* ath_get_next_rx_buf().
|
|
*/
|
|
sc->rx.discard_next = rx_stats->rs_more;
|
|
if (discard_current)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Discard zero-length packets.
|
|
*/
|
|
if (!rx_stats->rs_datalen) {
|
|
RX_STAT_INC(rx_len_err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* rs_status follows rs_datalen so if rs_datalen is too large
|
|
* we can take a hint that hardware corrupted it, so ignore
|
|
* those frames.
|
|
*/
|
|
if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
|
|
RX_STAT_INC(rx_len_err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Only use status info from the last fragment */
|
|
if (rx_stats->rs_more)
|
|
return 0;
|
|
|
|
/*
|
|
* Return immediately if the RX descriptor has been marked
|
|
* as corrupt based on the various error bits.
|
|
*
|
|
* This is different from the other corrupt descriptor
|
|
* condition handled above.
|
|
*/
|
|
if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) {
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
|
|
|
|
ath9k_process_tsf(rx_stats, rx_status, tsf);
|
|
ath_debug_stat_rx(sc, rx_stats);
|
|
|
|
/*
|
|
* Process PHY errors and return so that the packet
|
|
* can be dropped.
|
|
*/
|
|
if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
|
|
ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
|
|
if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime))
|
|
RX_STAT_INC(rx_spectral);
|
|
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
/*
|
|
* everything but the rate is checked here, the rate check is done
|
|
* separately to avoid doing two lookups for a rate for each frame.
|
|
*/
|
|
if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) {
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
rx_stats->is_mybeacon = ath9k_is_mybeacon(sc, hdr);
|
|
if (rx_stats->is_mybeacon) {
|
|
sc->hw_busy_count = 0;
|
|
ath_start_rx_poll(sc, 3);
|
|
}
|
|
|
|
if (ath9k_process_rate(common, hw, rx_stats, rx_status)) {
|
|
ret =-EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
ath9k_process_rssi(common, hw, rx_stats, rx_status);
|
|
|
|
rx_status->band = hw->conf.chandef.chan->band;
|
|
rx_status->freq = hw->conf.chandef.chan->center_freq;
|
|
rx_status->antenna = rx_stats->rs_antenna;
|
|
rx_status->flag |= RX_FLAG_MACTIME_END;
|
|
|
|
#ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
|
|
if (ieee80211_is_data_present(hdr->frame_control) &&
|
|
!ieee80211_is_qos_nullfunc(hdr->frame_control))
|
|
sc->rx.num_pkts++;
|
|
#endif
|
|
|
|
exit:
|
|
sc->rx.discard_next = false;
|
|
return ret;
|
|
}
|
|
|
|
static void ath9k_rx_skb_postprocess(struct ath_common *common,
|
|
struct sk_buff *skb,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rxs,
|
|
bool decrypt_error)
|
|
{
|
|
struct ath_hw *ah = common->ah;
|
|
struct ieee80211_hdr *hdr;
|
|
int hdrlen, padpos, padsize;
|
|
u8 keyix;
|
|
__le16 fc;
|
|
|
|
/* see if any padding is done by the hw and remove it */
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
fc = hdr->frame_control;
|
|
padpos = ieee80211_hdrlen(fc);
|
|
|
|
/* The MAC header is padded to have 32-bit boundary if the
|
|
* packet payload is non-zero. The general calculation for
|
|
* padsize would take into account odd header lengths:
|
|
* padsize = (4 - padpos % 4) % 4; However, since only
|
|
* even-length headers are used, padding can only be 0 or 2
|
|
* bytes and we can optimize this a bit. In addition, we must
|
|
* not try to remove padding from short control frames that do
|
|
* not have payload. */
|
|
padsize = padpos & 3;
|
|
if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
|
|
memmove(skb->data + padsize, skb->data, padpos);
|
|
skb_pull(skb, padsize);
|
|
}
|
|
|
|
keyix = rx_stats->rs_keyix;
|
|
|
|
if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
|
|
ieee80211_has_protected(fc)) {
|
|
rxs->flag |= RX_FLAG_DECRYPTED;
|
|
} else if (ieee80211_has_protected(fc)
|
|
&& !decrypt_error && skb->len >= hdrlen + 4) {
|
|
keyix = skb->data[hdrlen + 3] >> 6;
|
|
|
|
if (test_bit(keyix, common->keymap))
|
|
rxs->flag |= RX_FLAG_DECRYPTED;
|
|
}
|
|
if (ah->sw_mgmt_crypto &&
|
|
(rxs->flag & RX_FLAG_DECRYPTED) &&
|
|
ieee80211_is_mgmt(fc))
|
|
/* Use software decrypt for management frames. */
|
|
rxs->flag &= ~RX_FLAG_DECRYPTED;
|
|
}
|
|
|
|
/*
|
|
* Run the LNA combining algorithm only in these cases:
|
|
*
|
|
* Standalone WLAN cards with both LNA/Antenna diversity
|
|
* enabled in the EEPROM.
|
|
*
|
|
* WLAN+BT cards which are in the supported card list
|
|
* in ath_pci_id_table and the user has loaded the
|
|
* driver with "bt_ant_diversity" set to true.
|
|
*/
|
|
static void ath9k_antenna_check(struct ath_softc *sc,
|
|
struct ath_rx_status *rs)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath9k_hw_capabilities *pCap = &ah->caps;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
|
|
return;
|
|
|
|
/*
|
|
* Change the default rx antenna if rx diversity
|
|
* chooses the other antenna 3 times in a row.
|
|
*/
|
|
if (sc->rx.defant != rs->rs_antenna) {
|
|
if (++sc->rx.rxotherant >= 3)
|
|
ath_setdefantenna(sc, rs->rs_antenna);
|
|
} else {
|
|
sc->rx.rxotherant = 0;
|
|
}
|
|
|
|
if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
|
|
if (common->bt_ant_diversity)
|
|
ath_ant_comb_scan(sc, rs);
|
|
} else {
|
|
ath_ant_comb_scan(sc, rs);
|
|
}
|
|
}
|
|
|
|
static void ath9k_apply_ampdu_details(struct ath_softc *sc,
|
|
struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
|
|
{
|
|
if (rs->rs_isaggr) {
|
|
rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
|
|
|
|
rxs->ampdu_reference = sc->rx.ampdu_ref;
|
|
|
|
if (!rs->rs_moreaggr) {
|
|
rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
|
|
sc->rx.ampdu_ref++;
|
|
}
|
|
|
|
if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
|
|
rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
|
|
}
|
|
}
|
|
|
|
int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
|
|
{
|
|
struct ath_rxbuf *bf;
|
|
struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
|
|
struct ieee80211_rx_status *rxs;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ieee80211_hw *hw = sc->hw;
|
|
int retval;
|
|
struct ath_rx_status rs;
|
|
enum ath9k_rx_qtype qtype;
|
|
bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
|
|
int dma_type;
|
|
u64 tsf = 0;
|
|
unsigned long flags;
|
|
dma_addr_t new_buf_addr;
|
|
|
|
if (edma)
|
|
dma_type = DMA_BIDIRECTIONAL;
|
|
else
|
|
dma_type = DMA_FROM_DEVICE;
|
|
|
|
qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
|
|
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
|
|
do {
|
|
bool decrypt_error = false;
|
|
|
|
memset(&rs, 0, sizeof(rs));
|
|
if (edma)
|
|
bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
|
|
else
|
|
bf = ath_get_next_rx_buf(sc, &rs);
|
|
|
|
if (!bf)
|
|
break;
|
|
|
|
skb = bf->bf_mpdu;
|
|
if (!skb)
|
|
continue;
|
|
|
|
/*
|
|
* Take frame header from the first fragment and RX status from
|
|
* the last one.
|
|
*/
|
|
if (sc->rx.frag)
|
|
hdr_skb = sc->rx.frag;
|
|
else
|
|
hdr_skb = skb;
|
|
|
|
rxs = IEEE80211_SKB_RXCB(hdr_skb);
|
|
memset(rxs, 0, sizeof(struct ieee80211_rx_status));
|
|
|
|
retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
|
|
&decrypt_error, tsf);
|
|
if (retval)
|
|
goto requeue_drop_frag;
|
|
|
|
/* Ensure we always have an skb to requeue once we are done
|
|
* processing the current buffer's skb */
|
|
requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
|
|
|
|
/* If there is no memory we ignore the current RX'd frame,
|
|
* tell hardware it can give us a new frame using the old
|
|
* skb and put it at the tail of the sc->rx.rxbuf list for
|
|
* processing. */
|
|
if (!requeue_skb) {
|
|
RX_STAT_INC(rx_oom_err);
|
|
goto requeue_drop_frag;
|
|
}
|
|
|
|
/* We will now give hardware our shiny new allocated skb */
|
|
new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
|
|
common->rx_bufsize, dma_type);
|
|
if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
|
|
dev_kfree_skb_any(requeue_skb);
|
|
goto requeue_drop_frag;
|
|
}
|
|
|
|
/* Unmap the frame */
|
|
dma_unmap_single(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize, dma_type);
|
|
|
|
bf->bf_mpdu = requeue_skb;
|
|
bf->bf_buf_addr = new_buf_addr;
|
|
|
|
skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
|
|
if (ah->caps.rx_status_len)
|
|
skb_pull(skb, ah->caps.rx_status_len);
|
|
|
|
if (!rs.rs_more)
|
|
ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
|
|
rxs, decrypt_error);
|
|
|
|
if (rs.rs_more) {
|
|
RX_STAT_INC(rx_frags);
|
|
/*
|
|
* rs_more indicates chained descriptors which can be
|
|
* used to link buffers together for a sort of
|
|
* scatter-gather operation.
|
|
*/
|
|
if (sc->rx.frag) {
|
|
/* too many fragments - cannot handle frame */
|
|
dev_kfree_skb_any(sc->rx.frag);
|
|
dev_kfree_skb_any(skb);
|
|
RX_STAT_INC(rx_too_many_frags_err);
|
|
skb = NULL;
|
|
}
|
|
sc->rx.frag = skb;
|
|
goto requeue;
|
|
}
|
|
|
|
if (sc->rx.frag) {
|
|
int space = skb->len - skb_tailroom(hdr_skb);
|
|
|
|
if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
|
|
dev_kfree_skb(skb);
|
|
RX_STAT_INC(rx_oom_err);
|
|
goto requeue_drop_frag;
|
|
}
|
|
|
|
sc->rx.frag = NULL;
|
|
|
|
skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
|
|
skb->len);
|
|
dev_kfree_skb_any(skb);
|
|
skb = hdr_skb;
|
|
}
|
|
|
|
if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
|
|
skb_trim(skb, skb->len - 8);
|
|
|
|
spin_lock_irqsave(&sc->sc_pm_lock, flags);
|
|
if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
|
|
PS_WAIT_FOR_CAB |
|
|
PS_WAIT_FOR_PSPOLL_DATA)) ||
|
|
ath9k_check_auto_sleep(sc))
|
|
ath_rx_ps(sc, skb, rs.is_mybeacon);
|
|
spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
|
|
|
|
ath9k_antenna_check(sc, &rs);
|
|
|
|
ath9k_apply_ampdu_details(sc, &rs, rxs);
|
|
|
|
ieee80211_rx(hw, skb);
|
|
|
|
requeue_drop_frag:
|
|
if (sc->rx.frag) {
|
|
dev_kfree_skb_any(sc->rx.frag);
|
|
sc->rx.frag = NULL;
|
|
}
|
|
requeue:
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
if (flush)
|
|
continue;
|
|
|
|
if (edma) {
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
} else {
|
|
ath_rx_buf_relink(sc, bf);
|
|
ath9k_hw_rxena(ah);
|
|
}
|
|
} while (1);
|
|
|
|
if (!(ah->imask & ATH9K_INT_RXEOL)) {
|
|
ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
|
|
ath9k_hw_set_interrupts(ah);
|
|
}
|
|
|
|
return 0;
|
|
}
|