WANG Xuerui c23e7f01cf LoongArch: Relay BCE exceptions to userland as SIGSEGV with si_code=SEGV_BNDERR
SEGV_BNDERR was introduced initially for supporting the Intel MPX, but
fell into disuse after the MPX support was removed. The LoongArch
bounds-checking instructions behave very differently than MPX, but
overall the interface is still kind of suitable for conveying the
information to userland when bounds-checking assertions trigger, so we
wouldn't have to invent more UAPI. Specifically, when the BCE triggers,
a SEGV_BNDERR is sent to userland, with si_addr set to the out-of-bounds
address or value (in asrt{gt,le}'s case), and one of si_lower or
si_upper set to the configured bound depending on the faulting
instruction. The other bound is set to either 0 or ULONG_MAX to resemble
a range with both lower and upper bounds.

Note that it is possible to have si_addr == si_lower in case of a
failing asrtgt or {ld,st}gt, because those instructions test for strict
greater-than relationship. This should not pose a problem for userland,
though, because the faulting PC is available for the application to
associate back to the exact instruction for figuring out the
expectation.

Example exception context generated by a faulting `asrtgt.d t0, t1`
(assert t0 > t1 or BCE) with t0=100 and t1=200:

> pc 00005555558206a4 ra 00007ffff2d854fc tp 00007ffff2f2f180 sp 00007ffffbf9fb80
> a0 0000000000000002 a1 00007ffffbf9fce8 a2 00007ffffbf9fd00 a3 00007ffff2ed4558
> a4 0000000000000000 a5 00007ffff2f044c8 a6 00007ffffbf9fce0 a7 fffffffffffff000
> t0 0000000000000064 t1 00000000000000c8 t2 00007ffffbfa2d5e t3 00007ffff2f12aa0
> t4 00007ffff2ed6158 t5 00007ffff2ed6158 t6 000000000000002e t7 0000000003d8f538
> t8 0000000000000005 u0 0000000000000000 s9 0000000000000000 s0 00007ffffbf9fce8
> s1 0000000000000002 s2 0000000000000000 s3 00007ffff2f2c038 s4 0000555555820610
> s5 00007ffff2ed5000 s6 0000555555827e38 s7 00007ffffbf9fd00 s8 0000555555827e38
>    ra: 00007ffff2d854fc
>   ERA: 00005555558206a4
>  CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
>  PRMD: 00000007 (PPLV3 +PIE -PWE)
>  EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
>  ECFG: 0007181c (LIE=2-4,11-12 VS=7)
> ESTAT: 000a0000 [BCE] (IS= ECode=10 EsubCode=0)
>  PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)

Signed-off-by: WANG Xuerui <git@xen0n.name>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-05-01 17:19:27 +08:00
2023-02-26 11:53:25 -08:00
2023-04-20 12:46:18 -07:00
2023-04-22 09:18:35 -07:00
2023-04-15 10:29:53 -07:00
2023-03-01 09:27:00 -08:00
2023-04-23 08:22:25 -07:00
2023-04-19 17:55:45 -07:00
2022-09-28 09:02:20 +02:00
2022-10-10 12:00:45 -07:00
2023-04-23 12:02:52 -07:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 5.7 GiB
Languages
C 97.6%
Assembly 1%
Shell 0.5%
Python 0.3%
Makefile 0.3%