d0164adc89
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
917 lines
24 KiB
C
917 lines
24 KiB
C
/*
|
|
* linux/fs/nfs/file.c
|
|
*
|
|
* Copyright (C) 1992 Rick Sladkey
|
|
*
|
|
* Changes Copyright (C) 1994 by Florian La Roche
|
|
* - Do not copy data too often around in the kernel.
|
|
* - In nfs_file_read the return value of kmalloc wasn't checked.
|
|
* - Put in a better version of read look-ahead buffering. Original idea
|
|
* and implementation by Wai S Kok elekokws@ee.nus.sg.
|
|
*
|
|
* Expire cache on write to a file by Wai S Kok (Oct 1994).
|
|
*
|
|
* Total rewrite of read side for new NFS buffer cache.. Linus.
|
|
*
|
|
* nfs regular file handling functions
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/time.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/nfs_fs.h>
|
|
#include <linux/nfs_mount.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
#include "delegation.h"
|
|
#include "internal.h"
|
|
#include "iostat.h"
|
|
#include "fscache.h"
|
|
#include "pnfs.h"
|
|
|
|
#include "nfstrace.h"
|
|
|
|
#define NFSDBG_FACILITY NFSDBG_FILE
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops;
|
|
|
|
/* Hack for future NFS swap support */
|
|
#ifndef IS_SWAPFILE
|
|
# define IS_SWAPFILE(inode) (0)
|
|
#endif
|
|
|
|
int nfs_check_flags(int flags)
|
|
{
|
|
if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_check_flags);
|
|
|
|
/*
|
|
* Open file
|
|
*/
|
|
static int
|
|
nfs_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int res;
|
|
|
|
dprintk("NFS: open file(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSOPEN);
|
|
res = nfs_check_flags(filp->f_flags);
|
|
if (res)
|
|
return res;
|
|
|
|
res = nfs_open(inode, filp);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
nfs_file_release(struct inode *inode, struct file *filp)
|
|
{
|
|
dprintk("NFS: release(%pD2)\n", filp);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
|
|
nfs_file_clear_open_context(filp);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_release);
|
|
|
|
/**
|
|
* nfs_revalidate_size - Revalidate the file size
|
|
* @inode - pointer to inode struct
|
|
* @file - pointer to struct file
|
|
*
|
|
* Revalidates the file length. This is basically a wrapper around
|
|
* nfs_revalidate_inode() that takes into account the fact that we may
|
|
* have cached writes (in which case we don't care about the server's
|
|
* idea of what the file length is), or O_DIRECT (in which case we
|
|
* shouldn't trust the cache).
|
|
*/
|
|
static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
|
|
{
|
|
struct nfs_server *server = NFS_SERVER(inode);
|
|
struct nfs_inode *nfsi = NFS_I(inode);
|
|
|
|
if (nfs_have_delegated_attributes(inode))
|
|
goto out_noreval;
|
|
|
|
if (filp->f_flags & O_DIRECT)
|
|
goto force_reval;
|
|
if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
|
|
goto force_reval;
|
|
if (nfs_attribute_timeout(inode))
|
|
goto force_reval;
|
|
out_noreval:
|
|
return 0;
|
|
force_reval:
|
|
return __nfs_revalidate_inode(server, inode);
|
|
}
|
|
|
|
loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
|
|
{
|
|
dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
|
|
filp, offset, whence);
|
|
|
|
/*
|
|
* whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
|
|
* the cached file length
|
|
*/
|
|
if (whence != SEEK_SET && whence != SEEK_CUR) {
|
|
struct inode *inode = filp->f_mapping->host;
|
|
|
|
int retval = nfs_revalidate_file_size(inode, filp);
|
|
if (retval < 0)
|
|
return (loff_t)retval;
|
|
}
|
|
|
|
return generic_file_llseek(filp, offset, whence);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_llseek);
|
|
|
|
/*
|
|
* Flush all dirty pages, and check for write errors.
|
|
*/
|
|
static int
|
|
nfs_file_flush(struct file *file, fl_owner_t id)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
dprintk("NFS: flush(%pD2)\n", file);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
|
|
if ((file->f_mode & FMODE_WRITE) == 0)
|
|
return 0;
|
|
|
|
/* Flush writes to the server and return any errors */
|
|
return vfs_fsync(file, 0);
|
|
}
|
|
|
|
ssize_t
|
|
nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t result;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT)
|
|
return nfs_file_direct_read(iocb, to, iocb->ki_pos);
|
|
|
|
dprintk("NFS: read(%pD2, %zu@%lu)\n",
|
|
iocb->ki_filp,
|
|
iov_iter_count(to), (unsigned long) iocb->ki_pos);
|
|
|
|
result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
|
|
if (!result) {
|
|
result = generic_file_read_iter(iocb, to);
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
|
|
}
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_read);
|
|
|
|
ssize_t
|
|
nfs_file_splice_read(struct file *filp, loff_t *ppos,
|
|
struct pipe_inode_info *pipe, size_t count,
|
|
unsigned int flags)
|
|
{
|
|
struct inode *inode = file_inode(filp);
|
|
ssize_t res;
|
|
|
|
dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
|
|
filp, (unsigned long) count, (unsigned long long) *ppos);
|
|
|
|
res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
|
|
if (!res) {
|
|
res = generic_file_splice_read(filp, ppos, pipe, count, flags);
|
|
if (res > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
|
|
}
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_splice_read);
|
|
|
|
int
|
|
nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
int status;
|
|
|
|
dprintk("NFS: mmap(%pD2)\n", file);
|
|
|
|
/* Note: generic_file_mmap() returns ENOSYS on nommu systems
|
|
* so we call that before revalidating the mapping
|
|
*/
|
|
status = generic_file_mmap(file, vma);
|
|
if (!status) {
|
|
vma->vm_ops = &nfs_file_vm_ops;
|
|
status = nfs_revalidate_mapping(inode, file->f_mapping);
|
|
}
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_mmap);
|
|
|
|
/*
|
|
* Flush any dirty pages for this process, and check for write errors.
|
|
* The return status from this call provides a reliable indication of
|
|
* whether any write errors occurred for this process.
|
|
*
|
|
* Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
|
|
* disk, but it retrieves and clears ctx->error after synching, despite
|
|
* the two being set at the same time in nfs_context_set_write_error().
|
|
* This is because the former is used to notify the _next_ call to
|
|
* nfs_file_write() that a write error occurred, and hence cause it to
|
|
* fall back to doing a synchronous write.
|
|
*/
|
|
int
|
|
nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
struct nfs_open_context *ctx = nfs_file_open_context(file);
|
|
struct inode *inode = file_inode(file);
|
|
int have_error, do_resend, status;
|
|
int ret = 0;
|
|
|
|
dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
|
|
do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
|
|
have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
|
|
status = nfs_commit_inode(inode, FLUSH_SYNC);
|
|
have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
|
|
if (have_error) {
|
|
ret = xchg(&ctx->error, 0);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
if (status < 0) {
|
|
ret = status;
|
|
goto out;
|
|
}
|
|
do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
|
|
if (do_resend)
|
|
ret = -EAGAIN;
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
|
|
|
|
static int
|
|
nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
|
|
{
|
|
int ret;
|
|
struct inode *inode = file_inode(file);
|
|
|
|
trace_nfs_fsync_enter(inode);
|
|
|
|
nfs_inode_dio_wait(inode);
|
|
do {
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
|
|
if (ret != 0)
|
|
break;
|
|
mutex_lock(&inode->i_mutex);
|
|
ret = nfs_file_fsync_commit(file, start, end, datasync);
|
|
mutex_unlock(&inode->i_mutex);
|
|
/*
|
|
* If nfs_file_fsync_commit detected a server reboot, then
|
|
* resend all dirty pages that might have been covered by
|
|
* the NFS_CONTEXT_RESEND_WRITES flag
|
|
*/
|
|
start = 0;
|
|
end = LLONG_MAX;
|
|
} while (ret == -EAGAIN);
|
|
|
|
trace_nfs_fsync_exit(inode, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Decide whether a read/modify/write cycle may be more efficient
|
|
* then a modify/write/read cycle when writing to a page in the
|
|
* page cache.
|
|
*
|
|
* The modify/write/read cycle may occur if a page is read before
|
|
* being completely filled by the writer. In this situation, the
|
|
* page must be completely written to stable storage on the server
|
|
* before it can be refilled by reading in the page from the server.
|
|
* This can lead to expensive, small, FILE_SYNC mode writes being
|
|
* done.
|
|
*
|
|
* It may be more efficient to read the page first if the file is
|
|
* open for reading in addition to writing, the page is not marked
|
|
* as Uptodate, it is not dirty or waiting to be committed,
|
|
* indicating that it was previously allocated and then modified,
|
|
* that there were valid bytes of data in that range of the file,
|
|
* and that the new data won't completely replace the old data in
|
|
* that range of the file.
|
|
*/
|
|
static int nfs_want_read_modify_write(struct file *file, struct page *page,
|
|
loff_t pos, unsigned len)
|
|
{
|
|
unsigned int pglen = nfs_page_length(page);
|
|
unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
unsigned int end = offset + len;
|
|
|
|
if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
|
|
if (!PageUptodate(page))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
if ((file->f_mode & FMODE_READ) && /* open for read? */
|
|
!PageUptodate(page) && /* Uptodate? */
|
|
!PagePrivate(page) && /* i/o request already? */
|
|
pglen && /* valid bytes of file? */
|
|
(end < pglen || offset)) /* replace all valid bytes? */
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This does the "real" work of the write. We must allocate and lock the
|
|
* page to be sent back to the generic routine, which then copies the
|
|
* data from user space.
|
|
*
|
|
* If the writer ends up delaying the write, the writer needs to
|
|
* increment the page use counts until he is done with the page.
|
|
*/
|
|
static int nfs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
int ret;
|
|
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
|
|
struct page *page;
|
|
int once_thru = 0;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
start:
|
|
/*
|
|
* Prevent starvation issues if someone is doing a consistency
|
|
* sync-to-disk
|
|
*/
|
|
ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
|
|
nfs_wait_bit_killable, TASK_KILLABLE);
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* Wait for O_DIRECT to complete
|
|
*/
|
|
nfs_inode_dio_wait(mapping->host);
|
|
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
*pagep = page;
|
|
|
|
ret = nfs_flush_incompatible(file, page);
|
|
if (ret) {
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
} else if (!once_thru &&
|
|
nfs_want_read_modify_write(file, page, pos, len)) {
|
|
once_thru = 1;
|
|
ret = nfs_readpage(file, page);
|
|
page_cache_release(page);
|
|
if (!ret)
|
|
goto start;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int nfs_write_end(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
|
|
struct nfs_open_context *ctx = nfs_file_open_context(file);
|
|
int status;
|
|
|
|
dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
|
|
file, mapping->host->i_ino, len, (long long) pos);
|
|
|
|
/*
|
|
* Zero any uninitialised parts of the page, and then mark the page
|
|
* as up to date if it turns out that we're extending the file.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
unsigned pglen = nfs_page_length(page);
|
|
unsigned end = offset + len;
|
|
|
|
if (pglen == 0) {
|
|
zero_user_segments(page, 0, offset,
|
|
end, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else if (end >= pglen) {
|
|
zero_user_segment(page, end, PAGE_CACHE_SIZE);
|
|
if (offset == 0)
|
|
SetPageUptodate(page);
|
|
} else
|
|
zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
|
|
}
|
|
|
|
status = nfs_updatepage(file, page, offset, copied);
|
|
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
NFS_I(mapping->host)->write_io += copied;
|
|
|
|
if (nfs_ctx_key_to_expire(ctx)) {
|
|
status = nfs_wb_all(mapping->host);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
return copied;
|
|
}
|
|
|
|
/*
|
|
* Partially or wholly invalidate a page
|
|
* - Release the private state associated with a page if undergoing complete
|
|
* page invalidation
|
|
* - Called if either PG_private or PG_fscache is set on the page
|
|
* - Caller holds page lock
|
|
*/
|
|
static void nfs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
|
|
page, offset, length);
|
|
|
|
if (offset != 0 || length < PAGE_CACHE_SIZE)
|
|
return;
|
|
/* Cancel any unstarted writes on this page */
|
|
nfs_wb_page_cancel(page_file_mapping(page)->host, page);
|
|
|
|
nfs_fscache_invalidate_page(page, page->mapping->host);
|
|
}
|
|
|
|
/*
|
|
* Attempt to release the private state associated with a page
|
|
* - Called if either PG_private or PG_fscache is set on the page
|
|
* - Caller holds page lock
|
|
* - Return true (may release page) or false (may not)
|
|
*/
|
|
static int nfs_release_page(struct page *page, gfp_t gfp)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
|
|
dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
|
|
|
|
/* Always try to initiate a 'commit' if relevant, but only
|
|
* wait for it if the caller allows blocking. Even then,
|
|
* only wait 1 second and only if the 'bdi' is not congested.
|
|
* Waiting indefinitely can cause deadlocks when the NFS
|
|
* server is on this machine, when a new TCP connection is
|
|
* needed and in other rare cases. There is no particular
|
|
* need to wait extensively here. A short wait has the
|
|
* benefit that someone else can worry about the freezer.
|
|
*/
|
|
if (mapping) {
|
|
struct nfs_server *nfss = NFS_SERVER(mapping->host);
|
|
nfs_commit_inode(mapping->host, 0);
|
|
if (gfpflags_allow_blocking(gfp) &&
|
|
!bdi_write_congested(&nfss->backing_dev_info)) {
|
|
wait_on_page_bit_killable_timeout(page, PG_private,
|
|
HZ);
|
|
if (PagePrivate(page))
|
|
set_bdi_congested(&nfss->backing_dev_info,
|
|
BLK_RW_ASYNC);
|
|
}
|
|
}
|
|
/* If PagePrivate() is set, then the page is not freeable */
|
|
if (PagePrivate(page))
|
|
return 0;
|
|
return nfs_fscache_release_page(page, gfp);
|
|
}
|
|
|
|
static void nfs_check_dirty_writeback(struct page *page,
|
|
bool *dirty, bool *writeback)
|
|
{
|
|
struct nfs_inode *nfsi;
|
|
struct address_space *mapping = page_file_mapping(page);
|
|
|
|
if (!mapping || PageSwapCache(page))
|
|
return;
|
|
|
|
/*
|
|
* Check if an unstable page is currently being committed and
|
|
* if so, have the VM treat it as if the page is under writeback
|
|
* so it will not block due to pages that will shortly be freeable.
|
|
*/
|
|
nfsi = NFS_I(mapping->host);
|
|
if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
|
|
*writeback = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If PagePrivate() is set, then the page is not freeable and as the
|
|
* inode is not being committed, it's not going to be cleaned in the
|
|
* near future so treat it as dirty
|
|
*/
|
|
if (PagePrivate(page))
|
|
*dirty = true;
|
|
}
|
|
|
|
/*
|
|
* Attempt to clear the private state associated with a page when an error
|
|
* occurs that requires the cached contents of an inode to be written back or
|
|
* destroyed
|
|
* - Called if either PG_private or fscache is set on the page
|
|
* - Caller holds page lock
|
|
* - Return 0 if successful, -error otherwise
|
|
*/
|
|
static int nfs_launder_page(struct page *page)
|
|
{
|
|
struct inode *inode = page_file_mapping(page)->host;
|
|
struct nfs_inode *nfsi = NFS_I(inode);
|
|
|
|
dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
|
|
inode->i_ino, (long long)page_offset(page));
|
|
|
|
nfs_fscache_wait_on_page_write(nfsi, page);
|
|
return nfs_wb_page(inode, page);
|
|
}
|
|
|
|
static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
|
|
sector_t *span)
|
|
{
|
|
struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
|
|
|
|
*span = sis->pages;
|
|
|
|
return rpc_clnt_swap_activate(clnt);
|
|
}
|
|
|
|
static void nfs_swap_deactivate(struct file *file)
|
|
{
|
|
struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
|
|
|
|
rpc_clnt_swap_deactivate(clnt);
|
|
}
|
|
|
|
const struct address_space_operations nfs_file_aops = {
|
|
.readpage = nfs_readpage,
|
|
.readpages = nfs_readpages,
|
|
.set_page_dirty = __set_page_dirty_nobuffers,
|
|
.writepage = nfs_writepage,
|
|
.writepages = nfs_writepages,
|
|
.write_begin = nfs_write_begin,
|
|
.write_end = nfs_write_end,
|
|
.invalidatepage = nfs_invalidate_page,
|
|
.releasepage = nfs_release_page,
|
|
.direct_IO = nfs_direct_IO,
|
|
.migratepage = nfs_migrate_page,
|
|
.launder_page = nfs_launder_page,
|
|
.is_dirty_writeback = nfs_check_dirty_writeback,
|
|
.error_remove_page = generic_error_remove_page,
|
|
.swap_activate = nfs_swap_activate,
|
|
.swap_deactivate = nfs_swap_deactivate,
|
|
};
|
|
|
|
/*
|
|
* Notification that a PTE pointing to an NFS page is about to be made
|
|
* writable, implying that someone is about to modify the page through a
|
|
* shared-writable mapping
|
|
*/
|
|
static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct page *page = vmf->page;
|
|
struct file *filp = vma->vm_file;
|
|
struct inode *inode = file_inode(filp);
|
|
unsigned pagelen;
|
|
int ret = VM_FAULT_NOPAGE;
|
|
struct address_space *mapping;
|
|
|
|
dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
|
|
filp, filp->f_mapping->host->i_ino,
|
|
(long long)page_offset(page));
|
|
|
|
/* make sure the cache has finished storing the page */
|
|
nfs_fscache_wait_on_page_write(NFS_I(inode), page);
|
|
|
|
wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
|
|
nfs_wait_bit_killable, TASK_KILLABLE);
|
|
|
|
lock_page(page);
|
|
mapping = page_file_mapping(page);
|
|
if (mapping != inode->i_mapping)
|
|
goto out_unlock;
|
|
|
|
wait_on_page_writeback(page);
|
|
|
|
pagelen = nfs_page_length(page);
|
|
if (pagelen == 0)
|
|
goto out_unlock;
|
|
|
|
ret = VM_FAULT_LOCKED;
|
|
if (nfs_flush_incompatible(filp, page) == 0 &&
|
|
nfs_updatepage(filp, page, 0, pagelen) == 0)
|
|
goto out;
|
|
|
|
ret = VM_FAULT_SIGBUS;
|
|
out_unlock:
|
|
unlock_page(page);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct nfs_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = nfs_vm_page_mkwrite,
|
|
};
|
|
|
|
static int nfs_need_check_write(struct file *filp, struct inode *inode)
|
|
{
|
|
struct nfs_open_context *ctx;
|
|
|
|
ctx = nfs_file_open_context(filp);
|
|
if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
|
|
nfs_ctx_key_to_expire(ctx))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
unsigned long written = 0;
|
|
ssize_t result;
|
|
size_t count = iov_iter_count(from);
|
|
|
|
result = nfs_key_timeout_notify(file, inode);
|
|
if (result)
|
|
return result;
|
|
|
|
if (iocb->ki_flags & IOCB_DIRECT) {
|
|
result = generic_write_checks(iocb, from);
|
|
if (result <= 0)
|
|
return result;
|
|
return nfs_file_direct_write(iocb, from);
|
|
}
|
|
|
|
dprintk("NFS: write(%pD2, %zu@%Ld)\n",
|
|
file, count, (long long) iocb->ki_pos);
|
|
|
|
result = -EBUSY;
|
|
if (IS_SWAPFILE(inode))
|
|
goto out_swapfile;
|
|
/*
|
|
* O_APPEND implies that we must revalidate the file length.
|
|
*/
|
|
if (iocb->ki_flags & IOCB_APPEND) {
|
|
result = nfs_revalidate_file_size(inode, file);
|
|
if (result)
|
|
goto out;
|
|
}
|
|
|
|
result = count;
|
|
if (!count)
|
|
goto out;
|
|
|
|
result = generic_file_write_iter(iocb, from);
|
|
if (result > 0)
|
|
written = result;
|
|
|
|
/* Return error values */
|
|
if (result >= 0 && nfs_need_check_write(file, inode)) {
|
|
int err = vfs_fsync(file, 0);
|
|
if (err < 0)
|
|
result = err;
|
|
}
|
|
if (result > 0)
|
|
nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
|
|
out:
|
|
return result;
|
|
|
|
out_swapfile:
|
|
printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_file_write);
|
|
|
|
static int
|
|
do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status = 0;
|
|
unsigned int saved_type = fl->fl_type;
|
|
|
|
/* Try local locking first */
|
|
posix_test_lock(filp, fl);
|
|
if (fl->fl_type != F_UNLCK) {
|
|
/* found a conflict */
|
|
goto out;
|
|
}
|
|
fl->fl_type = saved_type;
|
|
|
|
if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
|
|
goto out_noconflict;
|
|
|
|
if (is_local)
|
|
goto out_noconflict;
|
|
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
out:
|
|
return status;
|
|
out_noconflict:
|
|
fl->fl_type = F_UNLCK;
|
|
goto out;
|
|
}
|
|
|
|
static int do_vfs_lock(struct file *file, struct file_lock *fl)
|
|
{
|
|
return locks_lock_file_wait(file, fl);
|
|
}
|
|
|
|
static int
|
|
do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
struct nfs_lock_context *l_ctx;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
vfs_fsync(filp, 0);
|
|
|
|
l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
|
|
if (!IS_ERR(l_ctx)) {
|
|
status = nfs_iocounter_wait(&l_ctx->io_count);
|
|
nfs_put_lock_context(l_ctx);
|
|
if (status < 0)
|
|
return status;
|
|
}
|
|
|
|
/* NOTE: special case
|
|
* If we're signalled while cleaning up locks on process exit, we
|
|
* still need to complete the unlock.
|
|
*/
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = do_vfs_lock(filp, fl);
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
is_time_granular(struct timespec *ts) {
|
|
return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
|
|
}
|
|
|
|
static int
|
|
do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int status;
|
|
|
|
/*
|
|
* Flush all pending writes before doing anything
|
|
* with locks..
|
|
*/
|
|
status = nfs_sync_mapping(filp->f_mapping);
|
|
if (status != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Use local locking if mounted with "-onolock" or with appropriate
|
|
* "-olocal_lock="
|
|
*/
|
|
if (!is_local)
|
|
status = NFS_PROTO(inode)->lock(filp, cmd, fl);
|
|
else
|
|
status = do_vfs_lock(filp, fl);
|
|
if (status < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Revalidate the cache if the server has time stamps granular
|
|
* enough to detect subsecond changes. Otherwise, clear the
|
|
* cache to prevent missing any changes.
|
|
*
|
|
* This makes locking act as a cache coherency point.
|
|
*/
|
|
nfs_sync_mapping(filp->f_mapping);
|
|
if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
|
|
if (is_time_granular(&NFS_SERVER(inode)->time_delta))
|
|
__nfs_revalidate_inode(NFS_SERVER(inode), inode);
|
|
else
|
|
nfs_zap_caches(inode);
|
|
}
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int ret = -ENOLCK;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
|
|
filp, fl->fl_type, fl->fl_flags,
|
|
(long long)fl->fl_start, (long long)fl->fl_end);
|
|
|
|
nfs_inc_stats(inode, NFSIOS_VFSLOCK);
|
|
|
|
/* No mandatory locks over NFS */
|
|
if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
|
|
goto out_err;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
|
|
is_local = 1;
|
|
|
|
if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
|
|
ret = NFS_PROTO(inode)->lock_check_bounds(fl);
|
|
if (ret < 0)
|
|
goto out_err;
|
|
}
|
|
|
|
if (IS_GETLK(cmd))
|
|
ret = do_getlk(filp, cmd, fl, is_local);
|
|
else if (fl->fl_type == F_UNLCK)
|
|
ret = do_unlk(filp, cmd, fl, is_local);
|
|
else
|
|
ret = do_setlk(filp, cmd, fl, is_local);
|
|
out_err:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_lock);
|
|
|
|
/*
|
|
* Lock a (portion of) a file
|
|
*/
|
|
int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
|
|
{
|
|
struct inode *inode = filp->f_mapping->host;
|
|
int is_local = 0;
|
|
|
|
dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
|
|
filp, fl->fl_type, fl->fl_flags);
|
|
|
|
if (!(fl->fl_flags & FL_FLOCK))
|
|
return -ENOLCK;
|
|
|
|
/*
|
|
* The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
|
|
* any standard. In principle we might be able to support LOCK_MAND
|
|
* on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
|
|
* NFS code is not set up for it.
|
|
*/
|
|
if (fl->fl_type & LOCK_MAND)
|
|
return -EINVAL;
|
|
|
|
if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
|
|
is_local = 1;
|
|
|
|
/* We're simulating flock() locks using posix locks on the server */
|
|
if (fl->fl_type == F_UNLCK)
|
|
return do_unlk(filp, cmd, fl, is_local);
|
|
return do_setlk(filp, cmd, fl, is_local);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nfs_flock);
|
|
|
|
const struct file_operations nfs_file_operations = {
|
|
.llseek = nfs_file_llseek,
|
|
.read_iter = nfs_file_read,
|
|
.write_iter = nfs_file_write,
|
|
.mmap = nfs_file_mmap,
|
|
.open = nfs_file_open,
|
|
.flush = nfs_file_flush,
|
|
.release = nfs_file_release,
|
|
.fsync = nfs_file_fsync,
|
|
.lock = nfs_lock,
|
|
.flock = nfs_flock,
|
|
.splice_read = nfs_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.check_flags = nfs_check_flags,
|
|
.setlease = simple_nosetlease,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nfs_file_operations);
|