Aruna Balakrishnaiah 40594264bd powerpc/pseries: Read and write to the 'compressed' flag of pstore
If data returned from pstore is compressed, nvram's write callback
will add a flag ERR_TYPE_KERNEL_PANIC_GZ indicating the data is compressed
while writing to nvram. If the data read from nvram is compressed, nvram's
read callback will set the flag 'compressed'. The patch adds backward
compatibilty with old format oops header when reading from pstore.

Signed-off-by: Aruna Balakrishnaiah <aruna@linux.vnet.ibm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2013-08-19 11:53:34 -07:00

903 lines
23 KiB
C

/*
* c 2001 PPC 64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* /dev/nvram driver for PPC64
*
* This perhaps should live in drivers/char
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/kmsg_dump.h>
#include <linux/pstore.h>
#include <linux/ctype.h>
#include <linux/zlib.h>
#include <asm/uaccess.h>
#include <asm/nvram.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/machdep.h>
/* Max bytes to read/write in one go */
#define NVRW_CNT 0x20
/*
* Set oops header version to distingush between old and new format header.
* lnx,oops-log partition max size is 4000, header version > 4000 will
* help in identifying new header.
*/
#define OOPS_HDR_VERSION 5000
static unsigned int nvram_size;
static int nvram_fetch, nvram_store;
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
static DEFINE_SPINLOCK(nvram_lock);
struct err_log_info {
int error_type;
unsigned int seq_num;
};
struct nvram_os_partition {
const char *name;
int req_size; /* desired size, in bytes */
int min_size; /* minimum acceptable size (0 means req_size) */
long size; /* size of data portion (excluding err_log_info) */
long index; /* offset of data portion of partition */
bool os_partition; /* partition initialized by OS, not FW */
};
static struct nvram_os_partition rtas_log_partition = {
.name = "ibm,rtas-log",
.req_size = 2079,
.min_size = 1055,
.index = -1,
.os_partition = true
};
static struct nvram_os_partition oops_log_partition = {
.name = "lnx,oops-log",
.req_size = 4000,
.min_size = 2000,
.index = -1,
.os_partition = true
};
static const char *pseries_nvram_os_partitions[] = {
"ibm,rtas-log",
"lnx,oops-log",
NULL
};
struct oops_log_info {
u16 version;
u16 report_length;
u64 timestamp;
} __attribute__((packed));
static void oops_to_nvram(struct kmsg_dumper *dumper,
enum kmsg_dump_reason reason);
static struct kmsg_dumper nvram_kmsg_dumper = {
.dump = oops_to_nvram
};
/* See clobbering_unread_rtas_event() */
#define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
static unsigned long last_unread_rtas_event; /* timestamp */
/*
* For capturing and compressing an oops or panic report...
* big_oops_buf[] holds the uncompressed text we're capturing.
*
* oops_buf[] holds the compressed text, preceded by a oops header.
* oops header has u16 holding the version of oops header (to differentiate
* between old and new format header) followed by u16 holding the length of
* the compressed* text (*Or uncompressed, if compression fails.) and u64
* holding the timestamp. oops_buf[] gets written to NVRAM.
*
* oops_log_info points to the header. oops_data points to the compressed text.
*
* +- oops_buf
* | +- oops_data
* v v
* +-----------+-----------+-----------+------------------------+
* | version | length | timestamp | text |
* | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
* +-----------+-----------+-----------+------------------------+
* ^
* +- oops_log_info
*
* We preallocate these buffers during init to avoid kmalloc during oops/panic.
*/
static size_t big_oops_buf_sz;
static char *big_oops_buf, *oops_buf;
static char *oops_data;
static size_t oops_data_sz;
/* Compression parameters */
#define COMPR_LEVEL 6
#define WINDOW_BITS 12
#define MEM_LEVEL 4
static struct z_stream_s stream;
#ifdef CONFIG_PSTORE
static struct nvram_os_partition of_config_partition = {
.name = "of-config",
.index = -1,
.os_partition = false
};
static struct nvram_os_partition common_partition = {
.name = "common",
.index = -1,
.os_partition = false
};
static enum pstore_type_id nvram_type_ids[] = {
PSTORE_TYPE_DMESG,
PSTORE_TYPE_PPC_RTAS,
PSTORE_TYPE_PPC_OF,
PSTORE_TYPE_PPC_COMMON,
-1
};
static int read_type;
static unsigned long last_rtas_event;
#endif
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
{
unsigned int i;
unsigned long len;
int done;
unsigned long flags;
char *p = buf;
if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
return -ENODEV;
if (*index >= nvram_size)
return 0;
i = *index;
if (i + count > nvram_size)
count = nvram_size - i;
spin_lock_irqsave(&nvram_lock, flags);
for (; count != 0; count -= len) {
len = count;
if (len > NVRW_CNT)
len = NVRW_CNT;
if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
len) != 0) || len != done) {
spin_unlock_irqrestore(&nvram_lock, flags);
return -EIO;
}
memcpy(p, nvram_buf, len);
p += len;
i += len;
}
spin_unlock_irqrestore(&nvram_lock, flags);
*index = i;
return p - buf;
}
static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
{
unsigned int i;
unsigned long len;
int done;
unsigned long flags;
const char *p = buf;
if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
return -ENODEV;
if (*index >= nvram_size)
return 0;
i = *index;
if (i + count > nvram_size)
count = nvram_size - i;
spin_lock_irqsave(&nvram_lock, flags);
for (; count != 0; count -= len) {
len = count;
if (len > NVRW_CNT)
len = NVRW_CNT;
memcpy(nvram_buf, p, len);
if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
len) != 0) || len != done) {
spin_unlock_irqrestore(&nvram_lock, flags);
return -EIO;
}
p += len;
i += len;
}
spin_unlock_irqrestore(&nvram_lock, flags);
*index = i;
return p - buf;
}
static ssize_t pSeries_nvram_get_size(void)
{
return nvram_size ? nvram_size : -ENODEV;
}
/* nvram_write_os_partition, nvram_write_error_log
*
* We need to buffer the error logs into nvram to ensure that we have
* the failure information to decode. If we have a severe error there
* is no way to guarantee that the OS or the machine is in a state to
* get back to user land and write the error to disk. For example if
* the SCSI device driver causes a Machine Check by writing to a bad
* IO address, there is no way of guaranteeing that the device driver
* is in any state that is would also be able to write the error data
* captured to disk, thus we buffer it in NVRAM for analysis on the
* next boot.
*
* In NVRAM the partition containing the error log buffer will looks like:
* Header (in bytes):
* +-----------+----------+--------+------------+------------------+
* | signature | checksum | length | name | data |
* |0 |1 |2 3|4 15|16 length-1|
* +-----------+----------+--------+------------+------------------+
*
* The 'data' section would look like (in bytes):
* +--------------+------------+-----------------------------------+
* | event_logged | sequence # | error log |
* |0 3|4 7|8 error_log_size-1|
* +--------------+------------+-----------------------------------+
*
* event_logged: 0 if event has not been logged to syslog, 1 if it has
* sequence #: The unique sequence # for each event. (until it wraps)
* error log: The error log from event_scan
*/
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
int length, unsigned int err_type, unsigned int error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (part->index == -1) {
return -ESPIPE;
}
if (length > part->size) {
length = part->size;
}
info.error_type = err_type;
info.seq_num = error_log_cnt;
tmp_index = part->index;
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
if (rc <= 0) {
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
return rc;
}
rc = ppc_md.nvram_write(buff, length, &tmp_index);
if (rc <= 0) {
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
return rc;
}
return 0;
}
int nvram_write_error_log(char * buff, int length,
unsigned int err_type, unsigned int error_log_cnt)
{
int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
err_type, error_log_cnt);
if (!rc) {
last_unread_rtas_event = get_seconds();
#ifdef CONFIG_PSTORE
last_rtas_event = get_seconds();
#endif
}
return rc;
}
/* nvram_read_partition
*
* Reads nvram partition for at most 'length'
*/
int nvram_read_partition(struct nvram_os_partition *part, char *buff,
int length, unsigned int *err_type,
unsigned int *error_log_cnt)
{
int rc;
loff_t tmp_index;
struct err_log_info info;
if (part->index == -1)
return -1;
if (length > part->size)
length = part->size;
tmp_index = part->index;
if (part->os_partition) {
rc = ppc_md.nvram_read((char *)&info,
sizeof(struct err_log_info),
&tmp_index);
if (rc <= 0) {
pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__,
rc);
return rc;
}
}
rc = ppc_md.nvram_read(buff, length, &tmp_index);
if (rc <= 0) {
pr_err("%s: Failed nvram_read (%d)\n", __FUNCTION__, rc);
return rc;
}
if (part->os_partition) {
*error_log_cnt = info.seq_num;
*err_type = info.error_type;
}
return 0;
}
/* nvram_read_error_log
*
* Reads nvram for error log for at most 'length'
*/
int nvram_read_error_log(char *buff, int length,
unsigned int *err_type, unsigned int *error_log_cnt)
{
return nvram_read_partition(&rtas_log_partition, buff, length,
err_type, error_log_cnt);
}
/* This doesn't actually zero anything, but it sets the event_logged
* word to tell that this event is safely in syslog.
*/
int nvram_clear_error_log(void)
{
loff_t tmp_index;
int clear_word = ERR_FLAG_ALREADY_LOGGED;
int rc;
if (rtas_log_partition.index == -1)
return -1;
tmp_index = rtas_log_partition.index;
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
if (rc <= 0) {
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
return rc;
}
last_unread_rtas_event = 0;
return 0;
}
/* pseries_nvram_init_os_partition
*
* This sets up a partition with an "OS" signature.
*
* The general strategy is the following:
* 1.) If a partition with the indicated name already exists...
* - If it's large enough, use it.
* - Otherwise, recycle it and keep going.
* 2.) Search for a free partition that is large enough.
* 3.) If there's not a free partition large enough, recycle any obsolete
* OS partitions and try again.
* 4.) Will first try getting a chunk that will satisfy the requested size.
* 5.) If a chunk of the requested size cannot be allocated, then try finding
* a chunk that will satisfy the minum needed.
*
* Returns 0 on success, else -1.
*/
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
*part)
{
loff_t p;
int size;
/* Scan nvram for partitions */
nvram_scan_partitions();
/* Look for ours */
p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
/* Found one but too small, remove it */
if (p && size < part->min_size) {
pr_info("nvram: Found too small %s partition,"
" removing it...\n", part->name);
nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
p = 0;
}
/* Create one if we didn't find */
if (!p) {
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
part->req_size, part->min_size);
if (p == -ENOSPC) {
pr_info("nvram: No room to create %s partition, "
"deleting any obsolete OS partitions...\n",
part->name);
nvram_remove_partition(NULL, NVRAM_SIG_OS,
pseries_nvram_os_partitions);
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
part->req_size, part->min_size);
}
}
if (p <= 0) {
pr_err("nvram: Failed to find or create %s"
" partition, err %d\n", part->name, (int)p);
return -1;
}
part->index = p;
part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
return 0;
}
/*
* Are we using the ibm,rtas-log for oops/panic reports? And if so,
* would logging this oops/panic overwrite an RTAS event that rtas_errd
* hasn't had a chance to read and process? Return 1 if so, else 0.
*
* We assume that if rtas_errd hasn't read the RTAS event in
* NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
*/
static int clobbering_unread_rtas_event(void)
{
return (oops_log_partition.index == rtas_log_partition.index
&& last_unread_rtas_event
&& get_seconds() - last_unread_rtas_event <=
NVRAM_RTAS_READ_TIMEOUT);
}
/* Derived from logfs_compress() */
static int nvram_compress(const void *in, void *out, size_t inlen,
size_t outlen)
{
int err, ret;
ret = -EIO;
err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
MEM_LEVEL, Z_DEFAULT_STRATEGY);
if (err != Z_OK)
goto error;
stream.next_in = in;
stream.avail_in = inlen;
stream.total_in = 0;
stream.next_out = out;
stream.avail_out = outlen;
stream.total_out = 0;
err = zlib_deflate(&stream, Z_FINISH);
if (err != Z_STREAM_END)
goto error;
err = zlib_deflateEnd(&stream);
if (err != Z_OK)
goto error;
if (stream.total_out >= stream.total_in)
goto error;
ret = stream.total_out;
error:
return ret;
}
/* Compress the text from big_oops_buf into oops_buf. */
static int zip_oops(size_t text_len)
{
struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
oops_data_sz);
if (zipped_len < 0) {
pr_err("nvram: compression failed; returned %d\n", zipped_len);
pr_err("nvram: logging uncompressed oops/panic report\n");
return -1;
}
oops_hdr->version = OOPS_HDR_VERSION;
oops_hdr->report_length = (u16) zipped_len;
oops_hdr->timestamp = get_seconds();
return 0;
}
#ifdef CONFIG_PSTORE
static int nvram_pstore_open(struct pstore_info *psi)
{
/* Reset the iterator to start reading partitions again */
read_type = -1;
return 0;
}
/**
* nvram_pstore_write - pstore write callback for nvram
* @type: Type of message logged
* @reason: reason behind dump (oops/panic)
* @id: identifier to indicate the write performed
* @part: pstore writes data to registered buffer in parts,
* part number will indicate the same.
* @count: Indicates oops count
* @compressed: Flag to indicate the log is compressed
* @size: number of bytes written to the registered buffer
* @psi: registered pstore_info structure
*
* Called by pstore_dump() when an oops or panic report is logged in the
* printk buffer.
* Returns 0 on successful write.
*/
static int nvram_pstore_write(enum pstore_type_id type,
enum kmsg_dump_reason reason,
u64 *id, unsigned int part, int count,
bool compressed, size_t size,
struct pstore_info *psi)
{
int rc;
unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
/* part 1 has the recent messages from printk buffer */
if (part > 1 || type != PSTORE_TYPE_DMESG ||
clobbering_unread_rtas_event())
return -1;
oops_hdr->version = OOPS_HDR_VERSION;
oops_hdr->report_length = (u16) size;
oops_hdr->timestamp = get_seconds();
if (compressed)
err_type = ERR_TYPE_KERNEL_PANIC_GZ;
rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
(int) (sizeof(*oops_hdr) + size), err_type, count);
if (rc != 0)
return rc;
*id = part;
return 0;
}
/*
* Reads the oops/panic report, rtas, of-config and common partition.
* Returns the length of the data we read from each partition.
* Returns 0 if we've been called before.
*/
static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
int *count, struct timespec *time, char **buf,
bool *compressed, struct pstore_info *psi)
{
struct oops_log_info *oops_hdr;
unsigned int err_type, id_no, size = 0;
struct nvram_os_partition *part = NULL;
char *buff = NULL;
int sig = 0;
loff_t p;
read_type++;
switch (nvram_type_ids[read_type]) {
case PSTORE_TYPE_DMESG:
part = &oops_log_partition;
*type = PSTORE_TYPE_DMESG;
break;
case PSTORE_TYPE_PPC_RTAS:
part = &rtas_log_partition;
*type = PSTORE_TYPE_PPC_RTAS;
time->tv_sec = last_rtas_event;
time->tv_nsec = 0;
break;
case PSTORE_TYPE_PPC_OF:
sig = NVRAM_SIG_OF;
part = &of_config_partition;
*type = PSTORE_TYPE_PPC_OF;
*id = PSTORE_TYPE_PPC_OF;
time->tv_sec = 0;
time->tv_nsec = 0;
break;
case PSTORE_TYPE_PPC_COMMON:
sig = NVRAM_SIG_SYS;
part = &common_partition;
*type = PSTORE_TYPE_PPC_COMMON;
*id = PSTORE_TYPE_PPC_COMMON;
time->tv_sec = 0;
time->tv_nsec = 0;
break;
default:
return 0;
}
if (!part->os_partition) {
p = nvram_find_partition(part->name, sig, &size);
if (p <= 0) {
pr_err("nvram: Failed to find partition %s, "
"err %d\n", part->name, (int)p);
return 0;
}
part->index = p;
part->size = size;
}
buff = kmalloc(part->size, GFP_KERNEL);
if (!buff)
return -ENOMEM;
if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
kfree(buff);
return 0;
}
*count = 0;
if (part->os_partition)
*id = id_no;
if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
size_t length, hdr_size;
oops_hdr = (struct oops_log_info *)buff;
if (oops_hdr->version < OOPS_HDR_VERSION) {
/* Old format oops header had 2-byte record size */
hdr_size = sizeof(u16);
length = oops_hdr->version;
time->tv_sec = 0;
time->tv_nsec = 0;
} else {
hdr_size = sizeof(*oops_hdr);
length = oops_hdr->report_length;
time->tv_sec = oops_hdr->timestamp;
time->tv_nsec = 0;
}
*buf = kmalloc(length, GFP_KERNEL);
if (*buf == NULL)
return -ENOMEM;
memcpy(*buf, buff + hdr_size, length);
kfree(buff);
if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
*compressed = true;
else
*compressed = false;
return length;
}
*buf = buff;
return part->size;
}
static struct pstore_info nvram_pstore_info = {
.owner = THIS_MODULE,
.name = "nvram",
.open = nvram_pstore_open,
.read = nvram_pstore_read,
.write = nvram_pstore_write,
};
static int nvram_pstore_init(void)
{
int rc = 0;
nvram_pstore_info.buf = oops_data;
nvram_pstore_info.bufsize = oops_data_sz;
rc = pstore_register(&nvram_pstore_info);
if (rc != 0)
pr_err("nvram: pstore_register() failed, defaults to "
"kmsg_dump; returned %d\n", rc);
return rc;
}
#else
static int nvram_pstore_init(void)
{
return -1;
}
#endif
static void __init nvram_init_oops_partition(int rtas_partition_exists)
{
int rc;
rc = pseries_nvram_init_os_partition(&oops_log_partition);
if (rc != 0) {
if (!rtas_partition_exists)
return;
pr_notice("nvram: Using %s partition to log both"
" RTAS errors and oops/panic reports\n",
rtas_log_partition.name);
memcpy(&oops_log_partition, &rtas_log_partition,
sizeof(rtas_log_partition));
}
oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
if (!oops_buf) {
pr_err("nvram: No memory for %s partition\n",
oops_log_partition.name);
return;
}
oops_data = oops_buf + sizeof(struct oops_log_info);
oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
rc = nvram_pstore_init();
if (!rc)
return;
/*
* Figure compression (preceded by elimination of each line's <n>
* severity prefix) will reduce the oops/panic report to at most
* 45% of its original size.
*/
big_oops_buf_sz = (oops_data_sz * 100) / 45;
big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
if (big_oops_buf) {
stream.workspace = kmalloc(zlib_deflate_workspacesize(
WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
if (!stream.workspace) {
pr_err("nvram: No memory for compression workspace; "
"skipping compression of %s partition data\n",
oops_log_partition.name);
kfree(big_oops_buf);
big_oops_buf = NULL;
}
} else {
pr_err("No memory for uncompressed %s data; "
"skipping compression\n", oops_log_partition.name);
stream.workspace = NULL;
}
rc = kmsg_dump_register(&nvram_kmsg_dumper);
if (rc != 0) {
pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
kfree(oops_buf);
kfree(big_oops_buf);
kfree(stream.workspace);
}
}
static int __init pseries_nvram_init_log_partitions(void)
{
int rc;
rc = pseries_nvram_init_os_partition(&rtas_log_partition);
nvram_init_oops_partition(rc == 0);
return 0;
}
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
int __init pSeries_nvram_init(void)
{
struct device_node *nvram;
const unsigned int *nbytes_p;
unsigned int proplen;
nvram = of_find_node_by_type(NULL, "nvram");
if (nvram == NULL)
return -ENODEV;
nbytes_p = of_get_property(nvram, "#bytes", &proplen);
if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
of_node_put(nvram);
return -EIO;
}
nvram_size = *nbytes_p;
nvram_fetch = rtas_token("nvram-fetch");
nvram_store = rtas_token("nvram-store");
printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
of_node_put(nvram);
ppc_md.nvram_read = pSeries_nvram_read;
ppc_md.nvram_write = pSeries_nvram_write;
ppc_md.nvram_size = pSeries_nvram_get_size;
return 0;
}
/*
* This is our kmsg_dump callback, called after an oops or panic report
* has been written to the printk buffer. We want to capture as much
* of the printk buffer as possible. First, capture as much as we can
* that we think will compress sufficiently to fit in the lnx,oops-log
* partition. If that's too much, go back and capture uncompressed text.
*/
static void oops_to_nvram(struct kmsg_dumper *dumper,
enum kmsg_dump_reason reason)
{
struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
static unsigned int oops_count = 0;
static bool panicking = false;
static DEFINE_SPINLOCK(lock);
unsigned long flags;
size_t text_len;
unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
int rc = -1;
switch (reason) {
case KMSG_DUMP_RESTART:
case KMSG_DUMP_HALT:
case KMSG_DUMP_POWEROFF:
/* These are almost always orderly shutdowns. */
return;
case KMSG_DUMP_OOPS:
break;
case KMSG_DUMP_PANIC:
panicking = true;
break;
case KMSG_DUMP_EMERG:
if (panicking)
/* Panic report already captured. */
return;
break;
default:
pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
__FUNCTION__, (int) reason);
return;
}
if (clobbering_unread_rtas_event())
return;
if (!spin_trylock_irqsave(&lock, flags))
return;
if (big_oops_buf) {
kmsg_dump_get_buffer(dumper, false,
big_oops_buf, big_oops_buf_sz, &text_len);
rc = zip_oops(text_len);
}
if (rc != 0) {
kmsg_dump_rewind(dumper);
kmsg_dump_get_buffer(dumper, false,
oops_data, oops_data_sz, &text_len);
err_type = ERR_TYPE_KERNEL_PANIC;
oops_hdr->version = OOPS_HDR_VERSION;
oops_hdr->report_length = (u16) text_len;
oops_hdr->timestamp = get_seconds();
}
(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
(int) (sizeof(*oops_hdr) + oops_hdr->report_length), err_type,
++oops_count);
spin_unlock_irqrestore(&lock, flags);
}