4b65fc7bca
Some TMA metrics have double if expressions like: ( CPU_CLK_UNHALTED.THREAD / 2 ) * ( 1 + CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / CPU_CLK_UNHALTED.REF_XCLK ) ) if #core_wide < 1 else ( CPU_CLK_UNHALTED.THREAD_ANY / 2 ) if #SMT_on else CPU_CLK_UNHALTED.THREAD This currently fails to parse as the left hand side if expression needs to be in parentheses. By allowing the if expression to have a right hand side that is an if expression we can parse the expression above, with left to right evaluation order that matches languages like Python. Signed-off-by: Ian Rogers <irogers@google.com> Cc: Ahmad Yasin <ahmad.yasin@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Caleb Biggers <caleb.biggers@intel.com> Cc: Florian Fischer <florian.fischer@muhq.space> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Garry <john.garry@huawei.com> Cc: Kajol Jain <kjain@linux.ibm.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kshipra Bopardikar <kshipra.bopardikar@intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Miaoqian Lin <linmq006@gmail.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Perry Taylor <perry.taylor@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Samantha Alt <samantha.alt@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Richter <tmricht@linux.ibm.com> Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com> Link: https://lore.kernel.org/r/20221004021612.325521-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
302 lines
6.9 KiB
Plaintext
302 lines
6.9 KiB
Plaintext
/* Simple expression parser */
|
|
%{
|
|
#define YYDEBUG 1
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include "util/debug.h"
|
|
#define IN_EXPR_Y 1
|
|
#include "expr.h"
|
|
%}
|
|
|
|
%define api.pure full
|
|
|
|
%parse-param { double *final_val }
|
|
%parse-param { struct expr_parse_ctx *ctx }
|
|
%parse-param { bool compute_ids }
|
|
%parse-param {void *scanner}
|
|
%lex-param {void* scanner}
|
|
|
|
%union {
|
|
double num;
|
|
char *str;
|
|
struct ids {
|
|
/*
|
|
* When creating ids, holds the working set of event ids. NULL
|
|
* implies the set is empty.
|
|
*/
|
|
struct hashmap *ids;
|
|
/*
|
|
* The metric value. When not creating ids this is the value
|
|
* read from a counter, a constant or some computed value. When
|
|
* creating ids the value is either a constant or BOTTOM. NAN is
|
|
* used as the special BOTTOM value, representing a "set of all
|
|
* values" case.
|
|
*/
|
|
double val;
|
|
} ids;
|
|
}
|
|
|
|
%token ID NUMBER MIN MAX IF ELSE LITERAL D_RATIO SOURCE_COUNT EXPR_ERROR
|
|
%left MIN MAX IF
|
|
%left '|'
|
|
%left '^'
|
|
%left '&'
|
|
%left '<' '>'
|
|
%left '-' '+'
|
|
%left '*' '/' '%'
|
|
%left NEG NOT
|
|
%type <num> NUMBER LITERAL
|
|
%type <str> ID
|
|
%destructor { free ($$); } <str>
|
|
%type <ids> expr if_expr
|
|
%destructor { ids__free($$.ids); } <ids>
|
|
|
|
%{
|
|
static void expr_error(double *final_val __maybe_unused,
|
|
struct expr_parse_ctx *ctx __maybe_unused,
|
|
bool compute_ids __maybe_unused,
|
|
void *scanner,
|
|
const char *s)
|
|
{
|
|
pr_debug("%s\n", s);
|
|
}
|
|
|
|
/*
|
|
* During compute ids, the special "bottom" value uses NAN to represent the set
|
|
* of all values. NAN is selected as it isn't a useful constant value.
|
|
*/
|
|
#define BOTTOM NAN
|
|
|
|
/* During computing ids, does val represent a constant (non-BOTTOM) value? */
|
|
static bool is_const(double val)
|
|
{
|
|
return isfinite(val);
|
|
}
|
|
|
|
static struct ids union_expr(struct ids ids1, struct ids ids2)
|
|
{
|
|
struct ids result = {
|
|
.val = BOTTOM,
|
|
.ids = ids__union(ids1.ids, ids2.ids),
|
|
};
|
|
return result;
|
|
}
|
|
|
|
static struct ids handle_id(struct expr_parse_ctx *ctx, char *id,
|
|
bool compute_ids, bool source_count)
|
|
{
|
|
struct ids result;
|
|
|
|
if (!compute_ids) {
|
|
/*
|
|
* Compute the event's value from ID. If the ID isn't known then
|
|
* it isn't used to compute the formula so set to NAN.
|
|
*/
|
|
struct expr_id_data *data;
|
|
|
|
result.val = NAN;
|
|
if (expr__resolve_id(ctx, id, &data) == 0) {
|
|
result.val = source_count
|
|
? expr_id_data__source_count(data)
|
|
: expr_id_data__value(data);
|
|
}
|
|
result.ids = NULL;
|
|
free(id);
|
|
} else {
|
|
/*
|
|
* Set the value to BOTTOM to show that any value is possible
|
|
* when the event is computed. Create a set of just the ID.
|
|
*/
|
|
result.val = BOTTOM;
|
|
result.ids = ids__new();
|
|
if (!result.ids || ids__insert(result.ids, id)) {
|
|
pr_err("Error creating IDs for '%s'", id);
|
|
free(id);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* If we're not computing ids or $1 and $3 are constants, compute the new
|
|
* constant value using OP. Its invariant that there are no ids. If computing
|
|
* ids for non-constants union the set of IDs that must be computed.
|
|
*/
|
|
#define BINARY_LONG_OP(RESULT, OP, LHS, RHS) \
|
|
if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \
|
|
assert(LHS.ids == NULL); \
|
|
assert(RHS.ids == NULL); \
|
|
RESULT.val = (long)LHS.val OP (long)RHS.val; \
|
|
RESULT.ids = NULL; \
|
|
} else { \
|
|
RESULT = union_expr(LHS, RHS); \
|
|
}
|
|
|
|
#define BINARY_OP(RESULT, OP, LHS, RHS) \
|
|
if (!compute_ids || (is_const(LHS.val) && is_const(RHS.val))) { \
|
|
assert(LHS.ids == NULL); \
|
|
assert(RHS.ids == NULL); \
|
|
RESULT.val = LHS.val OP RHS.val; \
|
|
RESULT.ids = NULL; \
|
|
} else { \
|
|
RESULT = union_expr(LHS, RHS); \
|
|
}
|
|
|
|
%}
|
|
%%
|
|
|
|
start: if_expr
|
|
{
|
|
if (compute_ids)
|
|
ctx->ids = ids__union($1.ids, ctx->ids);
|
|
|
|
if (final_val)
|
|
*final_val = $1.val;
|
|
}
|
|
;
|
|
|
|
if_expr: expr IF expr ELSE if_expr
|
|
{
|
|
if (fpclassify($3.val) == FP_ZERO) {
|
|
/*
|
|
* The IF expression evaluated to 0 so treat as false, take the
|
|
* ELSE and discard everything else.
|
|
*/
|
|
$$.val = $5.val;
|
|
$$.ids = $5.ids;
|
|
ids__free($1.ids);
|
|
ids__free($3.ids);
|
|
} else if (!compute_ids || is_const($3.val)) {
|
|
/*
|
|
* If ids aren't computed then treat the expression as true. If
|
|
* ids are being computed and the IF expr is a non-zero
|
|
* constant, then also evaluate the true case.
|
|
*/
|
|
$$.val = $1.val;
|
|
$$.ids = $1.ids;
|
|
ids__free($3.ids);
|
|
ids__free($5.ids);
|
|
} else if ($1.val == $5.val) {
|
|
/*
|
|
* LHS == RHS, so both are an identical constant. No need to
|
|
* evaluate any events.
|
|
*/
|
|
$$.val = $1.val;
|
|
$$.ids = NULL;
|
|
ids__free($1.ids);
|
|
ids__free($3.ids);
|
|
ids__free($5.ids);
|
|
} else {
|
|
/*
|
|
* Value is either the LHS or RHS and we need the IF expression
|
|
* to compute it.
|
|
*/
|
|
$$ = union_expr($1, union_expr($3, $5));
|
|
}
|
|
}
|
|
| expr
|
|
;
|
|
|
|
expr: NUMBER
|
|
{
|
|
$$.val = $1;
|
|
$$.ids = NULL;
|
|
}
|
|
| ID { $$ = handle_id(ctx, $1, compute_ids, /*source_count=*/false); }
|
|
| SOURCE_COUNT '(' ID ')' { $$ = handle_id(ctx, $3, compute_ids, /*source_count=*/true); }
|
|
| expr '|' expr { BINARY_LONG_OP($$, |, $1, $3); }
|
|
| expr '&' expr { BINARY_LONG_OP($$, &, $1, $3); }
|
|
| expr '^' expr { BINARY_LONG_OP($$, ^, $1, $3); }
|
|
| expr '<' expr { BINARY_OP($$, <, $1, $3); }
|
|
| expr '>' expr { BINARY_OP($$, >, $1, $3); }
|
|
| expr '+' expr { BINARY_OP($$, +, $1, $3); }
|
|
| expr '-' expr { BINARY_OP($$, -, $1, $3); }
|
|
| expr '*' expr { BINARY_OP($$, *, $1, $3); }
|
|
| expr '/' expr
|
|
{
|
|
if (fpclassify($3.val) == FP_ZERO) {
|
|
pr_debug("division by zero\n");
|
|
YYABORT;
|
|
} else if (!compute_ids || (is_const($1.val) && is_const($3.val))) {
|
|
assert($1.ids == NULL);
|
|
assert($3.ids == NULL);
|
|
$$.val = $1.val / $3.val;
|
|
$$.ids = NULL;
|
|
} else {
|
|
/* LHS and/or RHS need computing from event IDs so union. */
|
|
$$ = union_expr($1, $3);
|
|
}
|
|
}
|
|
| expr '%' expr
|
|
{
|
|
if (fpclassify($3.val) == FP_ZERO) {
|
|
pr_debug("division by zero\n");
|
|
YYABORT;
|
|
} else if (!compute_ids || (is_const($1.val) && is_const($3.val))) {
|
|
assert($1.ids == NULL);
|
|
assert($3.ids == NULL);
|
|
$$.val = (long)$1.val % (long)$3.val;
|
|
$$.ids = NULL;
|
|
} else {
|
|
/* LHS and/or RHS need computing from event IDs so union. */
|
|
$$ = union_expr($1, $3);
|
|
}
|
|
}
|
|
| D_RATIO '(' expr ',' expr ')'
|
|
{
|
|
if (fpclassify($5.val) == FP_ZERO) {
|
|
/*
|
|
* Division by constant zero always yields zero and no events
|
|
* are necessary.
|
|
*/
|
|
assert($5.ids == NULL);
|
|
$$.val = 0.0;
|
|
$$.ids = NULL;
|
|
ids__free($3.ids);
|
|
} else if (!compute_ids || (is_const($3.val) && is_const($5.val))) {
|
|
assert($3.ids == NULL);
|
|
assert($5.ids == NULL);
|
|
$$.val = $3.val / $5.val;
|
|
$$.ids = NULL;
|
|
} else {
|
|
/* LHS and/or RHS need computing from event IDs so union. */
|
|
$$ = union_expr($3, $5);
|
|
}
|
|
}
|
|
| '-' expr %prec NEG
|
|
{
|
|
$$.val = -$2.val;
|
|
$$.ids = $2.ids;
|
|
}
|
|
| '(' if_expr ')'
|
|
{
|
|
$$ = $2;
|
|
}
|
|
| MIN '(' expr ',' expr ')'
|
|
{
|
|
if (!compute_ids) {
|
|
$$.val = $3.val < $5.val ? $3.val : $5.val;
|
|
$$.ids = NULL;
|
|
} else {
|
|
$$ = union_expr($3, $5);
|
|
}
|
|
}
|
|
| MAX '(' expr ',' expr ')'
|
|
{
|
|
if (!compute_ids) {
|
|
$$.val = $3.val > $5.val ? $3.val : $5.val;
|
|
$$.ids = NULL;
|
|
} else {
|
|
$$ = union_expr($3, $5);
|
|
}
|
|
}
|
|
| LITERAL
|
|
{
|
|
$$.val = $1;
|
|
$$.ids = NULL;
|
|
}
|
|
;
|
|
|
|
%%
|