linux/drivers/char/ipmi/ipmi_msghandler.c
Jakub Kicinski c33fdfbabb ipmi: fix oob access due to uninit smi_msg type
We're hitting OOB accesses in handle_ipmb_direct_rcv_rsp() (memcpy of
size -1) after user space generates a message. Looks like the message
is incorrectly assumed to be of the new IPMB type, because type is never
set and message is allocated with kmalloc() not kzalloc().

Fixes: 059747c245f0 ("ipmi: Add support for IPMB direct messages")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Message-Id: <20211124210323.1950976-1-kuba@kernel.org>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
2021-11-25 08:21:13 -06:00

5462 lines
138 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ipmi_msghandler.c
*
* Incoming and outgoing message routing for an IPMI interface.
*
* Author: MontaVista Software, Inc.
* Corey Minyard <minyard@mvista.com>
* source@mvista.com
*
* Copyright 2002 MontaVista Software Inc.
*/
#define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
#define dev_fmt pr_fmt
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/panic_notifier.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <linux/notifier.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/workqueue.h>
#include <linux/uuid.h>
#include <linux/nospec.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#define IPMI_DRIVER_VERSION "39.2"
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void);
static void smi_recv_tasklet(struct tasklet_struct *t);
static void handle_new_recv_msgs(struct ipmi_smi *intf);
static void need_waiter(struct ipmi_smi *intf);
static int handle_one_recv_msg(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg);
static bool initialized;
static bool drvregistered;
/* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
enum ipmi_panic_event_op {
IPMI_SEND_PANIC_EVENT_NONE,
IPMI_SEND_PANIC_EVENT,
IPMI_SEND_PANIC_EVENT_STRING,
IPMI_SEND_PANIC_EVENT_MAX
};
/* Indices in this array should be mapped to enum ipmi_panic_event_op */
static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
#ifdef CONFIG_IPMI_PANIC_STRING
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
#elif defined(CONFIG_IPMI_PANIC_EVENT)
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
#else
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
#endif
static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
static int panic_op_write_handler(const char *val,
const struct kernel_param *kp)
{
char valcp[16];
int e;
strscpy(valcp, val, sizeof(valcp));
e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
if (e < 0)
return e;
ipmi_send_panic_event = e;
return 0;
}
static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
{
const char *event_str;
if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
event_str = "???";
else
event_str = ipmi_panic_event_str[ipmi_send_panic_event];
return sprintf(buffer, "%s\n", event_str);
}
static const struct kernel_param_ops panic_op_ops = {
.set = panic_op_write_handler,
.get = panic_op_read_handler
};
module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
#define MAX_EVENTS_IN_QUEUE 25
/* Remain in auto-maintenance mode for this amount of time (in ms). */
static unsigned long maintenance_mode_timeout_ms = 30000;
module_param(maintenance_mode_timeout_ms, ulong, 0644);
MODULE_PARM_DESC(maintenance_mode_timeout_ms,
"The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
/*
* Don't let a message sit in a queue forever, always time it with at lest
* the max message timer. This is in milliseconds.
*/
#define MAX_MSG_TIMEOUT 60000
/*
* Timeout times below are in milliseconds, and are done off a 1
* second timer. So setting the value to 1000 would mean anything
* between 0 and 1000ms. So really the only reasonable minimum
* setting it 2000ms, which is between 1 and 2 seconds.
*/
/* The default timeout for message retries. */
static unsigned long default_retry_ms = 2000;
module_param(default_retry_ms, ulong, 0644);
MODULE_PARM_DESC(default_retry_ms,
"The time (milliseconds) between retry sends");
/* The default timeout for maintenance mode message retries. */
static unsigned long default_maintenance_retry_ms = 3000;
module_param(default_maintenance_retry_ms, ulong, 0644);
MODULE_PARM_DESC(default_maintenance_retry_ms,
"The time (milliseconds) between retry sends in maintenance mode");
/* The default maximum number of retries */
static unsigned int default_max_retries = 4;
module_param(default_max_retries, uint, 0644);
MODULE_PARM_DESC(default_max_retries,
"The time (milliseconds) between retry sends in maintenance mode");
/* Call every ~1000 ms. */
#define IPMI_TIMEOUT_TIME 1000
/* How many jiffies does it take to get to the timeout time. */
#define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
/*
* Request events from the queue every second (this is the number of
* IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
* future, IPMI will add a way to know immediately if an event is in
* the queue and this silliness can go away.
*/
#define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
/* How long should we cache dynamic device IDs? */
#define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
/*
* The main "user" data structure.
*/
struct ipmi_user {
struct list_head link;
/*
* Set to NULL when the user is destroyed, a pointer to myself
* so srcu_dereference can be used on it.
*/
struct ipmi_user *self;
struct srcu_struct release_barrier;
struct kref refcount;
/* The upper layer that handles receive messages. */
const struct ipmi_user_hndl *handler;
void *handler_data;
/* The interface this user is bound to. */
struct ipmi_smi *intf;
/* Does this interface receive IPMI events? */
bool gets_events;
/* Free must run in process context for RCU cleanup. */
struct work_struct remove_work;
};
static struct workqueue_struct *remove_work_wq;
static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
__acquires(user->release_barrier)
{
struct ipmi_user *ruser;
*index = srcu_read_lock(&user->release_barrier);
ruser = srcu_dereference(user->self, &user->release_barrier);
if (!ruser)
srcu_read_unlock(&user->release_barrier, *index);
return ruser;
}
static void release_ipmi_user(struct ipmi_user *user, int index)
{
srcu_read_unlock(&user->release_barrier, index);
}
struct cmd_rcvr {
struct list_head link;
struct ipmi_user *user;
unsigned char netfn;
unsigned char cmd;
unsigned int chans;
/*
* This is used to form a linked lised during mass deletion.
* Since this is in an RCU list, we cannot use the link above
* or change any data until the RCU period completes. So we
* use this next variable during mass deletion so we can have
* a list and don't have to wait and restart the search on
* every individual deletion of a command.
*/
struct cmd_rcvr *next;
};
struct seq_table {
unsigned int inuse : 1;
unsigned int broadcast : 1;
unsigned long timeout;
unsigned long orig_timeout;
unsigned int retries_left;
/*
* To verify on an incoming send message response that this is
* the message that the response is for, we keep a sequence id
* and increment it every time we send a message.
*/
long seqid;
/*
* This is held so we can properly respond to the message on a
* timeout, and it is used to hold the temporary data for
* retransmission, too.
*/
struct ipmi_recv_msg *recv_msg;
};
/*
* Store the information in a msgid (long) to allow us to find a
* sequence table entry from the msgid.
*/
#define STORE_SEQ_IN_MSGID(seq, seqid) \
((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
do { \
seq = (((msgid) >> 26) & 0x3f); \
seqid = ((msgid) & 0x3ffffff); \
} while (0)
#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
#define IPMI_MAX_CHANNELS 16
struct ipmi_channel {
unsigned char medium;
unsigned char protocol;
};
struct ipmi_channel_set {
struct ipmi_channel c[IPMI_MAX_CHANNELS];
};
struct ipmi_my_addrinfo {
/*
* My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
* but may be changed by the user.
*/
unsigned char address;
/*
* My LUN. This should generally stay the SMS LUN, but just in
* case...
*/
unsigned char lun;
};
/*
* Note that the product id, manufacturer id, guid, and device id are
* immutable in this structure, so dyn_mutex is not required for
* accessing those. If those change on a BMC, a new BMC is allocated.
*/
struct bmc_device {
struct platform_device pdev;
struct list_head intfs; /* Interfaces on this BMC. */
struct ipmi_device_id id;
struct ipmi_device_id fetch_id;
int dyn_id_set;
unsigned long dyn_id_expiry;
struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
guid_t guid;
guid_t fetch_guid;
int dyn_guid_set;
struct kref usecount;
struct work_struct remove_work;
unsigned char cc; /* completion code */
};
#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid);
/*
* Various statistics for IPMI, these index stats[] in the ipmi_smi
* structure.
*/
enum ipmi_stat_indexes {
/* Commands we got from the user that were invalid. */
IPMI_STAT_sent_invalid_commands = 0,
/* Commands we sent to the MC. */
IPMI_STAT_sent_local_commands,
/* Responses from the MC that were delivered to a user. */
IPMI_STAT_handled_local_responses,
/* Responses from the MC that were not delivered to a user. */
IPMI_STAT_unhandled_local_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_ipmb_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_ipmb_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_ipmb_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_ipmb_commands,
/*
* This is like above, but for broadcasts. Broadcasts are
* *not* included in the above count (they are expected to
* time out).
*/
IPMI_STAT_timed_out_ipmb_broadcasts,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_ipmb_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_ipmb_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_ipmb_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_ipmb_responses,
/* Commands we sent out to the IPMB bus. */
IPMI_STAT_sent_lan_commands,
/* Commands sent on the IPMB that had errors on the SEND CMD */
IPMI_STAT_sent_lan_command_errs,
/* Each retransmit increments this count. */
IPMI_STAT_retransmitted_lan_commands,
/*
* When a message times out (runs out of retransmits) this is
* incremented.
*/
IPMI_STAT_timed_out_lan_commands,
/* Responses I have sent to the IPMB bus. */
IPMI_STAT_sent_lan_responses,
/* The response was delivered to the user. */
IPMI_STAT_handled_lan_responses,
/* The response had invalid data in it. */
IPMI_STAT_invalid_lan_responses,
/* The response didn't have anyone waiting for it. */
IPMI_STAT_unhandled_lan_responses,
/* The command was delivered to the user. */
IPMI_STAT_handled_commands,
/* The command had invalid data in it. */
IPMI_STAT_invalid_commands,
/* The command didn't have anyone waiting for it. */
IPMI_STAT_unhandled_commands,
/* Invalid data in an event. */
IPMI_STAT_invalid_events,
/* Events that were received with the proper format. */
IPMI_STAT_events,
/* Retransmissions on IPMB that failed. */
IPMI_STAT_dropped_rexmit_ipmb_commands,
/* Retransmissions on LAN that failed. */
IPMI_STAT_dropped_rexmit_lan_commands,
/* This *must* remain last, add new values above this. */
IPMI_NUM_STATS
};
#define IPMI_IPMB_NUM_SEQ 64
struct ipmi_smi {
struct module *owner;
/* What interface number are we? */
int intf_num;
struct kref refcount;
/* Set when the interface is being unregistered. */
bool in_shutdown;
/* Used for a list of interfaces. */
struct list_head link;
/*
* The list of upper layers that are using me. seq_lock write
* protects this. Read protection is with srcu.
*/
struct list_head users;
struct srcu_struct users_srcu;
/* Used for wake ups at startup. */
wait_queue_head_t waitq;
/*
* Prevents the interface from being unregistered when the
* interface is used by being looked up through the BMC
* structure.
*/
struct mutex bmc_reg_mutex;
struct bmc_device tmp_bmc;
struct bmc_device *bmc;
bool bmc_registered;
struct list_head bmc_link;
char *my_dev_name;
bool in_bmc_register; /* Handle recursive situations. Yuck. */
struct work_struct bmc_reg_work;
const struct ipmi_smi_handlers *handlers;
void *send_info;
/* Driver-model device for the system interface. */
struct device *si_dev;
/*
* A table of sequence numbers for this interface. We use the
* sequence numbers for IPMB messages that go out of the
* interface to match them up with their responses. A routine
* is called periodically to time the items in this list.
*/
spinlock_t seq_lock;
struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
int curr_seq;
/*
* Messages queued for delivery. If delivery fails (out of memory
* for instance), They will stay in here to be processed later in a
* periodic timer interrupt. The tasklet is for handling received
* messages directly from the handler.
*/
spinlock_t waiting_rcv_msgs_lock;
struct list_head waiting_rcv_msgs;
atomic_t watchdog_pretimeouts_to_deliver;
struct tasklet_struct recv_tasklet;
spinlock_t xmit_msgs_lock;
struct list_head xmit_msgs;
struct ipmi_smi_msg *curr_msg;
struct list_head hp_xmit_msgs;
/*
* The list of command receivers that are registered for commands
* on this interface.
*/
struct mutex cmd_rcvrs_mutex;
struct list_head cmd_rcvrs;
/*
* Events that were queues because no one was there to receive
* them.
*/
spinlock_t events_lock; /* For dealing with event stuff. */
struct list_head waiting_events;
unsigned int waiting_events_count; /* How many events in queue? */
char delivering_events;
char event_msg_printed;
/* How many users are waiting for events? */
atomic_t event_waiters;
unsigned int ticks_to_req_ev;
spinlock_t watch_lock; /* For dealing with watch stuff below. */
/* How many users are waiting for commands? */
unsigned int command_waiters;
/* How many users are waiting for watchdogs? */
unsigned int watchdog_waiters;
/* How many users are waiting for message responses? */
unsigned int response_waiters;
/*
* Tells what the lower layer has last been asked to watch for,
* messages and/or watchdogs. Protected by watch_lock.
*/
unsigned int last_watch_mask;
/*
* The event receiver for my BMC, only really used at panic
* shutdown as a place to store this.
*/
unsigned char event_receiver;
unsigned char event_receiver_lun;
unsigned char local_sel_device;
unsigned char local_event_generator;
/* For handling of maintenance mode. */
int maintenance_mode;
bool maintenance_mode_enable;
int auto_maintenance_timeout;
spinlock_t maintenance_mode_lock; /* Used in a timer... */
/*
* If we are doing maintenance on something on IPMB, extend
* the timeout time to avoid timeouts writing firmware and
* such.
*/
int ipmb_maintenance_mode_timeout;
/*
* A cheap hack, if this is non-null and a message to an
* interface comes in with a NULL user, call this routine with
* it. Note that the message will still be freed by the
* caller. This only works on the system interface.
*
* Protected by bmc_reg_mutex.
*/
void (*null_user_handler)(struct ipmi_smi *intf,
struct ipmi_recv_msg *msg);
/*
* When we are scanning the channels for an SMI, this will
* tell which channel we are scanning.
*/
int curr_channel;
/* Channel information */
struct ipmi_channel_set *channel_list;
unsigned int curr_working_cset; /* First index into the following. */
struct ipmi_channel_set wchannels[2];
struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
bool channels_ready;
atomic_t stats[IPMI_NUM_STATS];
/*
* run_to_completion duplicate of smb_info, smi_info
* and ipmi_serial_info structures. Used to decrease numbers of
* parameters passed by "low" level IPMI code.
*/
int run_to_completion;
};
#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
static void __get_guid(struct ipmi_smi *intf);
static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
static int __ipmi_bmc_register(struct ipmi_smi *intf,
struct ipmi_device_id *id,
bool guid_set, guid_t *guid, int intf_num);
static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
/**
* The driver model view of the IPMI messaging driver.
*/
static struct platform_driver ipmidriver = {
.driver = {
.name = "ipmi",
.bus = &platform_bus_type
}
};
/*
* This mutex keeps us from adding the same BMC twice.
*/
static DEFINE_MUTEX(ipmidriver_mutex);
static LIST_HEAD(ipmi_interfaces);
static DEFINE_MUTEX(ipmi_interfaces_mutex);
#define ipmi_interfaces_mutex_held() \
lockdep_is_held(&ipmi_interfaces_mutex)
static struct srcu_struct ipmi_interfaces_srcu;
/*
* List of watchers that want to know when smi's are added and deleted.
*/
static LIST_HEAD(smi_watchers);
static DEFINE_MUTEX(smi_watchers_mutex);
#define ipmi_inc_stat(intf, stat) \
atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
#define ipmi_get_stat(intf, stat) \
((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
static const char * const addr_src_to_str[] = {
"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
"device-tree", "platform"
};
const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
{
if (src >= SI_LAST)
src = 0; /* Invalid */
return addr_src_to_str[src];
}
EXPORT_SYMBOL(ipmi_addr_src_to_str);
static int is_lan_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_LAN_ADDR_TYPE;
}
static int is_ipmb_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
}
static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
}
static int is_ipmb_direct_addr(struct ipmi_addr *addr)
{
return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
}
static void free_recv_msg_list(struct list_head *q)
{
struct ipmi_recv_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_recv_msg(msg);
}
}
static void free_smi_msg_list(struct list_head *q)
{
struct ipmi_smi_msg *msg, *msg2;
list_for_each_entry_safe(msg, msg2, q, link) {
list_del(&msg->link);
ipmi_free_smi_msg(msg);
}
}
static void clean_up_interface_data(struct ipmi_smi *intf)
{
int i;
struct cmd_rcvr *rcvr, *rcvr2;
struct list_head list;
tasklet_kill(&intf->recv_tasklet);
free_smi_msg_list(&intf->waiting_rcv_msgs);
free_recv_msg_list(&intf->waiting_events);
/*
* Wholesale remove all the entries from the list in the
* interface and wait for RCU to know that none are in use.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
INIT_LIST_HEAD(&list);
list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
mutex_unlock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_safe(rcvr, rcvr2, &list, link)
kfree(rcvr);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if ((intf->seq_table[i].inuse)
&& (intf->seq_table[i].recv_msg))
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
static void intf_free(struct kref *ref)
{
struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
clean_up_interface_data(intf);
kfree(intf);
}
struct watcher_entry {
int intf_num;
struct ipmi_smi *intf;
struct list_head link;
};
int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
{
struct ipmi_smi *intf;
int index, rv;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
rv = ipmi_init_msghandler();
if (rv)
return rv;
mutex_lock(&smi_watchers_mutex);
list_add(&watcher->link, &smi_watchers);
index = srcu_read_lock(&ipmi_interfaces_srcu);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
lockdep_is_held(&smi_watchers_mutex)) {
int intf_num = READ_ONCE(intf->intf_num);
if (intf_num == -1)
continue;
watcher->new_smi(intf_num, intf->si_dev);
}
srcu_read_unlock(&ipmi_interfaces_srcu, index);
mutex_unlock(&smi_watchers_mutex);
return 0;
}
EXPORT_SYMBOL(ipmi_smi_watcher_register);
int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
{
mutex_lock(&smi_watchers_mutex);
list_del(&watcher->link);
mutex_unlock(&smi_watchers_mutex);
return 0;
}
EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
/*
* Must be called with smi_watchers_mutex held.
*/
static void
call_smi_watchers(int i, struct device *dev)
{
struct ipmi_smi_watcher *w;
mutex_lock(&smi_watchers_mutex);
list_for_each_entry(w, &smi_watchers, link) {
if (try_module_get(w->owner)) {
w->new_smi(i, dev);
module_put(w->owner);
}
}
mutex_unlock(&smi_watchers_mutex);
}
static int
ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
{
if (addr1->addr_type != addr2->addr_type)
return 0;
if (addr1->channel != addr2->channel)
return 0;
if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
struct ipmi_system_interface_addr *smi_addr1
= (struct ipmi_system_interface_addr *) addr1;
struct ipmi_system_interface_addr *smi_addr2
= (struct ipmi_system_interface_addr *) addr2;
return (smi_addr1->lun == smi_addr2->lun);
}
if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
struct ipmi_ipmb_addr *ipmb_addr1
= (struct ipmi_ipmb_addr *) addr1;
struct ipmi_ipmb_addr *ipmb_addr2
= (struct ipmi_ipmb_addr *) addr2;
return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
&& (ipmb_addr1->lun == ipmb_addr2->lun));
}
if (is_ipmb_direct_addr(addr1)) {
struct ipmi_ipmb_direct_addr *daddr1
= (struct ipmi_ipmb_direct_addr *) addr1;
struct ipmi_ipmb_direct_addr *daddr2
= (struct ipmi_ipmb_direct_addr *) addr2;
return daddr1->slave_addr == daddr2->slave_addr &&
daddr1->rq_lun == daddr2->rq_lun &&
daddr1->rs_lun == daddr2->rs_lun;
}
if (is_lan_addr(addr1)) {
struct ipmi_lan_addr *lan_addr1
= (struct ipmi_lan_addr *) addr1;
struct ipmi_lan_addr *lan_addr2
= (struct ipmi_lan_addr *) addr2;
return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
&& (lan_addr1->session_handle
== lan_addr2->session_handle)
&& (lan_addr1->lun == lan_addr2->lun));
}
return 1;
}
int ipmi_validate_addr(struct ipmi_addr *addr, int len)
{
if (len < sizeof(struct ipmi_system_interface_addr))
return -EINVAL;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
if (addr->channel != IPMI_BMC_CHANNEL)
return -EINVAL;
return 0;
}
if ((addr->channel == IPMI_BMC_CHANNEL)
|| (addr->channel >= IPMI_MAX_CHANNELS)
|| (addr->channel < 0))
return -EINVAL;
if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
if (len < sizeof(struct ipmi_ipmb_addr))
return -EINVAL;
return 0;
}
if (is_ipmb_direct_addr(addr)) {
struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
if (addr->channel != 0)
return -EINVAL;
if (len < sizeof(struct ipmi_ipmb_direct_addr))
return -EINVAL;
if (daddr->slave_addr & 0x01)
return -EINVAL;
if (daddr->rq_lun >= 4)
return -EINVAL;
if (daddr->rs_lun >= 4)
return -EINVAL;
return 0;
}
if (is_lan_addr(addr)) {
if (len < sizeof(struct ipmi_lan_addr))
return -EINVAL;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(ipmi_validate_addr);
unsigned int ipmi_addr_length(int addr_type)
{
if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
return sizeof(struct ipmi_system_interface_addr);
if ((addr_type == IPMI_IPMB_ADDR_TYPE)
|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
return sizeof(struct ipmi_ipmb_addr);
if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
return sizeof(struct ipmi_ipmb_direct_addr);
if (addr_type == IPMI_LAN_ADDR_TYPE)
return sizeof(struct ipmi_lan_addr);
return 0;
}
EXPORT_SYMBOL(ipmi_addr_length);
static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
{
int rv = 0;
if (!msg->user) {
/* Special handling for NULL users. */
if (intf->null_user_handler) {
intf->null_user_handler(intf, msg);
} else {
/* No handler, so give up. */
rv = -EINVAL;
}
ipmi_free_recv_msg(msg);
} else if (oops_in_progress) {
/*
* If we are running in the panic context, calling the
* receive handler doesn't much meaning and has a deadlock
* risk. At this moment, simply skip it in that case.
*/
ipmi_free_recv_msg(msg);
} else {
int index;
struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
if (user) {
user->handler->ipmi_recv_hndl(msg, user->handler_data);
release_ipmi_user(user, index);
} else {
/* User went away, give up. */
ipmi_free_recv_msg(msg);
rv = -EINVAL;
}
}
return rv;
}
static void deliver_local_response(struct ipmi_smi *intf,
struct ipmi_recv_msg *msg)
{
if (deliver_response(intf, msg))
ipmi_inc_stat(intf, unhandled_local_responses);
else
ipmi_inc_stat(intf, handled_local_responses);
}
static void deliver_err_response(struct ipmi_smi *intf,
struct ipmi_recv_msg *msg, int err)
{
msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
msg->msg_data[0] = err;
msg->msg.netfn |= 1; /* Convert to a response. */
msg->msg.data_len = 1;
msg->msg.data = msg->msg_data;
deliver_local_response(intf, msg);
}
static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
{
unsigned long iflags;
if (!intf->handlers->set_need_watch)
return;
spin_lock_irqsave(&intf->watch_lock, iflags);
if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
intf->response_waiters++;
if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
intf->watchdog_waiters++;
if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
intf->command_waiters++;
if ((intf->last_watch_mask & flags) != flags) {
intf->last_watch_mask |= flags;
intf->handlers->set_need_watch(intf->send_info,
intf->last_watch_mask);
}
spin_unlock_irqrestore(&intf->watch_lock, iflags);
}
static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
{
unsigned long iflags;
if (!intf->handlers->set_need_watch)
return;
spin_lock_irqsave(&intf->watch_lock, iflags);
if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
intf->response_waiters--;
if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
intf->watchdog_waiters--;
if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
intf->command_waiters--;
flags = 0;
if (intf->response_waiters)
flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
if (intf->watchdog_waiters)
flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
if (intf->command_waiters)
flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
if (intf->last_watch_mask != flags) {
intf->last_watch_mask = flags;
intf->handlers->set_need_watch(intf->send_info,
intf->last_watch_mask);
}
spin_unlock_irqrestore(&intf->watch_lock, iflags);
}
/*
* Find the next sequence number not being used and add the given
* message with the given timeout to the sequence table. This must be
* called with the interface's seq_lock held.
*/
static int intf_next_seq(struct ipmi_smi *intf,
struct ipmi_recv_msg *recv_msg,
unsigned long timeout,
int retries,
int broadcast,
unsigned char *seq,
long *seqid)
{
int rv = 0;
unsigned int i;
if (timeout == 0)
timeout = default_retry_ms;
if (retries < 0)
retries = default_max_retries;
for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
i = (i+1)%IPMI_IPMB_NUM_SEQ) {
if (!intf->seq_table[i].inuse)
break;
}
if (!intf->seq_table[i].inuse) {
intf->seq_table[i].recv_msg = recv_msg;
/*
* Start with the maximum timeout, when the send response
* comes in we will start the real timer.
*/
intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
intf->seq_table[i].orig_timeout = timeout;
intf->seq_table[i].retries_left = retries;
intf->seq_table[i].broadcast = broadcast;
intf->seq_table[i].inuse = 1;
intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
*seq = i;
*seqid = intf->seq_table[i].seqid;
intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
need_waiter(intf);
} else {
rv = -EAGAIN;
}
return rv;
}
/*
* Return the receive message for the given sequence number and
* release the sequence number so it can be reused. Some other data
* is passed in to be sure the message matches up correctly (to help
* guard against message coming in after their timeout and the
* sequence number being reused).
*/
static int intf_find_seq(struct ipmi_smi *intf,
unsigned char seq,
short channel,
unsigned char cmd,
unsigned char netfn,
struct ipmi_addr *addr,
struct ipmi_recv_msg **recv_msg)
{
int rv = -ENODEV;
unsigned long flags;
if (seq >= IPMI_IPMB_NUM_SEQ)
return -EINVAL;
spin_lock_irqsave(&intf->seq_lock, flags);
if (intf->seq_table[seq].inuse) {
struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
&& (msg->msg.netfn == netfn)
&& (ipmi_addr_equal(addr, &msg->addr))) {
*recv_msg = msg;
intf->seq_table[seq].inuse = 0;
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
rv = 0;
}
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
return rv;
}
/* Start the timer for a specific sequence table entry. */
static int intf_start_seq_timer(struct ipmi_smi *intf,
long msgid)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&intf->seq_lock, flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &intf->seq_table[seq];
ent->timeout = ent->orig_timeout;
rv = 0;
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
return rv;
}
/* Got an error for the send message for a specific sequence number. */
static int intf_err_seq(struct ipmi_smi *intf,
long msgid,
unsigned int err)
{
int rv = -ENODEV;
unsigned long flags;
unsigned char seq;
unsigned long seqid;
struct ipmi_recv_msg *msg = NULL;
GET_SEQ_FROM_MSGID(msgid, seq, seqid);
spin_lock_irqsave(&intf->seq_lock, flags);
/*
* We do this verification because the user can be deleted
* while a message is outstanding.
*/
if ((intf->seq_table[seq].inuse)
&& (intf->seq_table[seq].seqid == seqid)) {
struct seq_table *ent = &intf->seq_table[seq];
ent->inuse = 0;
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
msg = ent->recv_msg;
rv = 0;
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
if (msg)
deliver_err_response(intf, msg, err);
return rv;
}
static void free_user_work(struct work_struct *work)
{
struct ipmi_user *user = container_of(work, struct ipmi_user,
remove_work);
cleanup_srcu_struct(&user->release_barrier);
vfree(user);
}
int ipmi_create_user(unsigned int if_num,
const struct ipmi_user_hndl *handler,
void *handler_data,
struct ipmi_user **user)
{
unsigned long flags;
struct ipmi_user *new_user;
int rv, index;
struct ipmi_smi *intf;
/*
* There is no module usecount here, because it's not
* required. Since this can only be used by and called from
* other modules, they will implicitly use this module, and
* thus this can't be removed unless the other modules are
* removed.
*/
if (handler == NULL)
return -EINVAL;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
rv = ipmi_init_msghandler();
if (rv)
return rv;
new_user = vzalloc(sizeof(*new_user));
if (!new_user)
return -ENOMEM;
index = srcu_read_lock(&ipmi_interfaces_srcu);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
/* Not found, return an error */
rv = -EINVAL;
goto out_kfree;
found:
INIT_WORK(&new_user->remove_work, free_user_work);
rv = init_srcu_struct(&new_user->release_barrier);
if (rv)
goto out_kfree;
if (!try_module_get(intf->owner)) {
rv = -ENODEV;
goto out_kfree;
}
/* Note that each existing user holds a refcount to the interface. */
kref_get(&intf->refcount);
kref_init(&new_user->refcount);
new_user->handler = handler;
new_user->handler_data = handler_data;
new_user->intf = intf;
new_user->gets_events = false;
rcu_assign_pointer(new_user->self, new_user);
spin_lock_irqsave(&intf->seq_lock, flags);
list_add_rcu(&new_user->link, &intf->users);
spin_unlock_irqrestore(&intf->seq_lock, flags);
if (handler->ipmi_watchdog_pretimeout)
/* User wants pretimeouts, so make sure to watch for them. */
smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
srcu_read_unlock(&ipmi_interfaces_srcu, index);
*user = new_user;
return 0;
out_kfree:
srcu_read_unlock(&ipmi_interfaces_srcu, index);
vfree(new_user);
return rv;
}
EXPORT_SYMBOL(ipmi_create_user);
int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
{
int rv, index;
struct ipmi_smi *intf;
index = srcu_read_lock(&ipmi_interfaces_srcu);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (intf->intf_num == if_num)
goto found;
}
srcu_read_unlock(&ipmi_interfaces_srcu, index);
/* Not found, return an error */
return -EINVAL;
found:
if (!intf->handlers->get_smi_info)
rv = -ENOTTY;
else
rv = intf->handlers->get_smi_info(intf->send_info, data);
srcu_read_unlock(&ipmi_interfaces_srcu, index);
return rv;
}
EXPORT_SYMBOL(ipmi_get_smi_info);
static void free_user(struct kref *ref)
{
struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
/* SRCU cleanup must happen in task context. */
queue_work(remove_work_wq, &user->remove_work);
}
static void _ipmi_destroy_user(struct ipmi_user *user)
{
struct ipmi_smi *intf = user->intf;
int i;
unsigned long flags;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
if (!acquire_ipmi_user(user, &i)) {
/*
* The user has already been cleaned up, just make sure
* nothing is using it and return.
*/
synchronize_srcu(&user->release_barrier);
return;
}
rcu_assign_pointer(user->self, NULL);
release_ipmi_user(user, i);
synchronize_srcu(&user->release_barrier);
if (user->handler->shutdown)
user->handler->shutdown(user->handler_data);
if (user->handler->ipmi_watchdog_pretimeout)
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
if (user->gets_events)
atomic_dec(&intf->event_waiters);
/* Remove the user from the interface's sequence table. */
spin_lock_irqsave(&intf->seq_lock, flags);
list_del_rcu(&user->link);
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
if (intf->seq_table[i].inuse
&& (intf->seq_table[i].recv_msg->user == user)) {
intf->seq_table[i].inuse = 0;
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
}
}
spin_unlock_irqrestore(&intf->seq_lock, flags);
/*
* Remove the user from the command receiver's table. First
* we build a list of everything (not using the standard link,
* since other things may be using it till we do
* synchronize_srcu()) then free everything in that list.
*/
mutex_lock(&intf->cmd_rcvrs_mutex);
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
if (rcvr->user == user) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
while (rcvrs) {
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
kref_put(&intf->refcount, intf_free);
module_put(intf->owner);
}
int ipmi_destroy_user(struct ipmi_user *user)
{
_ipmi_destroy_user(user);
kref_put(&user->refcount, free_user);
return 0;
}
EXPORT_SYMBOL(ipmi_destroy_user);
int ipmi_get_version(struct ipmi_user *user,
unsigned char *major,
unsigned char *minor)
{
struct ipmi_device_id id;
int rv, index;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
if (!rv) {
*major = ipmi_version_major(&id);
*minor = ipmi_version_minor(&id);
}
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_get_version);
int ipmi_set_my_address(struct ipmi_user *user,
unsigned int channel,
unsigned char address)
{
int index, rv = 0;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
if (channel >= IPMI_MAX_CHANNELS) {
rv = -EINVAL;
} else {
channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
user->intf->addrinfo[channel].address = address;
}
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_set_my_address);
int ipmi_get_my_address(struct ipmi_user *user,
unsigned int channel,
unsigned char *address)
{
int index, rv = 0;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
if (channel >= IPMI_MAX_CHANNELS) {
rv = -EINVAL;
} else {
channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
*address = user->intf->addrinfo[channel].address;
}
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_get_my_address);
int ipmi_set_my_LUN(struct ipmi_user *user,
unsigned int channel,
unsigned char LUN)
{
int index, rv = 0;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
if (channel >= IPMI_MAX_CHANNELS) {
rv = -EINVAL;
} else {
channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
user->intf->addrinfo[channel].lun = LUN & 0x3;
}
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_set_my_LUN);
int ipmi_get_my_LUN(struct ipmi_user *user,
unsigned int channel,
unsigned char *address)
{
int index, rv = 0;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
if (channel >= IPMI_MAX_CHANNELS) {
rv = -EINVAL;
} else {
channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
*address = user->intf->addrinfo[channel].lun;
}
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_get_my_LUN);
int ipmi_get_maintenance_mode(struct ipmi_user *user)
{
int mode, index;
unsigned long flags;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
mode = user->intf->maintenance_mode;
spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
release_ipmi_user(user, index);
return mode;
}
EXPORT_SYMBOL(ipmi_get_maintenance_mode);
static void maintenance_mode_update(struct ipmi_smi *intf)
{
if (intf->handlers->set_maintenance_mode)
intf->handlers->set_maintenance_mode(
intf->send_info, intf->maintenance_mode_enable);
}
int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
{
int rv = 0, index;
unsigned long flags;
struct ipmi_smi *intf = user->intf;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->maintenance_mode != mode) {
switch (mode) {
case IPMI_MAINTENANCE_MODE_AUTO:
intf->maintenance_mode_enable
= (intf->auto_maintenance_timeout > 0);
break;
case IPMI_MAINTENANCE_MODE_OFF:
intf->maintenance_mode_enable = false;
break;
case IPMI_MAINTENANCE_MODE_ON:
intf->maintenance_mode_enable = true;
break;
default:
rv = -EINVAL;
goto out_unlock;
}
intf->maintenance_mode = mode;
maintenance_mode_update(intf);
}
out_unlock:
spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_set_maintenance_mode);
int ipmi_set_gets_events(struct ipmi_user *user, bool val)
{
unsigned long flags;
struct ipmi_smi *intf = user->intf;
struct ipmi_recv_msg *msg, *msg2;
struct list_head msgs;
int index;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
if (user->gets_events == val)
goto out;
user->gets_events = val;
if (val) {
if (atomic_inc_return(&intf->event_waiters) == 1)
need_waiter(intf);
} else {
atomic_dec(&intf->event_waiters);
}
if (intf->delivering_events)
/*
* Another thread is delivering events for this, so
* let it handle any new events.
*/
goto out;
/* Deliver any queued events. */
while (user->gets_events && !list_empty(&intf->waiting_events)) {
list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
list_move_tail(&msg->link, &msgs);
intf->waiting_events_count = 0;
if (intf->event_msg_printed) {
dev_warn(intf->si_dev, "Event queue no longer full\n");
intf->event_msg_printed = 0;
}
intf->delivering_events = 1;
spin_unlock_irqrestore(&intf->events_lock, flags);
list_for_each_entry_safe(msg, msg2, &msgs, link) {
msg->user = user;
kref_get(&user->refcount);
deliver_local_response(intf, msg);
}
spin_lock_irqsave(&intf->events_lock, flags);
intf->delivering_events = 0;
}
out:
spin_unlock_irqrestore(&intf->events_lock, flags);
release_ipmi_user(user, index);
return 0;
}
EXPORT_SYMBOL(ipmi_set_gets_events);
static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
unsigned char netfn,
unsigned char cmd,
unsigned char chan)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & (1 << chan)))
return rcvr;
}
return NULL;
}
static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
struct cmd_rcvr *rcvr;
list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
&& (rcvr->chans & chans))
return 0;
}
return 1;
}
int ipmi_register_for_cmd(struct ipmi_user *user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
struct ipmi_smi *intf = user->intf;
struct cmd_rcvr *rcvr;
int rv = 0, index;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
if (!rcvr) {
rv = -ENOMEM;
goto out_release;
}
rcvr->cmd = cmd;
rcvr->netfn = netfn;
rcvr->chans = chans;
rcvr->user = user;
mutex_lock(&intf->cmd_rcvrs_mutex);
/* Make sure the command/netfn is not already registered. */
if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
rv = -EBUSY;
goto out_unlock;
}
smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
out_unlock:
mutex_unlock(&intf->cmd_rcvrs_mutex);
if (rv)
kfree(rcvr);
out_release:
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_register_for_cmd);
int ipmi_unregister_for_cmd(struct ipmi_user *user,
unsigned char netfn,
unsigned char cmd,
unsigned int chans)
{
struct ipmi_smi *intf = user->intf;
struct cmd_rcvr *rcvr;
struct cmd_rcvr *rcvrs = NULL;
int i, rv = -ENOENT, index;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
mutex_lock(&intf->cmd_rcvrs_mutex);
for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
if (((1 << i) & chans) == 0)
continue;
rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
if (rcvr == NULL)
continue;
if (rcvr->user == user) {
rv = 0;
rcvr->chans &= ~chans;
if (rcvr->chans == 0) {
list_del_rcu(&rcvr->link);
rcvr->next = rcvrs;
rcvrs = rcvr;
}
}
}
mutex_unlock(&intf->cmd_rcvrs_mutex);
synchronize_rcu();
release_ipmi_user(user, index);
while (rcvrs) {
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
rcvr = rcvrs;
rcvrs = rcvr->next;
kfree(rcvr);
}
return rv;
}
EXPORT_SYMBOL(ipmi_unregister_for_cmd);
unsigned char
ipmb_checksum(unsigned char *data, int size)
{
unsigned char csum = 0;
for (; size > 0; size--, data++)
csum += *data;
return -csum;
}
EXPORT_SYMBOL(ipmb_checksum);
static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_ipmb_addr *ipmb_addr,
long msgid,
unsigned char ipmb_seq,
int broadcast,
unsigned char source_address,
unsigned char source_lun)
{
int i = broadcast;
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = ipmb_addr->channel;
if (broadcast)
smi_msg->data[3] = 0;
smi_msg->data[i+3] = ipmb_addr->slave_addr;
smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
smi_msg->data[i+6] = source_address;
smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
smi_msg->data[i+8] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 9;
/* Now calculate the checksum and tack it on. */
smi_msg->data[i+smi_msg->data_size]
= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1 + i;
smi_msg->msgid = msgid;
}
static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
struct kernel_ipmi_msg *msg,
struct ipmi_lan_addr *lan_addr,
long msgid,
unsigned char ipmb_seq,
unsigned char source_lun)
{
/* Format the IPMB header data. */
smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
smi_msg->data[1] = IPMI_SEND_MSG_CMD;
smi_msg->data[2] = lan_addr->channel;
smi_msg->data[3] = lan_addr->session_handle;
smi_msg->data[4] = lan_addr->remote_SWID;
smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
smi_msg->data[7] = lan_addr->local_SWID;
smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
smi_msg->data[9] = msg->cmd;
/* Now tack on the data to the message. */
if (msg->data_len > 0)
memcpy(&smi_msg->data[10], msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 10;
/* Now calculate the checksum and tack it on. */
smi_msg->data[smi_msg->data_size]
= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
/*
* Add on the checksum size and the offset from the
* broadcast.
*/
smi_msg->data_size += 1;
smi_msg->msgid = msgid;
}
static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
struct ipmi_smi_msg *smi_msg,
int priority)
{
if (intf->curr_msg) {
if (priority > 0)
list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
else
list_add_tail(&smi_msg->link, &intf->xmit_msgs);
smi_msg = NULL;
} else {
intf->curr_msg = smi_msg;
}
return smi_msg;
}
static void smi_send(struct ipmi_smi *intf,
const struct ipmi_smi_handlers *handlers,
struct ipmi_smi_msg *smi_msg, int priority)
{
int run_to_completion = intf->run_to_completion;
unsigned long flags = 0;
if (!run_to_completion)
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
smi_msg = smi_add_send_msg(intf, smi_msg, priority);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (smi_msg)
handlers->sender(intf->send_info, smi_msg);
}
static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
{
return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_COLD_RESET_CMD)
|| (msg->cmd == IPMI_WARM_RESET_CMD)))
|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
}
static int i_ipmi_req_sysintf(struct ipmi_smi *intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
struct ipmi_smi_msg *smi_msg,
struct ipmi_recv_msg *recv_msg,
int retries,
unsigned int retry_time_ms)
{
struct ipmi_system_interface_addr *smi_addr;
if (msg->netfn & 1)
/* Responses are not allowed to the SMI. */
return -EINVAL;
smi_addr = (struct ipmi_system_interface_addr *) addr;
if (smi_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
&& ((msg->cmd == IPMI_SEND_MSG_CMD)
|| (msg->cmd == IPMI_GET_MSG_CMD)
|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
/*
* We don't let the user do these, since we manage
* the sequence numbers.
*/
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
if (is_maintenance_mode_cmd(msg)) {
unsigned long flags;
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
intf->auto_maintenance_timeout
= maintenance_mode_timeout_ms;
if (!intf->maintenance_mode
&& !intf->maintenance_mode_enable) {
intf->maintenance_mode_enable = true;
maintenance_mode_update(intf);
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EMSGSIZE;
}
smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
smi_msg->data[1] = msg->cmd;
smi_msg->msgid = msgid;
smi_msg->user_data = recv_msg;
if (msg->data_len > 0)
memcpy(&smi_msg->data[2], msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 2;
ipmi_inc_stat(intf, sent_local_commands);
return 0;
}
static int i_ipmi_req_ipmb(struct ipmi_smi *intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
struct ipmi_smi_msg *smi_msg,
struct ipmi_recv_msg *recv_msg,
unsigned char source_address,
unsigned char source_lun,
int retries,
unsigned int retry_time_ms)
{
struct ipmi_ipmb_addr *ipmb_addr;
unsigned char ipmb_seq;
long seqid;
int broadcast = 0;
struct ipmi_channel *chans;
int rv = 0;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
chans = READ_ONCE(intf->channel_list)->c;
if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
/*
* Broadcasts add a zero at the beginning of the
* message, but otherwise is the same as an IPMB
* address.
*/
addr->addr_type = IPMI_IPMB_ADDR_TYPE;
broadcast = 1;
retries = 0; /* Don't retry broadcasts. */
}
/*
* 9 for the header and 1 for the checksum, plus
* possibly one for the broadcast.
*/
if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EMSGSIZE;
}
ipmb_addr = (struct ipmi_ipmb_addr *) addr;
if (ipmb_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_ipmb_responses);
format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
msgid, broadcast,
source_address, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
unsigned long flags;
spin_lock_irqsave(&intf->seq_lock, flags);
if (is_maintenance_mode_cmd(msg))
intf->ipmb_maintenance_mode_timeout =
maintenance_mode_timeout_ms;
if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
/* Different default in maintenance mode */
retry_time_ms = default_maintenance_retry_ms;
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
broadcast,
&ipmb_seq,
&seqid);
if (rv)
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
goto out_err;
ipmi_inc_stat(intf, sent_ipmb_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_ipmb_msg(smi_msg, msg, ipmb_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, broadcast,
source_address, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
out_err:
spin_unlock_irqrestore(&intf->seq_lock, flags);
}
return rv;
}
static int i_ipmi_req_ipmb_direct(struct ipmi_smi *intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
struct ipmi_smi_msg *smi_msg,
struct ipmi_recv_msg *recv_msg,
unsigned char source_lun)
{
struct ipmi_ipmb_direct_addr *daddr;
bool is_cmd = !(recv_msg->msg.netfn & 0x1);
if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
return -EAFNOSUPPORT;
/* Responses must have a completion code. */
if (!is_cmd && msg->data_len < 1) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EMSGSIZE;
}
daddr = (struct ipmi_ipmb_direct_addr *) addr;
if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
smi_msg->msgid = msgid;
if (is_cmd) {
smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
} else {
smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
}
smi_msg->data[1] = daddr->slave_addr;
smi_msg->data[3] = msg->cmd;
memcpy(smi_msg->data + 4, msg->data, msg->data_len);
smi_msg->data_size = msg->data_len + 4;
smi_msg->user_data = recv_msg;
return 0;
}
static int i_ipmi_req_lan(struct ipmi_smi *intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
struct ipmi_smi_msg *smi_msg,
struct ipmi_recv_msg *recv_msg,
unsigned char source_lun,
int retries,
unsigned int retry_time_ms)
{
struct ipmi_lan_addr *lan_addr;
unsigned char ipmb_seq;
long seqid;
struct ipmi_channel *chans;
int rv = 0;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
chans = READ_ONCE(intf->channel_list)->c;
if ((chans[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_8023LAN)
&& (chans[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
/* 11 for the header and 1 for the checksum. */
if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EMSGSIZE;
}
lan_addr = (struct ipmi_lan_addr *) addr;
if (lan_addr->lun > 3) {
ipmi_inc_stat(intf, sent_invalid_commands);
return -EINVAL;
}
memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
if (recv_msg->msg.netfn & 0x1) {
/*
* It's a response, so use the user's sequence
* from msgid.
*/
ipmi_inc_stat(intf, sent_lan_responses);
format_lan_msg(smi_msg, msg, lan_addr, msgid,
msgid, source_lun);
/*
* Save the receive message so we can use it
* to deliver the response.
*/
smi_msg->user_data = recv_msg;
} else {
/* It's a command, so get a sequence for it. */
unsigned long flags;
spin_lock_irqsave(&intf->seq_lock, flags);
/*
* Create a sequence number with a 1 second
* timeout and 4 retries.
*/
rv = intf_next_seq(intf,
recv_msg,
retry_time_ms,
retries,
0,
&ipmb_seq,
&seqid);
if (rv)
/*
* We have used up all the sequence numbers,
* probably, so abort.
*/
goto out_err;
ipmi_inc_stat(intf, sent_lan_commands);
/*
* Store the sequence number in the message,
* so that when the send message response
* comes back we can start the timer.
*/
format_lan_msg(smi_msg, msg, lan_addr,
STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
ipmb_seq, source_lun);
/*
* Copy the message into the recv message data, so we
* can retransmit it later if necessary.
*/
memcpy(recv_msg->msg_data, smi_msg->data,
smi_msg->data_size);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = smi_msg->data_size;
/*
* We don't unlock until here, because we need
* to copy the completed message into the
* recv_msg before we release the lock.
* Otherwise, race conditions may bite us. I
* know that's pretty paranoid, but I prefer
* to be correct.
*/
out_err:
spin_unlock_irqrestore(&intf->seq_lock, flags);
}
return rv;
}
/*
* Separate from ipmi_request so that the user does not have to be
* supplied in certain circumstances (mainly at panic time). If
* messages are supplied, they will be freed, even if an error
* occurs.
*/
static int i_ipmi_request(struct ipmi_user *user,
struct ipmi_smi *intf,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority,
unsigned char source_address,
unsigned char source_lun,
int retries,
unsigned int retry_time_ms)
{
struct ipmi_smi_msg *smi_msg;
struct ipmi_recv_msg *recv_msg;
int rv = 0;
if (supplied_recv)
recv_msg = supplied_recv;
else {
recv_msg = ipmi_alloc_recv_msg();
if (recv_msg == NULL) {
rv = -ENOMEM;
goto out;
}
}
recv_msg->user_msg_data = user_msg_data;
if (supplied_smi)
smi_msg = (struct ipmi_smi_msg *) supplied_smi;
else {
smi_msg = ipmi_alloc_smi_msg();
if (smi_msg == NULL) {
if (!supplied_recv)
ipmi_free_recv_msg(recv_msg);
rv = -ENOMEM;
goto out;
}
}
rcu_read_lock();
if (intf->in_shutdown) {
rv = -ENODEV;
goto out_err;
}
recv_msg->user = user;
if (user)
/* The put happens when the message is freed. */
kref_get(&user->refcount);
recv_msg->msgid = msgid;
/*
* Store the message to send in the receive message so timeout
* responses can get the proper response data.
*/
recv_msg->msg = *msg;
if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
recv_msg, retries, retry_time_ms);
} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
source_address, source_lun,
retries, retry_time_ms);
} else if (is_ipmb_direct_addr(addr)) {
rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
recv_msg, source_lun);
} else if (is_lan_addr(addr)) {
rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
source_lun, retries, retry_time_ms);
} else {
/* Unknown address type. */
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
}
if (rv) {
out_err:
ipmi_free_smi_msg(smi_msg);
ipmi_free_recv_msg(recv_msg);
} else {
pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
smi_send(intf, intf->handlers, smi_msg, priority);
}
rcu_read_unlock();
out:
return rv;
}
static int check_addr(struct ipmi_smi *intf,
struct ipmi_addr *addr,
unsigned char *saddr,
unsigned char *lun)
{
if (addr->channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
*lun = intf->addrinfo[addr->channel].lun;
*saddr = intf->addrinfo[addr->channel].address;
return 0;
}
int ipmi_request_settime(struct ipmi_user *user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
int priority,
int retries,
unsigned int retry_time_ms)
{
unsigned char saddr = 0, lun = 0;
int rv, index;
if (!user)
return -EINVAL;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (!rv)
rv = i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
NULL, NULL,
priority,
saddr,
lun,
retries,
retry_time_ms);
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_request_settime);
int ipmi_request_supply_msgs(struct ipmi_user *user,
struct ipmi_addr *addr,
long msgid,
struct kernel_ipmi_msg *msg,
void *user_msg_data,
void *supplied_smi,
struct ipmi_recv_msg *supplied_recv,
int priority)
{
unsigned char saddr = 0, lun = 0;
int rv, index;
if (!user)
return -EINVAL;
user = acquire_ipmi_user(user, &index);
if (!user)
return -ENODEV;
rv = check_addr(user->intf, addr, &saddr, &lun);
if (!rv)
rv = i_ipmi_request(user,
user->intf,
addr,
msgid,
msg,
user_msg_data,
supplied_smi,
supplied_recv,
priority,
saddr,
lun,
-1, 0);
release_ipmi_user(user, index);
return rv;
}
EXPORT_SYMBOL(ipmi_request_supply_msgs);
static void bmc_device_id_handler(struct ipmi_smi *intf,
struct ipmi_recv_msg *msg)
{
int rv;
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
dev_warn(intf->si_dev,
"invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
return;
}
if (msg->msg.data[0]) {
dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
msg->msg.data[0]);
intf->bmc->dyn_id_set = 0;
goto out;
}
rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
if (rv) {
dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
/* record completion code when error */
intf->bmc->cc = msg->msg.data[0];
intf->bmc->dyn_id_set = 0;
} else {
/*
* Make sure the id data is available before setting
* dyn_id_set.
*/
smp_wmb();
intf->bmc->dyn_id_set = 1;
}
out:
wake_up(&intf->waitq);
}
static int
send_get_device_id_cmd(struct ipmi_smi *intf)
{
struct ipmi_system_interface_addr si;
struct kernel_ipmi_msg msg;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_ID_CMD;
msg.data = NULL;
msg.data_len = 0;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
{
int rv;
unsigned int retry_count = 0;
intf->null_user_handler = bmc_device_id_handler;
retry:
bmc->cc = 0;
bmc->dyn_id_set = 2;
rv = send_get_device_id_cmd(intf);
if (rv)
goto out_reset_handler;
wait_event(intf->waitq, bmc->dyn_id_set != 2);
if (!bmc->dyn_id_set) {
if (bmc->cc != IPMI_CC_NO_ERROR &&
++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
msleep(500);
dev_warn(intf->si_dev,
"BMC returned 0x%2.2x, retry get bmc device id\n",
bmc->cc);
goto retry;
}
rv = -EIO; /* Something went wrong in the fetch. */
}
/* dyn_id_set makes the id data available. */
smp_rmb();
out_reset_handler:
intf->null_user_handler = NULL;
return rv;
}
/*
* Fetch the device id for the bmc/interface. You must pass in either
* bmc or intf, this code will get the other one. If the data has
* been recently fetched, this will just use the cached data. Otherwise
* it will run a new fetch.
*
* Except for the first time this is called (in ipmi_add_smi()),
* this will always return good data;
*/
static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid, int intf_num)
{
int rv = 0;
int prev_dyn_id_set, prev_guid_set;
bool intf_set = intf != NULL;
if (!intf) {
mutex_lock(&bmc->dyn_mutex);
retry_bmc_lock:
if (list_empty(&bmc->intfs)) {
mutex_unlock(&bmc->dyn_mutex);
return -ENOENT;
}
intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
bmc_link);
kref_get(&intf->refcount);
mutex_unlock(&bmc->dyn_mutex);
mutex_lock(&intf->bmc_reg_mutex);
mutex_lock(&bmc->dyn_mutex);
if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
bmc_link)) {
mutex_unlock(&intf->bmc_reg_mutex);
kref_put(&intf->refcount, intf_free);
goto retry_bmc_lock;
}
} else {
mutex_lock(&intf->bmc_reg_mutex);
bmc = intf->bmc;
mutex_lock(&bmc->dyn_mutex);
kref_get(&intf->refcount);
}
/* If we have a valid and current ID, just return that. */
if (intf->in_bmc_register ||
(bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
goto out_noprocessing;
prev_guid_set = bmc->dyn_guid_set;
__get_guid(intf);
prev_dyn_id_set = bmc->dyn_id_set;
rv = __get_device_id(intf, bmc);
if (rv)
goto out;
/*
* The guid, device id, manufacturer id, and product id should
* not change on a BMC. If it does we have to do some dancing.
*/
if (!intf->bmc_registered
|| (!prev_guid_set && bmc->dyn_guid_set)
|| (!prev_dyn_id_set && bmc->dyn_id_set)
|| (prev_guid_set && bmc->dyn_guid_set
&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
|| bmc->id.device_id != bmc->fetch_id.device_id
|| bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
|| bmc->id.product_id != bmc->fetch_id.product_id) {
struct ipmi_device_id id = bmc->fetch_id;
int guid_set = bmc->dyn_guid_set;
guid_t guid;
guid = bmc->fetch_guid;
mutex_unlock(&bmc->dyn_mutex);
__ipmi_bmc_unregister(intf);
/* Fill in the temporary BMC for good measure. */
intf->bmc->id = id;
intf->bmc->dyn_guid_set = guid_set;
intf->bmc->guid = guid;
if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
need_waiter(intf); /* Retry later on an error. */
else
__scan_channels(intf, &id);
if (!intf_set) {
/*
* We weren't given the interface on the
* command line, so restart the operation on
* the next interface for the BMC.
*/
mutex_unlock(&intf->bmc_reg_mutex);
mutex_lock(&bmc->dyn_mutex);
goto retry_bmc_lock;
}
/* We have a new BMC, set it up. */
bmc = intf->bmc;
mutex_lock(&bmc->dyn_mutex);
goto out_noprocessing;
} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
/* Version info changes, scan the channels again. */
__scan_channels(intf, &bmc->fetch_id);
bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
out:
if (rv && prev_dyn_id_set) {
rv = 0; /* Ignore failures if we have previous data. */
bmc->dyn_id_set = prev_dyn_id_set;
}
if (!rv) {
bmc->id = bmc->fetch_id;
if (bmc->dyn_guid_set)
bmc->guid = bmc->fetch_guid;
else if (prev_guid_set)
/*
* The guid used to be valid and it failed to fetch,
* just use the cached value.
*/
bmc->dyn_guid_set = prev_guid_set;
}
out_noprocessing:
if (!rv) {
if (id)
*id = bmc->id;
if (guid_set)
*guid_set = bmc->dyn_guid_set;
if (guid && bmc->dyn_guid_set)
*guid = bmc->guid;
}
mutex_unlock(&bmc->dyn_mutex);
mutex_unlock(&intf->bmc_reg_mutex);
kref_put(&intf->refcount, intf_free);
return rv;
}
static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid)
{
return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
}
static ssize_t device_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "%u\n", id.device_id);
}
static DEVICE_ATTR_RO(device_id);
static ssize_t provides_device_sdrs_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
}
static DEVICE_ATTR_RO(provides_device_sdrs);
static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
}
static DEVICE_ATTR_RO(revision);
static ssize_t firmware_revision_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
id.firmware_revision_2);
}
static DEVICE_ATTR_RO(firmware_revision);
static ssize_t ipmi_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "%u.%u\n",
ipmi_version_major(&id),
ipmi_version_minor(&id));
}
static DEVICE_ATTR_RO(ipmi_version);
static ssize_t add_dev_support_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
}
static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
NULL);
static ssize_t manufacturer_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
}
static DEVICE_ATTR_RO(manufacturer_id);
static ssize_t product_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
}
static DEVICE_ATTR_RO(product_id);
static ssize_t aux_firmware_rev_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
id.aux_firmware_revision[3],
id.aux_firmware_revision[2],
id.aux_firmware_revision[1],
id.aux_firmware_revision[0]);
}
static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
bool guid_set;
guid_t guid;
int rv;
rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
if (rv)
return rv;
if (!guid_set)
return -ENOENT;
return sysfs_emit(buf, "%pUl\n", &guid);
}
static DEVICE_ATTR_RO(guid);
static struct attribute *bmc_dev_attrs[] = {
&dev_attr_device_id.attr,
&dev_attr_provides_device_sdrs.attr,
&dev_attr_revision.attr,
&dev_attr_firmware_revision.attr,
&dev_attr_ipmi_version.attr,
&dev_attr_additional_device_support.attr,
&dev_attr_manufacturer_id.attr,
&dev_attr_product_id.attr,
&dev_attr_aux_firmware_revision.attr,
&dev_attr_guid.attr,
NULL
};
static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct bmc_device *bmc = to_bmc_device(dev);
umode_t mode = attr->mode;
int rv;
if (attr == &dev_attr_aux_firmware_revision.attr) {
struct ipmi_device_id id;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
return (!rv && id.aux_firmware_revision_set) ? mode : 0;
}
if (attr == &dev_attr_guid.attr) {
bool guid_set;
rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
return (!rv && guid_set) ? mode : 0;
}
return mode;
}
static const struct attribute_group bmc_dev_attr_group = {
.attrs = bmc_dev_attrs,
.is_visible = bmc_dev_attr_is_visible,
};
static const struct attribute_group *bmc_dev_attr_groups[] = {
&bmc_dev_attr_group,
NULL
};
static const struct device_type bmc_device_type = {
.groups = bmc_dev_attr_groups,
};
static int __find_bmc_guid(struct device *dev, const void *data)
{
const guid_t *guid = data;
struct bmc_device *bmc;
int rv;
if (dev->type != &bmc_device_type)
return 0;
bmc = to_bmc_device(dev);
rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
if (rv)
rv = kref_get_unless_zero(&bmc->usecount);
return rv;
}
/*
* Returns with the bmc's usecount incremented, if it is non-NULL.
*/
static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
guid_t *guid)
{
struct device *dev;
struct bmc_device *bmc = NULL;
dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
if (dev) {
bmc = to_bmc_device(dev);
put_device(dev);
}
return bmc;
}
struct prod_dev_id {
unsigned int product_id;
unsigned char device_id;
};
static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
{
const struct prod_dev_id *cid = data;
struct bmc_device *bmc;
int rv;
if (dev->type != &bmc_device_type)
return 0;
bmc = to_bmc_device(dev);
rv = (bmc->id.product_id == cid->product_id
&& bmc->id.device_id == cid->device_id);
if (rv)
rv = kref_get_unless_zero(&bmc->usecount);
return rv;
}
/*
* Returns with the bmc's usecount incremented, if it is non-NULL.
*/
static struct bmc_device *ipmi_find_bmc_prod_dev_id(
struct device_driver *drv,
unsigned int product_id, unsigned char device_id)
{
struct prod_dev_id id = {
.product_id = product_id,
.device_id = device_id,
};
struct device *dev;
struct bmc_device *bmc = NULL;
dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
if (dev) {
bmc = to_bmc_device(dev);
put_device(dev);
}
return bmc;
}
static DEFINE_IDA(ipmi_bmc_ida);
static void
release_bmc_device(struct device *dev)
{
kfree(to_bmc_device(dev));
}
static void cleanup_bmc_work(struct work_struct *work)
{
struct bmc_device *bmc = container_of(work, struct bmc_device,
remove_work);
int id = bmc->pdev.id; /* Unregister overwrites id */
platform_device_unregister(&bmc->pdev);
ida_simple_remove(&ipmi_bmc_ida, id);
}
static void
cleanup_bmc_device(struct kref *ref)
{
struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
/*
* Remove the platform device in a work queue to avoid issues
* with removing the device attributes while reading a device
* attribute.
*/
schedule_work(&bmc->remove_work);
}
/*
* Must be called with intf->bmc_reg_mutex held.
*/
static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
{
struct bmc_device *bmc = intf->bmc;
if (!intf->bmc_registered)
return;
sysfs_remove_link(&intf->si_dev->kobj, "bmc");
sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
kref_put(&bmc->usecount, cleanup_bmc_device);
intf->bmc_registered = false;
}
static void ipmi_bmc_unregister(struct ipmi_smi *intf)
{
mutex_lock(&intf->bmc_reg_mutex);
__ipmi_bmc_unregister(intf);
mutex_unlock(&intf->bmc_reg_mutex);
}
/*
* Must be called with intf->bmc_reg_mutex held.
*/
static int __ipmi_bmc_register(struct ipmi_smi *intf,
struct ipmi_device_id *id,
bool guid_set, guid_t *guid, int intf_num)
{
int rv;
struct bmc_device *bmc;
struct bmc_device *old_bmc;
/*
* platform_device_register() can cause bmc_reg_mutex to
* be claimed because of the is_visible functions of
* the attributes. Eliminate possible recursion and
* release the lock.
*/
intf->in_bmc_register = true;
mutex_unlock(&intf->bmc_reg_mutex);
/*
* Try to find if there is an bmc_device struct
* representing the interfaced BMC already
*/
mutex_lock(&ipmidriver_mutex);
if (guid_set)
old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
else
old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
id->product_id,
id->device_id);
/*
* If there is already an bmc_device, free the new one,
* otherwise register the new BMC device
*/
if (old_bmc) {
bmc = old_bmc;
/*
* Note: old_bmc already has usecount incremented by
* the BMC find functions.
*/
intf->bmc = old_bmc;
mutex_lock(&bmc->dyn_mutex);
list_add_tail(&intf->bmc_link, &bmc->intfs);
mutex_unlock(&bmc->dyn_mutex);
dev_info(intf->si_dev,
"interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
} else {
bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
if (!bmc) {
rv = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&bmc->intfs);
mutex_init(&bmc->dyn_mutex);
INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
bmc->id = *id;
bmc->dyn_id_set = 1;
bmc->dyn_guid_set = guid_set;
bmc->guid = *guid;
bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
bmc->pdev.name = "ipmi_bmc";
rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
if (rv < 0) {
kfree(bmc);
goto out;
}
bmc->pdev.dev.driver = &ipmidriver.driver;
bmc->pdev.id = rv;
bmc->pdev.dev.release = release_bmc_device;
bmc->pdev.dev.type = &bmc_device_type;
kref_init(&bmc->usecount);
intf->bmc = bmc;
mutex_lock(&bmc->dyn_mutex);
list_add_tail(&intf->bmc_link, &bmc->intfs);
mutex_unlock(&bmc->dyn_mutex);
rv = platform_device_register(&bmc->pdev);
if (rv) {
dev_err(intf->si_dev,
"Unable to register bmc device: %d\n",
rv);
goto out_list_del;
}
dev_info(intf->si_dev,
"Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
}
/*
* create symlink from system interface device to bmc device
* and back.
*/
rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
if (rv) {
dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
goto out_put_bmc;
}
if (intf_num == -1)
intf_num = intf->intf_num;
intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
if (!intf->my_dev_name) {
rv = -ENOMEM;
dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
rv);
goto out_unlink1;
}
rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
intf->my_dev_name);
if (rv) {
dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
rv);
goto out_free_my_dev_name;
}
intf->bmc_registered = true;
out:
mutex_unlock(&ipmidriver_mutex);
mutex_lock(&intf->bmc_reg_mutex);
intf->in_bmc_register = false;
return rv;
out_free_my_dev_name:
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
out_unlink1:
sysfs_remove_link(&intf->si_dev->kobj, "bmc");
out_put_bmc:
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
kref_put(&bmc->usecount, cleanup_bmc_device);
goto out;
out_list_del:
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
put_device(&bmc->pdev.dev);
goto out;
}
static int
send_guid_cmd(struct ipmi_smi *intf, int chan)
{
struct kernel_ipmi_msg msg;
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
msg.data = NULL;
msg.data_len = 0;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
{
struct bmc_device *bmc = intf->bmc;
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
/* Not for me */
return;
if (msg->msg.data[0] != 0) {
/* Error from getting the GUID, the BMC doesn't have one. */
bmc->dyn_guid_set = 0;
goto out;
}
if (msg->msg.data_len < UUID_SIZE + 1) {
bmc->dyn_guid_set = 0;
dev_warn(intf->si_dev,
"The GUID response from the BMC was too short, it was %d but should have been %d. Assuming GUID is not available.\n",
msg->msg.data_len, UUID_SIZE + 1);
goto out;
}
import_guid(&bmc->fetch_guid, msg->msg.data + 1);
/*
* Make sure the guid data is available before setting
* dyn_guid_set.
*/
smp_wmb();
bmc->dyn_guid_set = 1;
out:
wake_up(&intf->waitq);
}
static void __get_guid(struct ipmi_smi *intf)
{
int rv;
struct bmc_device *bmc = intf->bmc;
bmc->dyn_guid_set = 2;
intf->null_user_handler = guid_handler;
rv = send_guid_cmd(intf, 0);
if (rv)
/* Send failed, no GUID available. */
bmc->dyn_guid_set = 0;
else
wait_event(intf->waitq, bmc->dyn_guid_set != 2);
/* dyn_guid_set makes the guid data available. */
smp_rmb();
intf->null_user_handler = NULL;
}
static int
send_channel_info_cmd(struct ipmi_smi *intf, int chan)
{
struct kernel_ipmi_msg msg;
unsigned char data[1];
struct ipmi_system_interface_addr si;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
msg.data = data;
msg.data_len = 1;
data[0] = chan;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
static void
channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
{
int rv = 0;
int ch;
unsigned int set = intf->curr_working_cset;
struct ipmi_channel *chans;
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
/* It's the one we want */
if (msg->msg.data[0] != 0) {
/* Got an error from the channel, just go on. */
if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
/*
* If the MC does not support this
* command, that is legal. We just
* assume it has one IPMB at channel
* zero.
*/
intf->wchannels[set].c[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB;
intf->wchannels[set].c[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB;
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
goto out;
}
goto next_channel;
}
if (msg->msg.data_len < 4) {
/* Message not big enough, just go on. */
goto next_channel;
}
ch = intf->curr_channel;
chans = intf->wchannels[set].c;
chans[ch].medium = msg->msg.data[2] & 0x7f;
chans[ch].protocol = msg->msg.data[3] & 0x1f;
next_channel:
intf->curr_channel++;
if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
} else {
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
rv = send_channel_info_cmd(intf, intf->curr_channel);
}
if (rv) {
/* Got an error somehow, just give up. */
dev_warn(intf->si_dev,
"Error sending channel information for channel %d: %d\n",
intf->curr_channel, rv);
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
}
}
out:
return;
}
/*
* Must be holding intf->bmc_reg_mutex to call this.
*/
static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
{
int rv;
if (ipmi_version_major(id) > 1
|| (ipmi_version_major(id) == 1
&& ipmi_version_minor(id) >= 5)) {
unsigned int set;
/*
* Start scanning the channels to see what is
* available.
*/
set = !intf->curr_working_cset;
intf->curr_working_cset = set;
memset(&intf->wchannels[set], 0,
sizeof(struct ipmi_channel_set));
intf->null_user_handler = channel_handler;
intf->curr_channel = 0;
rv = send_channel_info_cmd(intf, 0);
if (rv) {
dev_warn(intf->si_dev,
"Error sending channel information for channel 0, %d\n",
rv);
intf->null_user_handler = NULL;
return -EIO;
}
/* Wait for the channel info to be read. */
wait_event(intf->waitq, intf->channels_ready);
intf->null_user_handler = NULL;
} else {
unsigned int set = intf->curr_working_cset;
/* Assume a single IPMB channel at zero. */
intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
}
return 0;
}
static void ipmi_poll(struct ipmi_smi *intf)
{
if (intf->handlers->poll)
intf->handlers->poll(intf->send_info);
/* In case something came in */
handle_new_recv_msgs(intf);
}
void ipmi_poll_interface(struct ipmi_user *user)
{
ipmi_poll(user->intf);
}
EXPORT_SYMBOL(ipmi_poll_interface);
static void redo_bmc_reg(struct work_struct *work)
{
struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
bmc_reg_work);
if (!intf->in_shutdown)
bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
kref_put(&intf->refcount, intf_free);
}
int ipmi_add_smi(struct module *owner,
const struct ipmi_smi_handlers *handlers,
void *send_info,
struct device *si_dev,
unsigned char slave_addr)
{
int i, j;
int rv;
struct ipmi_smi *intf, *tintf;
struct list_head *link;
struct ipmi_device_id id;
/*
* Make sure the driver is actually initialized, this handles
* problems with initialization order.
*/
rv = ipmi_init_msghandler();
if (rv)
return rv;
intf = kzalloc(sizeof(*intf), GFP_KERNEL);
if (!intf)
return -ENOMEM;
rv = init_srcu_struct(&intf->users_srcu);
if (rv) {
kfree(intf);
return rv;
}
intf->owner = owner;
intf->bmc = &intf->tmp_bmc;
INIT_LIST_HEAD(&intf->bmc->intfs);
mutex_init(&intf->bmc->dyn_mutex);
INIT_LIST_HEAD(&intf->bmc_link);
mutex_init(&intf->bmc_reg_mutex);
intf->intf_num = -1; /* Mark it invalid for now. */
kref_init(&intf->refcount);
INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
intf->si_dev = si_dev;
for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
intf->addrinfo[j].lun = 2;
}
if (slave_addr != 0)
intf->addrinfo[0].address = slave_addr;
INIT_LIST_HEAD(&intf->users);
intf->handlers = handlers;
intf->send_info = send_info;
spin_lock_init(&intf->seq_lock);
for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
intf->seq_table[j].inuse = 0;
intf->seq_table[j].seqid = 0;
}
intf->curr_seq = 0;
spin_lock_init(&intf->waiting_rcv_msgs_lock);
INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
tasklet_setup(&intf->recv_tasklet,
smi_recv_tasklet);
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
spin_lock_init(&intf->xmit_msgs_lock);
INIT_LIST_HEAD(&intf->xmit_msgs);
INIT_LIST_HEAD(&intf->hp_xmit_msgs);
spin_lock_init(&intf->events_lock);
spin_lock_init(&intf->watch_lock);
atomic_set(&intf->event_waiters, 0);
intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
INIT_LIST_HEAD(&intf->waiting_events);
intf->waiting_events_count = 0;
mutex_init(&intf->cmd_rcvrs_mutex);
spin_lock_init(&intf->maintenance_mode_lock);
INIT_LIST_HEAD(&intf->cmd_rcvrs);
init_waitqueue_head(&intf->waitq);
for (i = 0; i < IPMI_NUM_STATS; i++)
atomic_set(&intf->stats[i], 0);
mutex_lock(&ipmi_interfaces_mutex);
/* Look for a hole in the numbers. */
i = 0;
link = &ipmi_interfaces;
list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
ipmi_interfaces_mutex_held()) {
if (tintf->intf_num != i) {
link = &tintf->link;
break;
}
i++;
}
/* Add the new interface in numeric order. */
if (i == 0)
list_add_rcu(&intf->link, &ipmi_interfaces);
else
list_add_tail_rcu(&intf->link, link);
rv = handlers->start_processing(send_info, intf);
if (rv)
goto out_err;
rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
if (rv) {
dev_err(si_dev, "Unable to get the device id: %d\n", rv);
goto out_err_started;
}
mutex_lock(&intf->bmc_reg_mutex);
rv = __scan_channels(intf, &id);
mutex_unlock(&intf->bmc_reg_mutex);
if (rv)
goto out_err_bmc_reg;
/*
* Keep memory order straight for RCU readers. Make
* sure everything else is committed to memory before
* setting intf_num to mark the interface valid.
*/
smp_wmb();
intf->intf_num = i;
mutex_unlock(&ipmi_interfaces_mutex);
/* After this point the interface is legal to use. */
call_smi_watchers(i, intf->si_dev);
return 0;
out_err_bmc_reg:
ipmi_bmc_unregister(intf);
out_err_started:
if (intf->handlers->shutdown)
intf->handlers->shutdown(intf->send_info);
out_err:
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
synchronize_srcu(&ipmi_interfaces_srcu);
cleanup_srcu_struct(&intf->users_srcu);
kref_put(&intf->refcount, intf_free);
return rv;
}
EXPORT_SYMBOL(ipmi_add_smi);
static void deliver_smi_err_response(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg,
unsigned char err)
{
msg->rsp[0] = msg->data[0] | 4;
msg->rsp[1] = msg->data[1];
msg->rsp[2] = err;
msg->rsp_size = 3;
/* It's an error, so it will never requeue, no need to check return. */
handle_one_recv_msg(intf, msg);
}
static void cleanup_smi_msgs(struct ipmi_smi *intf)
{
int i;
struct seq_table *ent;
struct ipmi_smi_msg *msg;
struct list_head *entry;
struct list_head tmplist;
/* Clear out our transmit queues and hold the messages. */
INIT_LIST_HEAD(&tmplist);
list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
list_splice_tail(&intf->xmit_msgs, &tmplist);
/* Current message first, to preserve order */
while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
/* Wait for the message to clear out. */
schedule_timeout(1);
}
/* No need for locks, the interface is down. */
/*
* Return errors for all pending messages in queue and in the
* tables waiting for remote responses.
*/
while (!list_empty(&tmplist)) {
entry = tmplist.next;
list_del(entry);
msg = list_entry(entry, struct ipmi_smi_msg, link);
deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
}
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
ent = &intf->seq_table[i];
if (!ent->inuse)
continue;
deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
}
}
void ipmi_unregister_smi(struct ipmi_smi *intf)
{
struct ipmi_smi_watcher *w;
int intf_num = intf->intf_num, index;
mutex_lock(&ipmi_interfaces_mutex);
intf->intf_num = -1;
intf->in_shutdown = true;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
synchronize_srcu(&ipmi_interfaces_srcu);
/* At this point no users can be added to the interface. */
/*
* Call all the watcher interfaces to tell them that
* an interface is going away.
*/
mutex_lock(&smi_watchers_mutex);
list_for_each_entry(w, &smi_watchers, link)
w->smi_gone(intf_num);
mutex_unlock(&smi_watchers_mutex);
index = srcu_read_lock(&intf->users_srcu);
while (!list_empty(&intf->users)) {
struct ipmi_user *user =
container_of(list_next_rcu(&intf->users),
struct ipmi_user, link);
_ipmi_destroy_user(user);
}
srcu_read_unlock(&intf->users_srcu, index);
if (intf->handlers->shutdown)
intf->handlers->shutdown(intf->send_info);
cleanup_smi_msgs(intf);
ipmi_bmc_unregister(intf);
cleanup_srcu_struct(&intf->users_srcu);
kref_put(&intf->refcount, intf_free);
}
EXPORT_SYMBOL(ipmi_unregister_smi);
static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_ipmb_addr ipmb_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 11, not 10, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 11) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_ipmb_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr.slave_addr = msg->rsp[6];
ipmb_addr.channel = msg->rsp[3] & 0x0f;
ipmb_addr.lun = msg->rsp[7] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[7] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[8],
(msg->rsp[4] >> 2) & (~1),
(struct ipmi_addr *) &ipmb_addr,
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_ipmb_responses);
return 0;
}
memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 10;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_ipmb_responses);
else
ipmi_inc_stat(intf, handled_ipmb_responses);
return 0;
}
static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
struct ipmi_user *user = NULL;
struct ipmi_ipmb_addr *ipmb_addr;
struct ipmi_recv_msg *recv_msg;
if (msg->rsp_size < 10) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[4] >> 2;
cmd = msg->rsp[8];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, deliver an error response. */
ipmi_inc_stat(intf, unhandled_commands);
msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
msg->data[1] = IPMI_SEND_MSG_CMD;
msg->data[2] = msg->rsp[3];
msg->data[3] = msg->rsp[6];
msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
msg->data[5] = ipmb_checksum(&msg->data[3], 2);
msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
/* rqseq/lun */
msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
msg->data[8] = msg->rsp[8]; /* cmd */
msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
msg->data[10] = ipmb_checksum(&msg->data[6], 4);
msg->data_size = 11;
pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
rcu_read_lock();
if (!intf->in_shutdown) {
smi_send(intf, intf->handlers, msg, 0);
/*
* We used the message, so return the value
* that causes it to not be freed or
* queued.
*/
rv = -1;
}
rcu_read_unlock();
} else {
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb_addr->slave_addr = msg->rsp[6];
ipmb_addr->lun = msg->rsp[7] & 3;
ipmb_addr->channel = msg->rsp[3] & 0xf;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[7] >> 2;
recv_msg->msg.netfn = msg->rsp[4] >> 2;
recv_msg->msg.cmd = msg->rsp[8];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 10, not 9 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 10;
memcpy(recv_msg->msg_data, &msg->rsp[9],
msg->rsp_size - 10);
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_commands);
else
ipmi_inc_stat(intf, handled_commands);
}
}
return rv;
}
static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
struct ipmi_user *user = NULL;
struct ipmi_ipmb_direct_addr *daddr;
struct ipmi_recv_msg *recv_msg;
unsigned char netfn = msg->rsp[0] >> 2;
unsigned char cmd = msg->rsp[3];
rcu_read_lock();
/* We always use channel 0 for direct messages. */
rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, deliver an error response. */
ipmi_inc_stat(intf, unhandled_commands);
msg->data[0] = ((netfn + 1) << 2) | (msg->rsp[4] & 0x3);
msg->data[1] = msg->rsp[2];
msg->data[2] = msg->rsp[4] & ~0x3;
msg->data[3] = cmd;
msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
msg->data_size = 5;
rcu_read_lock();
if (!intf->in_shutdown) {
smi_send(intf, intf->handlers, msg, 0);
/*
* We used the message, so return the value
* that causes it to not be freed or
* queued.
*/
rv = -1;
}
rcu_read_unlock();
} else {
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
daddr->channel = 0;
daddr->slave_addr = msg->rsp[1];
daddr->rs_lun = msg->rsp[0] & 3;
daddr->rq_lun = msg->rsp[2] & 3;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = (msg->rsp[2] >> 2);
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[3];
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 4;
memcpy(recv_msg->msg_data, msg->rsp + 4,
msg->rsp_size - 4);
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_commands);
else
ipmi_inc_stat(intf, handled_commands);
}
}
return rv;
}
static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg;
struct ipmi_ipmb_direct_addr *daddr;
recv_msg = (struct ipmi_recv_msg *) msg->user_data;
if (recv_msg == NULL) {
dev_warn(intf->si_dev,
"IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
return 0;
}
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
recv_msg->msgid = msg->msgid;
daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
daddr->channel = 0;
daddr->slave_addr = msg->rsp[1];
daddr->rq_lun = msg->rsp[0] & 3;
daddr->rs_lun = msg->rsp[2] & 3;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[3];
memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 4;
deliver_local_response(intf, recv_msg);
return 0;
}
static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_lan_addr lan_addr;
struct ipmi_recv_msg *recv_msg;
/*
* This is 13, not 12, because the response must contain a
* completion code.
*/
if (msg->rsp_size < 13) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_lan_responses);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr.session_handle = msg->rsp[4];
lan_addr.remote_SWID = msg->rsp[8];
lan_addr.local_SWID = msg->rsp[5];
lan_addr.channel = msg->rsp[3] & 0x0f;
lan_addr.privilege = msg->rsp[3] >> 4;
lan_addr.lun = msg->rsp[9] & 3;
/*
* It's a response from a remote entity. Look up the sequence
* number and handle the response.
*/
if (intf_find_seq(intf,
msg->rsp[9] >> 2,
msg->rsp[3] & 0x0f,
msg->rsp[10],
(msg->rsp[6] >> 2) & (~1),
(struct ipmi_addr *) &lan_addr,
&recv_msg)) {
/*
* We were unable to find the sequence number,
* so just nuke the message.
*/
ipmi_inc_stat(intf, unhandled_lan_responses);
return 0;
}
memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
/*
* The other fields matched, so no need to set them, except
* for netfn, which needs to be the response that was
* returned, not the request value.
*/
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 12;
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_lan_responses);
else
ipmi_inc_stat(intf, handled_lan_responses);
return 0;
}
static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
struct ipmi_user *user = NULL;
struct ipmi_lan_addr *lan_addr;
struct ipmi_recv_msg *recv_msg;
if (msg->rsp_size < 12) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
netfn = msg->rsp[6] >> 2;
cmd = msg->rsp[10];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/* Extract the source address from the data. */
lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
lan_addr->session_handle = msg->rsp[4];
lan_addr->remote_SWID = msg->rsp[8];
lan_addr->local_SWID = msg->rsp[5];
lan_addr->lun = msg->rsp[9] & 3;
lan_addr->channel = msg->rsp[3] & 0xf;
lan_addr->privilege = msg->rsp[3] >> 4;
/*
* Extract the rest of the message information
* from the IPMB header.
*/
recv_msg->user = user;
recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
recv_msg->msgid = msg->rsp[9] >> 2;
recv_msg->msg.netfn = msg->rsp[6] >> 2;
recv_msg->msg.cmd = msg->rsp[10];
recv_msg->msg.data = recv_msg->msg_data;
/*
* We chop off 12, not 11 bytes because the checksum
* at the end also needs to be removed.
*/
recv_msg->msg.data_len = msg->rsp_size - 12;
memcpy(recv_msg->msg_data, &msg->rsp[11],
msg->rsp_size - 12);
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_commands);
else
ipmi_inc_stat(intf, handled_commands);
}
}
return rv;
}
/*
* This routine will handle "Get Message" command responses with
* channels that use an OEM Medium. The message format belongs to
* the OEM. See IPMI 2.0 specification, Chapter 6 and
* Chapter 22, sections 22.6 and 22.24 for more details.
*/
static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct cmd_rcvr *rcvr;
int rv = 0;
unsigned char netfn;
unsigned char cmd;
unsigned char chan;
struct ipmi_user *user = NULL;
struct ipmi_system_interface_addr *smi_addr;
struct ipmi_recv_msg *recv_msg;
/*
* We expect the OEM SW to perform error checking
* so we just do some basic sanity checks
*/
if (msg->rsp_size < 4) {
/* Message not big enough, just ignore it. */
ipmi_inc_stat(intf, invalid_commands);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the response, just ignore it. */
return 0;
}
/*
* This is an OEM Message so the OEM needs to know how
* handle the message. We do no interpretation.
*/
netfn = msg->rsp[0] >> 2;
cmd = msg->rsp[1];
chan = msg->rsp[3] & 0xf;
rcu_read_lock();
rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
if (rcvr) {
user = rcvr->user;
kref_get(&user->refcount);
} else
user = NULL;
rcu_read_unlock();
if (user == NULL) {
/* We didn't find a user, just give up. */
ipmi_inc_stat(intf, unhandled_commands);
/*
* Don't do anything with these messages, just allow
* them to be freed.
*/
rv = 0;
} else {
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
kref_put(&user->refcount, free_user);
} else {
/*
* OEM Messages are expected to be delivered via
* the system interface to SMS software. We might
* need to visit this again depending on OEM
* requirements
*/
smi_addr = ((struct ipmi_system_interface_addr *)
&recv_msg->addr);
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->user = user;
recv_msg->user_msg_data = NULL;
recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
recv_msg->msg.data = recv_msg->msg_data;
/*
* The message starts at byte 4 which follows the
* the Channel Byte in the "GET MESSAGE" command
*/
recv_msg->msg.data_len = msg->rsp_size - 4;
memcpy(recv_msg->msg_data, &msg->rsp[4],
msg->rsp_size - 4);
if (deliver_response(intf, recv_msg))
ipmi_inc_stat(intf, unhandled_commands);
else
ipmi_inc_stat(intf, handled_commands);
}
}
return rv;
}
static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
struct ipmi_smi_msg *msg)
{
struct ipmi_system_interface_addr *smi_addr;
recv_msg->msgid = 0;
smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 3;
}
static int handle_read_event_rsp(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg, *recv_msg2;
struct list_head msgs;
struct ipmi_user *user;
int rv = 0, deliver_count = 0, index;
unsigned long flags;
if (msg->rsp_size < 19) {
/* Message is too small to be an IPMB event. */
ipmi_inc_stat(intf, invalid_events);
return 0;
}
if (msg->rsp[2] != 0) {
/* An error getting the event, just ignore it. */
return 0;
}
INIT_LIST_HEAD(&msgs);
spin_lock_irqsave(&intf->events_lock, flags);
ipmi_inc_stat(intf, events);
/*
* Allocate and fill in one message for every user that is
* getting events.
*/
index = srcu_read_lock(&intf->users_srcu);
list_for_each_entry_rcu(user, &intf->users, link) {
if (!user->gets_events)
continue;
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
rcu_read_unlock();
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
link) {
list_del(&recv_msg->link);
ipmi_free_recv_msg(recv_msg);
}
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
deliver_count++;
copy_event_into_recv_msg(recv_msg, msg);
recv_msg->user = user;
kref_get(&user->refcount);
list_add_tail(&recv_msg->link, &msgs);
}
srcu_read_unlock(&intf->users_srcu, index);
if (deliver_count) {
/* Now deliver all the messages. */
list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
list_del(&recv_msg->link);
deliver_local_response(intf, recv_msg);
}
} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
/*
* No one to receive the message, put it in queue if there's
* not already too many things in the queue.
*/
recv_msg = ipmi_alloc_recv_msg();
if (!recv_msg) {
/*
* We couldn't allocate memory for the
* message, so requeue it for handling
* later.
*/
rv = 1;
goto out;
}
copy_event_into_recv_msg(recv_msg, msg);
list_add_tail(&recv_msg->link, &intf->waiting_events);
intf->waiting_events_count++;
} else if (!intf->event_msg_printed) {
/*
* There's too many things in the queue, discard this
* message.
*/
dev_warn(intf->si_dev,
"Event queue full, discarding incoming events\n");
intf->event_msg_printed = 1;
}
out:
spin_unlock_irqrestore(&intf->events_lock, flags);
return rv;
}
static int handle_bmc_rsp(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
struct ipmi_recv_msg *recv_msg;
struct ipmi_system_interface_addr *smi_addr;
recv_msg = (struct ipmi_recv_msg *) msg->user_data;
if (recv_msg == NULL) {
dev_warn(intf->si_dev,
"IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vendor for assistance.\n");
return 0;
}
recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
recv_msg->msgid = msg->msgid;
smi_addr = ((struct ipmi_system_interface_addr *)
&recv_msg->addr);
smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
smi_addr->channel = IPMI_BMC_CHANNEL;
smi_addr->lun = msg->rsp[0] & 3;
recv_msg->msg.netfn = msg->rsp[0] >> 2;
recv_msg->msg.cmd = msg->rsp[1];
memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg.data_len = msg->rsp_size - 2;
deliver_local_response(intf, recv_msg);
return 0;
}
/*
* Handle a received message. Return 1 if the message should be requeued,
* 0 if the message should be freed, or -1 if the message should not
* be freed or requeued.
*/
static int handle_one_recv_msg(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
int requeue = 0;
int chan;
unsigned char cc;
bool is_cmd = !((msg->rsp[0] >> 2) & 1);
pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
if (msg->rsp_size < 2) {
/* Message is too small to be correct. */
dev_warn(intf->si_dev,
"BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
(msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
return_unspecified:
/* Generate an error response for the message. */
msg->rsp[0] = msg->data[0] | (1 << 2);
msg->rsp[1] = msg->data[1];
msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
msg->rsp_size = 3;
} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
/* commands must have at least 3 bytes, responses 4. */
if (is_cmd && (msg->rsp_size < 3)) {
ipmi_inc_stat(intf, invalid_commands);
goto out;
}
if (!is_cmd && (msg->rsp_size < 4))
goto return_unspecified;
} else if ((msg->data_size >= 2)
&& (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
&& (msg->data[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data == NULL)) {
if (intf->in_shutdown)
goto out;
/*
* This is the local response to a command send, start
* the timer for these. The user_data will not be
* NULL if this is a response send, and we will let
* response sends just go through.
*/
/*
* Check for errors, if we get certain errors (ones
* that mean basically we can try again later), we
* ignore them and start the timer. Otherwise we
* report the error immediately.
*/
if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
&& (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
&& (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
&& (msg->rsp[2] != IPMI_BUS_ERR)
&& (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
int ch = msg->rsp[3] & 0xf;
struct ipmi_channel *chans;
/* Got an error sending the message, handle it. */
chans = READ_ONCE(intf->channel_list)->c;
if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
|| (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
ipmi_inc_stat(intf, sent_lan_command_errs);
else
ipmi_inc_stat(intf, sent_ipmb_command_errs);
intf_err_seq(intf, msg->msgid, msg->rsp[2]);
} else
/* The message was sent, start the timer. */
intf_start_seq_timer(intf, msg->msgid);
} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
|| (msg->rsp[1] != msg->data[1])) {
/*
* The NetFN and Command in the response is not even
* marginally correct.
*/
dev_warn(intf->si_dev,
"BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
(msg->data[0] >> 2) | 1, msg->data[1],
msg->rsp[0] >> 2, msg->rsp[1]);
goto return_unspecified;
}
if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
if ((msg->data[0] >> 2) & 1) {
/* It's a response to a sent response. */
chan = 0;
cc = msg->rsp[4];
goto process_response_response;
}
if (is_cmd)
requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
else
requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_SEND_MSG_CMD)
&& (msg->user_data != NULL)) {
/*
* It's a response to a response we sent. For this we
* deliver a send message response to the user.
*/
struct ipmi_recv_msg *recv_msg;
chan = msg->data[2] & 0x0f;
if (chan >= IPMI_MAX_CHANNELS)
/* Invalid channel number */
goto out;
cc = msg->rsp[2];
process_response_response:
recv_msg = msg->user_data;
requeue = 0;
if (!recv_msg)
goto out;
recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
recv_msg->msg.data = recv_msg->msg_data;
recv_msg->msg_data[0] = cc;
recv_msg->msg.data_len = 1;
deliver_local_response(intf, recv_msg);
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
struct ipmi_channel *chans;
/* It's from the receive queue. */
chan = msg->rsp[3] & 0xf;
if (chan >= IPMI_MAX_CHANNELS) {
/* Invalid channel number */
requeue = 0;
goto out;
}
/*
* We need to make sure the channels have been initialized.
* The channel_handler routine will set the "curr_channel"
* equal to or greater than IPMI_MAX_CHANNELS when all the
* channels for this interface have been initialized.
*/
if (!intf->channels_ready) {
requeue = 0; /* Throw the message away */
goto out;
}
chans = READ_ONCE(intf->channel_list)->c;
switch (chans[chan].medium) {
case IPMI_CHANNEL_MEDIUM_IPMB:
if (msg->rsp[4] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_ipmb_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_ipmb_get_msg_cmd(intf, msg);
}
break;
case IPMI_CHANNEL_MEDIUM_8023LAN:
case IPMI_CHANNEL_MEDIUM_ASYNC:
if (msg->rsp[6] & 0x04) {
/*
* It's a response, so find the
* requesting message and send it up.
*/
requeue = handle_lan_get_msg_rsp(intf, msg);
} else {
/*
* It's a command to the SMS from some other
* entity. Handle that.
*/
requeue = handle_lan_get_msg_cmd(intf, msg);
}
break;
default:
/* Check for OEM Channels. Clients had better
register for these commands. */
if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
&& (chans[chan].medium
<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
requeue = handle_oem_get_msg_cmd(intf, msg);
} else {
/*
* We don't handle the channel type, so just
* free the message.
*/
requeue = 0;
}
}
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
/* It's an asynchronous event. */
requeue = handle_read_event_rsp(intf, msg);
} else {
/* It's a response from the local BMC. */
requeue = handle_bmc_rsp(intf, msg);
}
out:
return requeue;
}
/*
* If there are messages in the queue or pretimeouts, handle them.
*/
static void handle_new_recv_msgs(struct ipmi_smi *intf)
{
struct ipmi_smi_msg *smi_msg;
unsigned long flags = 0;
int rv;
int run_to_completion = intf->run_to_completion;
/* See if any waiting messages need to be processed. */
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
while (!list_empty(&intf->waiting_rcv_msgs)) {
smi_msg = list_entry(intf->waiting_rcv_msgs.next,
struct ipmi_smi_msg, link);
list_del(&smi_msg->link);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
flags);
rv = handle_one_recv_msg(intf, smi_msg);
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
if (rv > 0) {
/*
* To preserve message order, quit if we
* can't handle a message. Add the message
* back at the head, this is safe because this
* tasklet is the only thing that pulls the
* messages.
*/
list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
break;
} else {
if (rv == 0)
/* Message handled */
ipmi_free_smi_msg(smi_msg);
/* If rv < 0, fatal error, del but don't free. */
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
/*
* If the pretimout count is non-zero, decrement one from it and
* deliver pretimeouts to all the users.
*/
if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
struct ipmi_user *user;
int index;
index = srcu_read_lock(&intf->users_srcu);
list_for_each_entry_rcu(user, &intf->users, link) {
if (user->handler->ipmi_watchdog_pretimeout)
user->handler->ipmi_watchdog_pretimeout(
user->handler_data);
}
srcu_read_unlock(&intf->users_srcu, index);
}
}
static void smi_recv_tasklet(struct tasklet_struct *t)
{
unsigned long flags = 0; /* keep us warning-free. */
struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
int run_to_completion = intf->run_to_completion;
struct ipmi_smi_msg *newmsg = NULL;
/*
* Start the next message if available.
*
* Do this here, not in the actual receiver, because we may deadlock
* because the lower layer is allowed to hold locks while calling
* message delivery.
*/
rcu_read_lock();
if (!run_to_completion)
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
if (intf->curr_msg == NULL && !intf->in_shutdown) {
struct list_head *entry = NULL;
/* Pick the high priority queue first. */
if (!list_empty(&intf->hp_xmit_msgs))
entry = intf->hp_xmit_msgs.next;
else if (!list_empty(&intf->xmit_msgs))
entry = intf->xmit_msgs.next;
if (entry) {
list_del(entry);
newmsg = list_entry(entry, struct ipmi_smi_msg, link);
intf->curr_msg = newmsg;
}
}
if (!run_to_completion)
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (newmsg)
intf->handlers->sender(intf->send_info, newmsg);
rcu_read_unlock();
handle_new_recv_msgs(intf);
}
/* Handle a new message from the lower layer. */
void ipmi_smi_msg_received(struct ipmi_smi *intf,
struct ipmi_smi_msg *msg)
{
unsigned long flags = 0; /* keep us warning-free. */
int run_to_completion = intf->run_to_completion;
/*
* To preserve message order, we keep a queue and deliver from
* a tasklet.
*/
if (!run_to_completion)
spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
if (!run_to_completion)
spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
flags);
if (!run_to_completion)
spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
/*
* We can get an asynchronous event or receive message in addition
* to commands we send.
*/
if (msg == intf->curr_msg)
intf->curr_msg = NULL;
if (!run_to_completion)
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (run_to_completion)
smi_recv_tasklet(&intf->recv_tasklet);
else
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_msg_received);
void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
{
if (intf->in_shutdown)
return;
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
tasklet_schedule(&intf->recv_tasklet);
}
EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
static struct ipmi_smi_msg *
smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
unsigned char seq, long seqid)
{
struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
if (!smi_msg)
/*
* If we can't allocate the message, then just return, we
* get 4 retries, so this should be ok.
*/
return NULL;
memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
smi_msg->data_size = recv_msg->msg.data_len;
smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
return smi_msg;
}
static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
struct list_head *timeouts,
unsigned long timeout_period,
int slot, unsigned long *flags,
bool *need_timer)
{
struct ipmi_recv_msg *msg;
if (intf->in_shutdown)
return;
if (!ent->inuse)
return;
if (timeout_period < ent->timeout) {
ent->timeout -= timeout_period;
*need_timer = true;
return;
}
if (ent->retries_left == 0) {
/* The message has used all its retries. */
ent->inuse = 0;
smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
msg = ent->recv_msg;
list_add_tail(&msg->link, timeouts);
if (ent->broadcast)
ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
else if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf, timed_out_lan_commands);
else
ipmi_inc_stat(intf, timed_out_ipmb_commands);
} else {
struct ipmi_smi_msg *smi_msg;
/* More retries, send again. */
*need_timer = true;
/*
* Start with the max timer, set to normal timer after
* the message is sent.
*/
ent->timeout = MAX_MSG_TIMEOUT;
ent->retries_left--;
smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
ent->seqid);
if (!smi_msg) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
dropped_rexmit_lan_commands);
else
ipmi_inc_stat(intf,
dropped_rexmit_ipmb_commands);
return;
}
spin_unlock_irqrestore(&intf->seq_lock, *flags);
/*
* Send the new message. We send with a zero
* priority. It timed out, I doubt time is that
* critical now, and high priority messages are really
* only for messages to the local MC, which don't get
* resent.
*/
if (intf->handlers) {
if (is_lan_addr(&ent->recv_msg->addr))
ipmi_inc_stat(intf,
retransmitted_lan_commands);
else
ipmi_inc_stat(intf,
retransmitted_ipmb_commands);
smi_send(intf, intf->handlers, smi_msg, 0);
} else
ipmi_free_smi_msg(smi_msg);
spin_lock_irqsave(&intf->seq_lock, *flags);
}
}
static bool ipmi_timeout_handler(struct ipmi_smi *intf,
unsigned long timeout_period)
{
struct list_head timeouts;
struct ipmi_recv_msg *msg, *msg2;
unsigned long flags;
int i;
bool need_timer = false;
if (!intf->bmc_registered) {
kref_get(&intf->refcount);
if (!schedule_work(&intf->bmc_reg_work)) {
kref_put(&intf->refcount, intf_free);
need_timer = true;
}
}
/*
* Go through the seq table and find any messages that
* have timed out, putting them in the timeouts
* list.
*/
INIT_LIST_HEAD(&timeouts);
spin_lock_irqsave(&intf->seq_lock, flags);
if (intf->ipmb_maintenance_mode_timeout) {
if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
intf->ipmb_maintenance_mode_timeout = 0;
else
intf->ipmb_maintenance_mode_timeout -= timeout_period;
}
for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
check_msg_timeout(intf, &intf->seq_table[i],
&timeouts, timeout_period, i,
&flags, &need_timer);
spin_unlock_irqrestore(&intf->seq_lock, flags);
list_for_each_entry_safe(msg, msg2, &timeouts, link)
deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
/*
* Maintenance mode handling. Check the timeout
* optimistically before we claim the lock. It may
* mean a timeout gets missed occasionally, but that
* only means the timeout gets extended by one period
* in that case. No big deal, and it avoids the lock
* most of the time.
*/
if (intf->auto_maintenance_timeout > 0) {
spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
if (intf->auto_maintenance_timeout > 0) {
intf->auto_maintenance_timeout
-= timeout_period;
if (!intf->maintenance_mode
&& (intf->auto_maintenance_timeout <= 0)) {
intf->maintenance_mode_enable = false;
maintenance_mode_update(intf);
}
}
spin_unlock_irqrestore(&intf->maintenance_mode_lock,
flags);
}
tasklet_schedule(&intf->recv_tasklet);
return need_timer;
}
static void ipmi_request_event(struct ipmi_smi *intf)
{
/* No event requests when in maintenance mode. */
if (intf->maintenance_mode_enable)
return;
if (!intf->in_shutdown)
intf->handlers->request_events(intf->send_info);
}
static struct timer_list ipmi_timer;
static atomic_t stop_operation;
static void ipmi_timeout(struct timer_list *unused)
{
struct ipmi_smi *intf;
bool need_timer = false;
int index;
if (atomic_read(&stop_operation))
return;
index = srcu_read_lock(&ipmi_interfaces_srcu);
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (atomic_read(&intf->event_waiters)) {
intf->ticks_to_req_ev--;
if (intf->ticks_to_req_ev == 0) {
ipmi_request_event(intf);
intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
}
need_timer = true;
}
need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
}
srcu_read_unlock(&ipmi_interfaces_srcu, index);
if (need_timer)
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}
static void need_waiter(struct ipmi_smi *intf)
{
/* Racy, but worst case we start the timer twice. */
if (!timer_pending(&ipmi_timer))
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
}
static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
static void free_smi_msg(struct ipmi_smi_msg *msg)
{
atomic_dec(&smi_msg_inuse_count);
/* Try to keep as much stuff out of the panic path as possible. */
if (!oops_in_progress)
kfree(msg);
}
struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
{
struct ipmi_smi_msg *rv;
rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
if (rv) {
rv->done = free_smi_msg;
rv->user_data = NULL;
rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
atomic_inc(&smi_msg_inuse_count);
}
return rv;
}
EXPORT_SYMBOL(ipmi_alloc_smi_msg);
static void free_recv_msg(struct ipmi_recv_msg *msg)
{
atomic_dec(&recv_msg_inuse_count);
/* Try to keep as much stuff out of the panic path as possible. */
if (!oops_in_progress)
kfree(msg);
}
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
{
struct ipmi_recv_msg *rv;
rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
if (rv) {
rv->user = NULL;
rv->done = free_recv_msg;
atomic_inc(&recv_msg_inuse_count);
}
return rv;
}
void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
{
if (msg->user && !oops_in_progress)
kref_put(&msg->user->refcount, free_user);
msg->done(msg);
}
EXPORT_SYMBOL(ipmi_free_recv_msg);
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
{
atomic_dec(&panic_done_count);
}
static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
{
atomic_dec(&panic_done_count);
}
/*
* Inside a panic, send a message and wait for a response.
*/
static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
struct ipmi_addr *addr,
struct kernel_ipmi_msg *msg)
{
struct ipmi_smi_msg smi_msg;
struct ipmi_recv_msg recv_msg;
int rv;
smi_msg.done = dummy_smi_done_handler;
recv_msg.done = dummy_recv_done_handler;
atomic_add(2, &panic_done_count);
rv = i_ipmi_request(NULL,
intf,
addr,
0,
msg,
intf,
&smi_msg,
&recv_msg,
0,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
0, 1); /* Don't retry, and don't wait. */
if (rv)
atomic_sub(2, &panic_done_count);
else if (intf->handlers->flush_messages)
intf->handlers->flush_messages(intf->send_info);
while (atomic_read(&panic_done_count) != 0)
ipmi_poll(intf);
}
static void event_receiver_fetcher(struct ipmi_smi *intf,
struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/* A get event receiver command, save it. */
intf->event_receiver = msg->msg.data[1];
intf->event_receiver_lun = msg->msg.data[2] & 0x3;
}
}
static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
&& (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
&& (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
/*
* A get device id command, save if we are an event
* receiver or generator.
*/
intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
}
}
static void send_panic_events(struct ipmi_smi *intf, char *str)
{
struct kernel_ipmi_msg msg;
unsigned char data[16];
struct ipmi_system_interface_addr *si;
struct ipmi_addr addr;
char *p = str;
struct ipmi_ipmb_addr *ipmb;
int j;
if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
return;
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
/* Fill in an event telling that we have failed. */
msg.netfn = 0x04; /* Sensor or Event. */
msg.cmd = 2; /* Platform event command. */
msg.data = data;
msg.data_len = 8;
data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
data[1] = 0x03; /* This is for IPMI 1.0. */
data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
/*
* Put a few breadcrumbs in. Hopefully later we can add more things
* to make the panic events more useful.
*/
if (str) {
data[3] = str[0];
data[6] = str[1];
data[7] = str[2];
}
/* Send the event announcing the panic. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
/*
* On every interface, dump a bunch of OEM event holding the
* string.
*/
if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
return;
/*
* intf_num is used as an marker to tell if the
* interface is valid. Thus we need a read barrier to
* make sure data fetched before checking intf_num
* won't be used.
*/
smp_rmb();
/*
* First job here is to figure out where to send the
* OEM events. There's no way in IPMI to send OEM
* events using an event send command, so we have to
* find the SEL to put them in and stick them in
* there.
*/
/* Get capabilities from the get device id. */
intf->local_sel_device = 0;
intf->local_event_generator = 0;
intf->event_receiver = 0;
/* Request the device info from the local MC. */
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_ID_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = device_id_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
if (intf->local_event_generator) {
/* Request the event receiver from the local MC. */
msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
msg.data = NULL;
msg.data_len = 0;
intf->null_user_handler = event_receiver_fetcher;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
intf->null_user_handler = NULL;
/*
* Validate the event receiver. The low bit must not
* be 1 (it must be a valid IPMB address), it cannot
* be zero, and it must not be my address.
*/
if (((intf->event_receiver & 1) == 0)
&& (intf->event_receiver != 0)
&& (intf->event_receiver != intf->addrinfo[0].address)) {
/*
* The event receiver is valid, send an IPMB
* message.
*/
ipmb = (struct ipmi_ipmb_addr *) &addr;
ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
ipmb->channel = 0; /* FIXME - is this right? */
ipmb->lun = intf->event_receiver_lun;
ipmb->slave_addr = intf->event_receiver;
} else if (intf->local_sel_device) {
/*
* The event receiver was not valid (or was
* me), but I am an SEL device, just dump it
* in my SEL.
*/
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
si->lun = 0;
} else
return; /* No where to send the event. */
msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
msg.data = data;
msg.data_len = 16;
j = 0;
while (*p) {
int size = strlen(p);
if (size > 11)
size = 11;
data[0] = 0;
data[1] = 0;
data[2] = 0xf0; /* OEM event without timestamp. */
data[3] = intf->addrinfo[0].address;
data[4] = j++; /* sequence # */
/*
* Always give 11 bytes, so strncpy will fill
* it with zeroes for me.
*/
strncpy(data+5, p, 11);
p += size;
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
}
static int has_panicked;
static int panic_event(struct notifier_block *this,
unsigned long event,
void *ptr)
{
struct ipmi_smi *intf;
struct ipmi_user *user;
if (has_panicked)
return NOTIFY_DONE;
has_panicked = 1;
/* For every registered interface, set it to run to completion. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers || intf->intf_num == -1)
/* Interface is not ready. */
continue;
if (!intf->handlers->poll)
continue;
/*
* If we were interrupted while locking xmit_msgs_lock or
* waiting_rcv_msgs_lock, the corresponding list may be
* corrupted. In this case, drop items on the list for
* the safety.
*/
if (!spin_trylock(&intf->xmit_msgs_lock)) {
INIT_LIST_HEAD(&intf->xmit_msgs);
INIT_LIST_HEAD(&intf->hp_xmit_msgs);
} else
spin_unlock(&intf->xmit_msgs_lock);
if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
else
spin_unlock(&intf->waiting_rcv_msgs_lock);
intf->run_to_completion = 1;
if (intf->handlers->set_run_to_completion)
intf->handlers->set_run_to_completion(intf->send_info,
1);
list_for_each_entry_rcu(user, &intf->users, link) {
if (user->handler->ipmi_panic_handler)
user->handler->ipmi_panic_handler(
user->handler_data);
}
send_panic_events(intf, ptr);
}
return NOTIFY_DONE;
}
/* Must be called with ipmi_interfaces_mutex held. */
static int ipmi_register_driver(void)
{
int rv;
if (drvregistered)
return 0;
rv = driver_register(&ipmidriver.driver);
if (rv)
pr_err("Could not register IPMI driver\n");
else
drvregistered = true;
return rv;
}
static struct notifier_block panic_block = {
.notifier_call = panic_event,
.next = NULL,
.priority = 200 /* priority: INT_MAX >= x >= 0 */
};
static int ipmi_init_msghandler(void)
{
int rv;
mutex_lock(&ipmi_interfaces_mutex);
rv = ipmi_register_driver();
if (rv)
goto out;
if (initialized)
goto out;
init_srcu_struct(&ipmi_interfaces_srcu);
timer_setup(&ipmi_timer, ipmi_timeout, 0);
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
if (!remove_work_wq) {
pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
rv = -ENOMEM;
goto out;
}
initialized = true;
out:
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
}
static int __init ipmi_init_msghandler_mod(void)
{
int rv;
pr_info("version " IPMI_DRIVER_VERSION "\n");
mutex_lock(&ipmi_interfaces_mutex);
rv = ipmi_register_driver();
mutex_unlock(&ipmi_interfaces_mutex);
return rv;
}
static void __exit cleanup_ipmi(void)
{
int count;
if (initialized) {
destroy_workqueue(remove_work_wq);
atomic_notifier_chain_unregister(&panic_notifier_list,
&panic_block);
/*
* This can't be called if any interfaces exist, so no worry
* about shutting down the interfaces.
*/
/*
* Tell the timer to stop, then wait for it to stop. This
* avoids problems with race conditions removing the timer
* here.
*/
atomic_set(&stop_operation, 1);
del_timer_sync(&ipmi_timer);
initialized = false;
/* Check for buffer leaks. */
count = atomic_read(&smi_msg_inuse_count);
if (count != 0)
pr_warn("SMI message count %d at exit\n", count);
count = atomic_read(&recv_msg_inuse_count);
if (count != 0)
pr_warn("recv message count %d at exit\n", count);
cleanup_srcu_struct(&ipmi_interfaces_srcu);
}
if (drvregistered)
driver_unregister(&ipmidriver.driver);
}
module_exit(cleanup_ipmi);
module_init(ipmi_init_msghandler_mod);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
MODULE_VERSION(IPMI_DRIVER_VERSION);
MODULE_SOFTDEP("post: ipmi_devintf");