5a17f040fa
A common exploit pattern for ROP attacks is to abuse prepare_kernel_cred() in order to construct escalated privileges[1]. Instead of providing a short-hand argument (NULL) to the "daemon" argument to indicate using init_cred as the base cred, require that "daemon" is always set to an actual task. Replace all existing callers that were passing NULL with &init_task. Future attacks will need to have sufficiently powerful read/write primitives to have found an appropriately privileged task and written it to the ROP stack as an argument to succeed, which is similarly difficult to the prior effort needed to escalate privileges before struct cred existed: locate the current cred and overwrite the uid member. This has the added benefit of meaning that prepare_kernel_cred() can no longer exceed the privileges of the init task, which may have changed from the original init_cred (e.g. dropping capabilities from the bounding set). [1] https://google.com/search?q=commit_creds(prepare_kernel_cred(0)) Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: David Howells <dhowells@redhat.com> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Steve French <sfrench@samba.org> Cc: Ronnie Sahlberg <lsahlber@redhat.com> Cc: Shyam Prasad N <sprasad@microsoft.com> Cc: Tom Talpey <tom@talpey.com> Cc: Namjae Jeon <linkinjeon@kernel.org> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Paolo Abeni <pabeni@redhat.com> Cc: "Michal Koutný" <mkoutny@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-cifs@vger.kernel.org Cc: samba-technical@lists.samba.org Cc: linux-nfs@vger.kernel.org Cc: netdev@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Acked-by: Russ Weight <russell.h.weight@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Paulo Alcantara (SUSE) <pc@cjr.nz> Link: https://lore.kernel.org/r/20221026232943.never.775-kees@kernel.org
1600 lines
39 KiB
C
1600 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* main.c - Multi purpose firmware loading support
|
|
*
|
|
* Copyright (c) 2003 Manuel Estrada Sainz
|
|
*
|
|
* Please see Documentation/driver-api/firmware/ for more information.
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel_read_file.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/file.h>
|
|
#include <linux/list.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/async.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/security.h>
|
|
#include <linux/zstd.h>
|
|
#include <linux/xz.h>
|
|
|
|
#include <generated/utsrelease.h>
|
|
|
|
#include "../base.h"
|
|
#include "firmware.h"
|
|
#include "fallback.h"
|
|
|
|
MODULE_AUTHOR("Manuel Estrada Sainz");
|
|
MODULE_DESCRIPTION("Multi purpose firmware loading support");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
struct firmware_cache {
|
|
/* firmware_buf instance will be added into the below list */
|
|
spinlock_t lock;
|
|
struct list_head head;
|
|
int state;
|
|
|
|
#ifdef CONFIG_FW_CACHE
|
|
/*
|
|
* Names of firmware images which have been cached successfully
|
|
* will be added into the below list so that device uncache
|
|
* helper can trace which firmware images have been cached
|
|
* before.
|
|
*/
|
|
spinlock_t name_lock;
|
|
struct list_head fw_names;
|
|
|
|
struct delayed_work work;
|
|
|
|
struct notifier_block pm_notify;
|
|
#endif
|
|
};
|
|
|
|
struct fw_cache_entry {
|
|
struct list_head list;
|
|
const char *name;
|
|
};
|
|
|
|
struct fw_name_devm {
|
|
unsigned long magic;
|
|
const char *name;
|
|
};
|
|
|
|
static inline struct fw_priv *to_fw_priv(struct kref *ref)
|
|
{
|
|
return container_of(ref, struct fw_priv, ref);
|
|
}
|
|
|
|
#define FW_LOADER_NO_CACHE 0
|
|
#define FW_LOADER_START_CACHE 1
|
|
|
|
/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
|
|
* guarding for corner cases a global lock should be OK */
|
|
DEFINE_MUTEX(fw_lock);
|
|
|
|
struct firmware_cache fw_cache;
|
|
|
|
void fw_state_init(struct fw_priv *fw_priv)
|
|
{
|
|
struct fw_state *fw_st = &fw_priv->fw_st;
|
|
|
|
init_completion(&fw_st->completion);
|
|
fw_st->status = FW_STATUS_UNKNOWN;
|
|
}
|
|
|
|
static inline int fw_state_wait(struct fw_priv *fw_priv)
|
|
{
|
|
return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
|
|
}
|
|
|
|
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
|
|
|
|
static struct fw_priv *__allocate_fw_priv(const char *fw_name,
|
|
struct firmware_cache *fwc,
|
|
void *dbuf,
|
|
size_t size,
|
|
size_t offset,
|
|
u32 opt_flags)
|
|
{
|
|
struct fw_priv *fw_priv;
|
|
|
|
/* For a partial read, the buffer must be preallocated. */
|
|
if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
|
|
return NULL;
|
|
|
|
/* Only partial reads are allowed to use an offset. */
|
|
if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
|
|
return NULL;
|
|
|
|
fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
|
|
if (!fw_priv)
|
|
return NULL;
|
|
|
|
fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
|
|
if (!fw_priv->fw_name) {
|
|
kfree(fw_priv);
|
|
return NULL;
|
|
}
|
|
|
|
kref_init(&fw_priv->ref);
|
|
fw_priv->fwc = fwc;
|
|
fw_priv->data = dbuf;
|
|
fw_priv->allocated_size = size;
|
|
fw_priv->offset = offset;
|
|
fw_priv->opt_flags = opt_flags;
|
|
fw_state_init(fw_priv);
|
|
#ifdef CONFIG_FW_LOADER_USER_HELPER
|
|
INIT_LIST_HEAD(&fw_priv->pending_list);
|
|
#endif
|
|
|
|
pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
|
|
|
|
return fw_priv;
|
|
}
|
|
|
|
static struct fw_priv *__lookup_fw_priv(const char *fw_name)
|
|
{
|
|
struct fw_priv *tmp;
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
|
|
list_for_each_entry(tmp, &fwc->head, list)
|
|
if (!strcmp(tmp->fw_name, fw_name))
|
|
return tmp;
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns 1 for batching firmware requests with the same name */
|
|
int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
|
|
struct fw_priv **fw_priv, void *dbuf, size_t size,
|
|
size_t offset, u32 opt_flags)
|
|
{
|
|
struct fw_priv *tmp;
|
|
|
|
spin_lock(&fwc->lock);
|
|
/*
|
|
* Do not merge requests that are marked to be non-cached or
|
|
* are performing partial reads.
|
|
*/
|
|
if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
|
|
tmp = __lookup_fw_priv(fw_name);
|
|
if (tmp) {
|
|
kref_get(&tmp->ref);
|
|
spin_unlock(&fwc->lock);
|
|
*fw_priv = tmp;
|
|
pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
|
|
if (tmp) {
|
|
INIT_LIST_HEAD(&tmp->list);
|
|
if (!(opt_flags & FW_OPT_NOCACHE))
|
|
list_add(&tmp->list, &fwc->head);
|
|
}
|
|
spin_unlock(&fwc->lock);
|
|
|
|
*fw_priv = tmp;
|
|
|
|
return tmp ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static void __free_fw_priv(struct kref *ref)
|
|
__releases(&fwc->lock)
|
|
{
|
|
struct fw_priv *fw_priv = to_fw_priv(ref);
|
|
struct firmware_cache *fwc = fw_priv->fwc;
|
|
|
|
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
|
|
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
|
|
(unsigned int)fw_priv->size);
|
|
|
|
list_del(&fw_priv->list);
|
|
spin_unlock(&fwc->lock);
|
|
|
|
if (fw_is_paged_buf(fw_priv))
|
|
fw_free_paged_buf(fw_priv);
|
|
else if (!fw_priv->allocated_size)
|
|
vfree(fw_priv->data);
|
|
|
|
kfree_const(fw_priv->fw_name);
|
|
kfree(fw_priv);
|
|
}
|
|
|
|
void free_fw_priv(struct fw_priv *fw_priv)
|
|
{
|
|
struct firmware_cache *fwc = fw_priv->fwc;
|
|
spin_lock(&fwc->lock);
|
|
if (!kref_put(&fw_priv->ref, __free_fw_priv))
|
|
spin_unlock(&fwc->lock);
|
|
}
|
|
|
|
#ifdef CONFIG_FW_LOADER_PAGED_BUF
|
|
bool fw_is_paged_buf(struct fw_priv *fw_priv)
|
|
{
|
|
return fw_priv->is_paged_buf;
|
|
}
|
|
|
|
void fw_free_paged_buf(struct fw_priv *fw_priv)
|
|
{
|
|
int i;
|
|
|
|
if (!fw_priv->pages)
|
|
return;
|
|
|
|
vunmap(fw_priv->data);
|
|
|
|
for (i = 0; i < fw_priv->nr_pages; i++)
|
|
__free_page(fw_priv->pages[i]);
|
|
kvfree(fw_priv->pages);
|
|
fw_priv->pages = NULL;
|
|
fw_priv->page_array_size = 0;
|
|
fw_priv->nr_pages = 0;
|
|
fw_priv->data = NULL;
|
|
fw_priv->size = 0;
|
|
}
|
|
|
|
int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
|
|
{
|
|
/* If the array of pages is too small, grow it */
|
|
if (fw_priv->page_array_size < pages_needed) {
|
|
int new_array_size = max(pages_needed,
|
|
fw_priv->page_array_size * 2);
|
|
struct page **new_pages;
|
|
|
|
new_pages = kvmalloc_array(new_array_size, sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!new_pages)
|
|
return -ENOMEM;
|
|
memcpy(new_pages, fw_priv->pages,
|
|
fw_priv->page_array_size * sizeof(void *));
|
|
memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
|
|
(new_array_size - fw_priv->page_array_size));
|
|
kvfree(fw_priv->pages);
|
|
fw_priv->pages = new_pages;
|
|
fw_priv->page_array_size = new_array_size;
|
|
}
|
|
|
|
while (fw_priv->nr_pages < pages_needed) {
|
|
fw_priv->pages[fw_priv->nr_pages] =
|
|
alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
|
|
|
|
if (!fw_priv->pages[fw_priv->nr_pages])
|
|
return -ENOMEM;
|
|
fw_priv->nr_pages++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fw_map_paged_buf(struct fw_priv *fw_priv)
|
|
{
|
|
/* one pages buffer should be mapped/unmapped only once */
|
|
if (!fw_priv->pages)
|
|
return 0;
|
|
|
|
vunmap(fw_priv->data);
|
|
fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
|
|
PAGE_KERNEL_RO);
|
|
if (!fw_priv->data)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ZSTD-compressed firmware support
|
|
*/
|
|
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
|
|
static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
|
|
size_t in_size, const void *in_buffer)
|
|
{
|
|
size_t len, out_size, workspace_size;
|
|
void *workspace, *out_buf;
|
|
zstd_dctx *ctx;
|
|
int err;
|
|
|
|
if (fw_priv->allocated_size) {
|
|
out_size = fw_priv->allocated_size;
|
|
out_buf = fw_priv->data;
|
|
} else {
|
|
zstd_frame_header params;
|
|
|
|
if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
|
|
params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
|
|
dev_dbg(dev, "%s: invalid zstd header\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
out_size = params.frameContentSize;
|
|
out_buf = vzalloc(out_size);
|
|
if (!out_buf)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
workspace_size = zstd_dctx_workspace_bound();
|
|
workspace = kvzalloc(workspace_size, GFP_KERNEL);
|
|
if (!workspace) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
ctx = zstd_init_dctx(workspace, workspace_size);
|
|
if (!ctx) {
|
|
dev_dbg(dev, "%s: failed to initialize context\n", __func__);
|
|
err = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
|
|
if (zstd_is_error(len)) {
|
|
dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
|
|
zstd_get_error_code(len));
|
|
err = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
if (!fw_priv->allocated_size)
|
|
fw_priv->data = out_buf;
|
|
fw_priv->size = len;
|
|
err = 0;
|
|
|
|
error:
|
|
kvfree(workspace);
|
|
if (err && !fw_priv->allocated_size)
|
|
vfree(out_buf);
|
|
return err;
|
|
}
|
|
#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
|
|
|
|
/*
|
|
* XZ-compressed firmware support
|
|
*/
|
|
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
|
|
/* show an error and return the standard error code */
|
|
static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
|
|
{
|
|
if (xz_ret != XZ_STREAM_END) {
|
|
dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
|
|
return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* single-shot decompression onto the pre-allocated buffer */
|
|
static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
|
|
size_t in_size, const void *in_buffer)
|
|
{
|
|
struct xz_dec *xz_dec;
|
|
struct xz_buf xz_buf;
|
|
enum xz_ret xz_ret;
|
|
|
|
xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
|
|
if (!xz_dec)
|
|
return -ENOMEM;
|
|
|
|
xz_buf.in_size = in_size;
|
|
xz_buf.in = in_buffer;
|
|
xz_buf.in_pos = 0;
|
|
xz_buf.out_size = fw_priv->allocated_size;
|
|
xz_buf.out = fw_priv->data;
|
|
xz_buf.out_pos = 0;
|
|
|
|
xz_ret = xz_dec_run(xz_dec, &xz_buf);
|
|
xz_dec_end(xz_dec);
|
|
|
|
fw_priv->size = xz_buf.out_pos;
|
|
return fw_decompress_xz_error(dev, xz_ret);
|
|
}
|
|
|
|
/* decompression on paged buffer and map it */
|
|
static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
|
|
size_t in_size, const void *in_buffer)
|
|
{
|
|
struct xz_dec *xz_dec;
|
|
struct xz_buf xz_buf;
|
|
enum xz_ret xz_ret;
|
|
struct page *page;
|
|
int err = 0;
|
|
|
|
xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
|
|
if (!xz_dec)
|
|
return -ENOMEM;
|
|
|
|
xz_buf.in_size = in_size;
|
|
xz_buf.in = in_buffer;
|
|
xz_buf.in_pos = 0;
|
|
|
|
fw_priv->is_paged_buf = true;
|
|
fw_priv->size = 0;
|
|
do {
|
|
if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* decompress onto the new allocated page */
|
|
page = fw_priv->pages[fw_priv->nr_pages - 1];
|
|
xz_buf.out = kmap_local_page(page);
|
|
xz_buf.out_pos = 0;
|
|
xz_buf.out_size = PAGE_SIZE;
|
|
xz_ret = xz_dec_run(xz_dec, &xz_buf);
|
|
kunmap_local(xz_buf.out);
|
|
fw_priv->size += xz_buf.out_pos;
|
|
/* partial decompression means either end or error */
|
|
if (xz_buf.out_pos != PAGE_SIZE)
|
|
break;
|
|
} while (xz_ret == XZ_OK);
|
|
|
|
err = fw_decompress_xz_error(dev, xz_ret);
|
|
if (!err)
|
|
err = fw_map_paged_buf(fw_priv);
|
|
|
|
out:
|
|
xz_dec_end(xz_dec);
|
|
return err;
|
|
}
|
|
|
|
static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
|
|
size_t in_size, const void *in_buffer)
|
|
{
|
|
/* if the buffer is pre-allocated, we can perform in single-shot mode */
|
|
if (fw_priv->data)
|
|
return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
|
|
else
|
|
return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
|
|
}
|
|
#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
|
|
|
|
/* direct firmware loading support */
|
|
static char fw_path_para[256];
|
|
static const char * const fw_path[] = {
|
|
fw_path_para,
|
|
"/lib/firmware/updates/" UTS_RELEASE,
|
|
"/lib/firmware/updates",
|
|
"/lib/firmware/" UTS_RELEASE,
|
|
"/lib/firmware"
|
|
};
|
|
|
|
/*
|
|
* Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
|
|
* from kernel command line because firmware_class is generally built in
|
|
* kernel instead of module.
|
|
*/
|
|
module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
|
|
MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
|
|
|
|
static int
|
|
fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
|
|
const char *suffix,
|
|
int (*decompress)(struct device *dev,
|
|
struct fw_priv *fw_priv,
|
|
size_t in_size,
|
|
const void *in_buffer))
|
|
{
|
|
size_t size;
|
|
int i, len;
|
|
int rc = -ENOENT;
|
|
char *path;
|
|
size_t msize = INT_MAX;
|
|
void *buffer = NULL;
|
|
|
|
/* Already populated data member means we're loading into a buffer */
|
|
if (!decompress && fw_priv->data) {
|
|
buffer = fw_priv->data;
|
|
msize = fw_priv->allocated_size;
|
|
}
|
|
|
|
path = __getname();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
wait_for_initramfs();
|
|
for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
|
|
size_t file_size = 0;
|
|
size_t *file_size_ptr = NULL;
|
|
|
|
/* skip the unset customized path */
|
|
if (!fw_path[i][0])
|
|
continue;
|
|
|
|
len = snprintf(path, PATH_MAX, "%s/%s%s",
|
|
fw_path[i], fw_priv->fw_name, suffix);
|
|
if (len >= PATH_MAX) {
|
|
rc = -ENAMETOOLONG;
|
|
break;
|
|
}
|
|
|
|
fw_priv->size = 0;
|
|
|
|
/*
|
|
* The total file size is only examined when doing a partial
|
|
* read; the "full read" case needs to fail if the whole
|
|
* firmware was not completely loaded.
|
|
*/
|
|
if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
|
|
file_size_ptr = &file_size;
|
|
|
|
/* load firmware files from the mount namespace of init */
|
|
rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
|
|
&buffer, msize,
|
|
file_size_ptr,
|
|
READING_FIRMWARE);
|
|
if (rc < 0) {
|
|
if (rc != -ENOENT)
|
|
dev_warn(device, "loading %s failed with error %d\n",
|
|
path, rc);
|
|
else
|
|
dev_dbg(device, "loading %s failed for no such file or directory.\n",
|
|
path);
|
|
continue;
|
|
}
|
|
size = rc;
|
|
rc = 0;
|
|
|
|
dev_dbg(device, "Loading firmware from %s\n", path);
|
|
if (decompress) {
|
|
dev_dbg(device, "f/w decompressing %s\n",
|
|
fw_priv->fw_name);
|
|
rc = decompress(device, fw_priv, size, buffer);
|
|
/* discard the superfluous original content */
|
|
vfree(buffer);
|
|
buffer = NULL;
|
|
if (rc) {
|
|
fw_free_paged_buf(fw_priv);
|
|
continue;
|
|
}
|
|
} else {
|
|
dev_dbg(device, "direct-loading %s\n",
|
|
fw_priv->fw_name);
|
|
if (!fw_priv->data)
|
|
fw_priv->data = buffer;
|
|
fw_priv->size = size;
|
|
}
|
|
fw_state_done(fw_priv);
|
|
break;
|
|
}
|
|
__putname(path);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* firmware holds the ownership of pages */
|
|
static void firmware_free_data(const struct firmware *fw)
|
|
{
|
|
/* Loaded directly? */
|
|
if (!fw->priv) {
|
|
vfree(fw->data);
|
|
return;
|
|
}
|
|
free_fw_priv(fw->priv);
|
|
}
|
|
|
|
/* store the pages buffer info firmware from buf */
|
|
static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
|
|
{
|
|
fw->priv = fw_priv;
|
|
fw->size = fw_priv->size;
|
|
fw->data = fw_priv->data;
|
|
|
|
pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
|
|
__func__, fw_priv->fw_name, fw_priv, fw_priv->data,
|
|
(unsigned int)fw_priv->size);
|
|
}
|
|
|
|
#ifdef CONFIG_FW_CACHE
|
|
static void fw_name_devm_release(struct device *dev, void *res)
|
|
{
|
|
struct fw_name_devm *fwn = res;
|
|
|
|
if (fwn->magic == (unsigned long)&fw_cache)
|
|
pr_debug("%s: fw_name-%s devm-%p released\n",
|
|
__func__, fwn->name, res);
|
|
kfree_const(fwn->name);
|
|
}
|
|
|
|
static int fw_devm_match(struct device *dev, void *res,
|
|
void *match_data)
|
|
{
|
|
struct fw_name_devm *fwn = res;
|
|
|
|
return (fwn->magic == (unsigned long)&fw_cache) &&
|
|
!strcmp(fwn->name, match_data);
|
|
}
|
|
|
|
static struct fw_name_devm *fw_find_devm_name(struct device *dev,
|
|
const char *name)
|
|
{
|
|
struct fw_name_devm *fwn;
|
|
|
|
fwn = devres_find(dev, fw_name_devm_release,
|
|
fw_devm_match, (void *)name);
|
|
return fwn;
|
|
}
|
|
|
|
static bool fw_cache_is_setup(struct device *dev, const char *name)
|
|
{
|
|
struct fw_name_devm *fwn;
|
|
|
|
fwn = fw_find_devm_name(dev, name);
|
|
if (fwn)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* add firmware name into devres list */
|
|
static int fw_add_devm_name(struct device *dev, const char *name)
|
|
{
|
|
struct fw_name_devm *fwn;
|
|
|
|
if (fw_cache_is_setup(dev, name))
|
|
return 0;
|
|
|
|
fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
|
|
GFP_KERNEL);
|
|
if (!fwn)
|
|
return -ENOMEM;
|
|
fwn->name = kstrdup_const(name, GFP_KERNEL);
|
|
if (!fwn->name) {
|
|
devres_free(fwn);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fwn->magic = (unsigned long)&fw_cache;
|
|
devres_add(dev, fwn);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static bool fw_cache_is_setup(struct device *dev, const char *name)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static int fw_add_devm_name(struct device *dev, const char *name)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int assign_fw(struct firmware *fw, struct device *device)
|
|
{
|
|
struct fw_priv *fw_priv = fw->priv;
|
|
int ret;
|
|
|
|
mutex_lock(&fw_lock);
|
|
if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
|
|
mutex_unlock(&fw_lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* add firmware name into devres list so that we can auto cache
|
|
* and uncache firmware for device.
|
|
*
|
|
* device may has been deleted already, but the problem
|
|
* should be fixed in devres or driver core.
|
|
*/
|
|
/* don't cache firmware handled without uevent */
|
|
if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
|
|
!(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
|
|
ret = fw_add_devm_name(device, fw_priv->fw_name);
|
|
if (ret) {
|
|
mutex_unlock(&fw_lock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After caching firmware image is started, let it piggyback
|
|
* on request firmware.
|
|
*/
|
|
if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
|
|
fw_priv->fwc->state == FW_LOADER_START_CACHE)
|
|
fw_cache_piggyback_on_request(fw_priv);
|
|
|
|
/* pass the pages buffer to driver at the last minute */
|
|
fw_set_page_data(fw_priv, fw);
|
|
mutex_unlock(&fw_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* prepare firmware and firmware_buf structs;
|
|
* return 0 if a firmware is already assigned, 1 if need to load one,
|
|
* or a negative error code
|
|
*/
|
|
static int
|
|
_request_firmware_prepare(struct firmware **firmware_p, const char *name,
|
|
struct device *device, void *dbuf, size_t size,
|
|
size_t offset, u32 opt_flags)
|
|
{
|
|
struct firmware *firmware;
|
|
struct fw_priv *fw_priv;
|
|
int ret;
|
|
|
|
*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
|
|
if (!firmware) {
|
|
dev_err(device, "%s: kmalloc(struct firmware) failed\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
|
|
dev_dbg(device, "using built-in %s\n", name);
|
|
return 0; /* assigned */
|
|
}
|
|
|
|
ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
|
|
offset, opt_flags);
|
|
|
|
/*
|
|
* bind with 'priv' now to avoid warning in failure path
|
|
* of requesting firmware.
|
|
*/
|
|
firmware->priv = fw_priv;
|
|
|
|
if (ret > 0) {
|
|
ret = fw_state_wait(fw_priv);
|
|
if (!ret) {
|
|
fw_set_page_data(fw_priv, firmware);
|
|
return 0; /* assigned */
|
|
}
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
return 1; /* need to load */
|
|
}
|
|
|
|
/*
|
|
* Batched requests need only one wake, we need to do this step last due to the
|
|
* fallback mechanism. The buf is protected with kref_get(), and it won't be
|
|
* released until the last user calls release_firmware().
|
|
*
|
|
* Failed batched requests are possible as well, in such cases we just share
|
|
* the struct fw_priv and won't release it until all requests are woken
|
|
* and have gone through this same path.
|
|
*/
|
|
static void fw_abort_batch_reqs(struct firmware *fw)
|
|
{
|
|
struct fw_priv *fw_priv;
|
|
|
|
/* Loaded directly? */
|
|
if (!fw || !fw->priv)
|
|
return;
|
|
|
|
fw_priv = fw->priv;
|
|
mutex_lock(&fw_lock);
|
|
if (!fw_state_is_aborted(fw_priv))
|
|
fw_state_aborted(fw_priv);
|
|
mutex_unlock(&fw_lock);
|
|
}
|
|
|
|
/* called from request_firmware() and request_firmware_work_func() */
|
|
static int
|
|
_request_firmware(const struct firmware **firmware_p, const char *name,
|
|
struct device *device, void *buf, size_t size,
|
|
size_t offset, u32 opt_flags)
|
|
{
|
|
struct firmware *fw = NULL;
|
|
struct cred *kern_cred = NULL;
|
|
const struct cred *old_cred;
|
|
bool nondirect = false;
|
|
int ret;
|
|
|
|
if (!firmware_p)
|
|
return -EINVAL;
|
|
|
|
if (!name || name[0] == '\0') {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = _request_firmware_prepare(&fw, name, device, buf, size,
|
|
offset, opt_flags);
|
|
if (ret <= 0) /* error or already assigned */
|
|
goto out;
|
|
|
|
/*
|
|
* We are about to try to access the firmware file. Because we may have been
|
|
* called by a driver when serving an unrelated request from userland, we use
|
|
* the kernel credentials to read the file.
|
|
*/
|
|
kern_cred = prepare_kernel_cred(&init_task);
|
|
if (!kern_cred) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
old_cred = override_creds(kern_cred);
|
|
|
|
ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
|
|
|
|
/* Only full reads can support decompression, platform, and sysfs. */
|
|
if (!(opt_flags & FW_OPT_PARTIAL))
|
|
nondirect = true;
|
|
|
|
#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
|
|
if (ret == -ENOENT && nondirect)
|
|
ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
|
|
fw_decompress_zstd);
|
|
#endif
|
|
#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
|
|
if (ret == -ENOENT && nondirect)
|
|
ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
|
|
fw_decompress_xz);
|
|
#endif
|
|
if (ret == -ENOENT && nondirect)
|
|
ret = firmware_fallback_platform(fw->priv);
|
|
|
|
if (ret) {
|
|
if (!(opt_flags & FW_OPT_NO_WARN))
|
|
dev_warn(device,
|
|
"Direct firmware load for %s failed with error %d\n",
|
|
name, ret);
|
|
if (nondirect)
|
|
ret = firmware_fallback_sysfs(fw, name, device,
|
|
opt_flags, ret);
|
|
} else
|
|
ret = assign_fw(fw, device);
|
|
|
|
revert_creds(old_cred);
|
|
put_cred(kern_cred);
|
|
|
|
out:
|
|
if (ret < 0) {
|
|
fw_abort_batch_reqs(fw);
|
|
release_firmware(fw);
|
|
fw = NULL;
|
|
}
|
|
|
|
*firmware_p = fw;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* request_firmware() - send firmware request and wait for it
|
|
* @firmware_p: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded
|
|
*
|
|
* @firmware_p will be used to return a firmware image by the name
|
|
* of @name for device @device.
|
|
*
|
|
* Should be called from user context where sleeping is allowed.
|
|
*
|
|
* @name will be used as $FIRMWARE in the uevent environment and
|
|
* should be distinctive enough not to be confused with any other
|
|
* firmware image for this or any other device.
|
|
*
|
|
* Caller must hold the reference count of @device.
|
|
*
|
|
* The function can be called safely inside device's suspend and
|
|
* resume callback.
|
|
**/
|
|
int
|
|
request_firmware(const struct firmware **firmware_p, const char *name,
|
|
struct device *device)
|
|
{
|
|
int ret;
|
|
|
|
/* Need to pin this module until return */
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
|
|
FW_OPT_UEVENT);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(request_firmware);
|
|
|
|
/**
|
|
* firmware_request_nowarn() - request for an optional fw module
|
|
* @firmware: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded
|
|
*
|
|
* This function is similar in behaviour to request_firmware(), except it
|
|
* doesn't produce warning messages when the file is not found. The sysfs
|
|
* fallback mechanism is enabled if direct filesystem lookup fails. However,
|
|
* failures to find the firmware file with it are still suppressed. It is
|
|
* therefore up to the driver to check for the return value of this call and to
|
|
* decide when to inform the users of errors.
|
|
**/
|
|
int firmware_request_nowarn(const struct firmware **firmware, const char *name,
|
|
struct device *device)
|
|
{
|
|
int ret;
|
|
|
|
/* Need to pin this module until return */
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
|
|
FW_OPT_UEVENT | FW_OPT_NO_WARN);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(firmware_request_nowarn);
|
|
|
|
/**
|
|
* request_firmware_direct() - load firmware directly without usermode helper
|
|
* @firmware_p: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded
|
|
*
|
|
* This function works pretty much like request_firmware(), but this doesn't
|
|
* fall back to usermode helper even if the firmware couldn't be loaded
|
|
* directly from fs. Hence it's useful for loading optional firmwares, which
|
|
* aren't always present, without extra long timeouts of udev.
|
|
**/
|
|
int request_firmware_direct(const struct firmware **firmware_p,
|
|
const char *name, struct device *device)
|
|
{
|
|
int ret;
|
|
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
|
|
FW_OPT_UEVENT | FW_OPT_NO_WARN |
|
|
FW_OPT_NOFALLBACK_SYSFS);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(request_firmware_direct);
|
|
|
|
/**
|
|
* firmware_request_platform() - request firmware with platform-fw fallback
|
|
* @firmware: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded
|
|
*
|
|
* This function is similar in behaviour to request_firmware, except that if
|
|
* direct filesystem lookup fails, it will fallback to looking for a copy of the
|
|
* requested firmware embedded in the platform's main (e.g. UEFI) firmware.
|
|
**/
|
|
int firmware_request_platform(const struct firmware **firmware,
|
|
const char *name, struct device *device)
|
|
{
|
|
int ret;
|
|
|
|
/* Need to pin this module until return */
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware, name, device, NULL, 0, 0,
|
|
FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(firmware_request_platform);
|
|
|
|
/**
|
|
* firmware_request_cache() - cache firmware for suspend so resume can use it
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware should be cached for
|
|
*
|
|
* There are some devices with an optimization that enables the device to not
|
|
* require loading firmware on system reboot. This optimization may still
|
|
* require the firmware present on resume from suspend. This routine can be
|
|
* used to ensure the firmware is present on resume from suspend in these
|
|
* situations. This helper is not compatible with drivers which use
|
|
* request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
|
|
**/
|
|
int firmware_request_cache(struct device *device, const char *name)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&fw_lock);
|
|
ret = fw_add_devm_name(device, name);
|
|
mutex_unlock(&fw_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(firmware_request_cache);
|
|
|
|
/**
|
|
* request_firmware_into_buf() - load firmware into a previously allocated buffer
|
|
* @firmware_p: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded and DMA region allocated
|
|
* @buf: address of buffer to load firmware into
|
|
* @size: size of buffer
|
|
*
|
|
* This function works pretty much like request_firmware(), but it doesn't
|
|
* allocate a buffer to hold the firmware data. Instead, the firmware
|
|
* is loaded directly into the buffer pointed to by @buf and the @firmware_p
|
|
* data member is pointed at @buf.
|
|
*
|
|
* This function doesn't cache firmware either.
|
|
*/
|
|
int
|
|
request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
|
|
struct device *device, void *buf, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (fw_cache_is_setup(device, name))
|
|
return -EOPNOTSUPP;
|
|
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware_p, name, device, buf, size, 0,
|
|
FW_OPT_UEVENT | FW_OPT_NOCACHE);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(request_firmware_into_buf);
|
|
|
|
/**
|
|
* request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
|
|
* @firmware_p: pointer to firmware image
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded and DMA region allocated
|
|
* @buf: address of buffer to load firmware into
|
|
* @size: size of buffer
|
|
* @offset: offset into file to read
|
|
*
|
|
* This function works pretty much like request_firmware_into_buf except
|
|
* it allows a partial read of the file.
|
|
*/
|
|
int
|
|
request_partial_firmware_into_buf(const struct firmware **firmware_p,
|
|
const char *name, struct device *device,
|
|
void *buf, size_t size, size_t offset)
|
|
{
|
|
int ret;
|
|
|
|
if (fw_cache_is_setup(device, name))
|
|
return -EOPNOTSUPP;
|
|
|
|
__module_get(THIS_MODULE);
|
|
ret = _request_firmware(firmware_p, name, device, buf, size, offset,
|
|
FW_OPT_UEVENT | FW_OPT_NOCACHE |
|
|
FW_OPT_PARTIAL);
|
|
module_put(THIS_MODULE);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(request_partial_firmware_into_buf);
|
|
|
|
/**
|
|
* release_firmware() - release the resource associated with a firmware image
|
|
* @fw: firmware resource to release
|
|
**/
|
|
void release_firmware(const struct firmware *fw)
|
|
{
|
|
if (fw) {
|
|
if (!firmware_is_builtin(fw))
|
|
firmware_free_data(fw);
|
|
kfree(fw);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(release_firmware);
|
|
|
|
/* Async support */
|
|
struct firmware_work {
|
|
struct work_struct work;
|
|
struct module *module;
|
|
const char *name;
|
|
struct device *device;
|
|
void *context;
|
|
void (*cont)(const struct firmware *fw, void *context);
|
|
u32 opt_flags;
|
|
};
|
|
|
|
static void request_firmware_work_func(struct work_struct *work)
|
|
{
|
|
struct firmware_work *fw_work;
|
|
const struct firmware *fw;
|
|
|
|
fw_work = container_of(work, struct firmware_work, work);
|
|
|
|
_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
|
|
fw_work->opt_flags);
|
|
fw_work->cont(fw, fw_work->context);
|
|
put_device(fw_work->device); /* taken in request_firmware_nowait() */
|
|
|
|
module_put(fw_work->module);
|
|
kfree_const(fw_work->name);
|
|
kfree(fw_work);
|
|
}
|
|
|
|
/**
|
|
* request_firmware_nowait() - asynchronous version of request_firmware
|
|
* @module: module requesting the firmware
|
|
* @uevent: sends uevent to copy the firmware image if this flag
|
|
* is non-zero else the firmware copy must be done manually.
|
|
* @name: name of firmware file
|
|
* @device: device for which firmware is being loaded
|
|
* @gfp: allocation flags
|
|
* @context: will be passed over to @cont, and
|
|
* @fw may be %NULL if firmware request fails.
|
|
* @cont: function will be called asynchronously when the firmware
|
|
* request is over.
|
|
*
|
|
* Caller must hold the reference count of @device.
|
|
*
|
|
* Asynchronous variant of request_firmware() for user contexts:
|
|
* - sleep for as small periods as possible since it may
|
|
* increase kernel boot time of built-in device drivers
|
|
* requesting firmware in their ->probe() methods, if
|
|
* @gfp is GFP_KERNEL.
|
|
*
|
|
* - can't sleep at all if @gfp is GFP_ATOMIC.
|
|
**/
|
|
int
|
|
request_firmware_nowait(
|
|
struct module *module, bool uevent,
|
|
const char *name, struct device *device, gfp_t gfp, void *context,
|
|
void (*cont)(const struct firmware *fw, void *context))
|
|
{
|
|
struct firmware_work *fw_work;
|
|
|
|
fw_work = kzalloc(sizeof(struct firmware_work), gfp);
|
|
if (!fw_work)
|
|
return -ENOMEM;
|
|
|
|
fw_work->module = module;
|
|
fw_work->name = kstrdup_const(name, gfp);
|
|
if (!fw_work->name) {
|
|
kfree(fw_work);
|
|
return -ENOMEM;
|
|
}
|
|
fw_work->device = device;
|
|
fw_work->context = context;
|
|
fw_work->cont = cont;
|
|
fw_work->opt_flags = FW_OPT_NOWAIT |
|
|
(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
|
|
|
|
if (!uevent && fw_cache_is_setup(device, name)) {
|
|
kfree_const(fw_work->name);
|
|
kfree(fw_work);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!try_module_get(module)) {
|
|
kfree_const(fw_work->name);
|
|
kfree(fw_work);
|
|
return -EFAULT;
|
|
}
|
|
|
|
get_device(fw_work->device);
|
|
INIT_WORK(&fw_work->work, request_firmware_work_func);
|
|
schedule_work(&fw_work->work);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(request_firmware_nowait);
|
|
|
|
#ifdef CONFIG_FW_CACHE
|
|
static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
|
|
|
|
/**
|
|
* cache_firmware() - cache one firmware image in kernel memory space
|
|
* @fw_name: the firmware image name
|
|
*
|
|
* Cache firmware in kernel memory so that drivers can use it when
|
|
* system isn't ready for them to request firmware image from userspace.
|
|
* Once it returns successfully, driver can use request_firmware or its
|
|
* nowait version to get the cached firmware without any interacting
|
|
* with userspace
|
|
*
|
|
* Return 0 if the firmware image has been cached successfully
|
|
* Return !0 otherwise
|
|
*
|
|
*/
|
|
static int cache_firmware(const char *fw_name)
|
|
{
|
|
int ret;
|
|
const struct firmware *fw;
|
|
|
|
pr_debug("%s: %s\n", __func__, fw_name);
|
|
|
|
ret = request_firmware(&fw, fw_name, NULL);
|
|
if (!ret)
|
|
kfree(fw);
|
|
|
|
pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct fw_priv *lookup_fw_priv(const char *fw_name)
|
|
{
|
|
struct fw_priv *tmp;
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
|
|
spin_lock(&fwc->lock);
|
|
tmp = __lookup_fw_priv(fw_name);
|
|
spin_unlock(&fwc->lock);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/**
|
|
* uncache_firmware() - remove one cached firmware image
|
|
* @fw_name: the firmware image name
|
|
*
|
|
* Uncache one firmware image which has been cached successfully
|
|
* before.
|
|
*
|
|
* Return 0 if the firmware cache has been removed successfully
|
|
* Return !0 otherwise
|
|
*
|
|
*/
|
|
static int uncache_firmware(const char *fw_name)
|
|
{
|
|
struct fw_priv *fw_priv;
|
|
struct firmware fw;
|
|
|
|
pr_debug("%s: %s\n", __func__, fw_name);
|
|
|
|
if (firmware_request_builtin(&fw, fw_name))
|
|
return 0;
|
|
|
|
fw_priv = lookup_fw_priv(fw_name);
|
|
if (fw_priv) {
|
|
free_fw_priv(fw_priv);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
|
|
{
|
|
struct fw_cache_entry *fce;
|
|
|
|
fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
|
|
if (!fce)
|
|
goto exit;
|
|
|
|
fce->name = kstrdup_const(name, GFP_ATOMIC);
|
|
if (!fce->name) {
|
|
kfree(fce);
|
|
fce = NULL;
|
|
goto exit;
|
|
}
|
|
exit:
|
|
return fce;
|
|
}
|
|
|
|
static int __fw_entry_found(const char *name)
|
|
{
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
struct fw_cache_entry *fce;
|
|
|
|
list_for_each_entry(fce, &fwc->fw_names, list) {
|
|
if (!strcmp(fce->name, name))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
|
|
{
|
|
const char *name = fw_priv->fw_name;
|
|
struct firmware_cache *fwc = fw_priv->fwc;
|
|
struct fw_cache_entry *fce;
|
|
|
|
spin_lock(&fwc->name_lock);
|
|
if (__fw_entry_found(name))
|
|
goto found;
|
|
|
|
fce = alloc_fw_cache_entry(name);
|
|
if (fce) {
|
|
list_add(&fce->list, &fwc->fw_names);
|
|
kref_get(&fw_priv->ref);
|
|
pr_debug("%s: fw: %s\n", __func__, name);
|
|
}
|
|
found:
|
|
spin_unlock(&fwc->name_lock);
|
|
}
|
|
|
|
static void free_fw_cache_entry(struct fw_cache_entry *fce)
|
|
{
|
|
kfree_const(fce->name);
|
|
kfree(fce);
|
|
}
|
|
|
|
static void __async_dev_cache_fw_image(void *fw_entry,
|
|
async_cookie_t cookie)
|
|
{
|
|
struct fw_cache_entry *fce = fw_entry;
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
int ret;
|
|
|
|
ret = cache_firmware(fce->name);
|
|
if (ret) {
|
|
spin_lock(&fwc->name_lock);
|
|
list_del(&fce->list);
|
|
spin_unlock(&fwc->name_lock);
|
|
|
|
free_fw_cache_entry(fce);
|
|
}
|
|
}
|
|
|
|
/* called with dev->devres_lock held */
|
|
static void dev_create_fw_entry(struct device *dev, void *res,
|
|
void *data)
|
|
{
|
|
struct fw_name_devm *fwn = res;
|
|
const char *fw_name = fwn->name;
|
|
struct list_head *head = data;
|
|
struct fw_cache_entry *fce;
|
|
|
|
fce = alloc_fw_cache_entry(fw_name);
|
|
if (fce)
|
|
list_add(&fce->list, head);
|
|
}
|
|
|
|
static int devm_name_match(struct device *dev, void *res,
|
|
void *match_data)
|
|
{
|
|
struct fw_name_devm *fwn = res;
|
|
return (fwn->magic == (unsigned long)match_data);
|
|
}
|
|
|
|
static void dev_cache_fw_image(struct device *dev, void *data)
|
|
{
|
|
LIST_HEAD(todo);
|
|
struct fw_cache_entry *fce;
|
|
struct fw_cache_entry *fce_next;
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
|
|
devres_for_each_res(dev, fw_name_devm_release,
|
|
devm_name_match, &fw_cache,
|
|
dev_create_fw_entry, &todo);
|
|
|
|
list_for_each_entry_safe(fce, fce_next, &todo, list) {
|
|
list_del(&fce->list);
|
|
|
|
spin_lock(&fwc->name_lock);
|
|
/* only one cache entry for one firmware */
|
|
if (!__fw_entry_found(fce->name)) {
|
|
list_add(&fce->list, &fwc->fw_names);
|
|
} else {
|
|
free_fw_cache_entry(fce);
|
|
fce = NULL;
|
|
}
|
|
spin_unlock(&fwc->name_lock);
|
|
|
|
if (fce)
|
|
async_schedule_domain(__async_dev_cache_fw_image,
|
|
(void *)fce,
|
|
&fw_cache_domain);
|
|
}
|
|
}
|
|
|
|
static void __device_uncache_fw_images(void)
|
|
{
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
struct fw_cache_entry *fce;
|
|
|
|
spin_lock(&fwc->name_lock);
|
|
while (!list_empty(&fwc->fw_names)) {
|
|
fce = list_entry(fwc->fw_names.next,
|
|
struct fw_cache_entry, list);
|
|
list_del(&fce->list);
|
|
spin_unlock(&fwc->name_lock);
|
|
|
|
uncache_firmware(fce->name);
|
|
free_fw_cache_entry(fce);
|
|
|
|
spin_lock(&fwc->name_lock);
|
|
}
|
|
spin_unlock(&fwc->name_lock);
|
|
}
|
|
|
|
/**
|
|
* device_cache_fw_images() - cache devices' firmware
|
|
*
|
|
* If one device called request_firmware or its nowait version
|
|
* successfully before, the firmware names are recored into the
|
|
* device's devres link list, so device_cache_fw_images can call
|
|
* cache_firmware() to cache these firmwares for the device,
|
|
* then the device driver can load its firmwares easily at
|
|
* time when system is not ready to complete loading firmware.
|
|
*/
|
|
static void device_cache_fw_images(void)
|
|
{
|
|
struct firmware_cache *fwc = &fw_cache;
|
|
DEFINE_WAIT(wait);
|
|
|
|
pr_debug("%s\n", __func__);
|
|
|
|
/* cancel uncache work */
|
|
cancel_delayed_work_sync(&fwc->work);
|
|
|
|
fw_fallback_set_cache_timeout();
|
|
|
|
mutex_lock(&fw_lock);
|
|
fwc->state = FW_LOADER_START_CACHE;
|
|
dpm_for_each_dev(NULL, dev_cache_fw_image);
|
|
mutex_unlock(&fw_lock);
|
|
|
|
/* wait for completion of caching firmware for all devices */
|
|
async_synchronize_full_domain(&fw_cache_domain);
|
|
|
|
fw_fallback_set_default_timeout();
|
|
}
|
|
|
|
/**
|
|
* device_uncache_fw_images() - uncache devices' firmware
|
|
*
|
|
* uncache all firmwares which have been cached successfully
|
|
* by device_uncache_fw_images earlier
|
|
*/
|
|
static void device_uncache_fw_images(void)
|
|
{
|
|
pr_debug("%s\n", __func__);
|
|
__device_uncache_fw_images();
|
|
}
|
|
|
|
static void device_uncache_fw_images_work(struct work_struct *work)
|
|
{
|
|
device_uncache_fw_images();
|
|
}
|
|
|
|
/**
|
|
* device_uncache_fw_images_delay() - uncache devices firmwares
|
|
* @delay: number of milliseconds to delay uncache device firmwares
|
|
*
|
|
* uncache all devices's firmwares which has been cached successfully
|
|
* by device_cache_fw_images after @delay milliseconds.
|
|
*/
|
|
static void device_uncache_fw_images_delay(unsigned long delay)
|
|
{
|
|
queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
|
|
msecs_to_jiffies(delay));
|
|
}
|
|
|
|
static int fw_pm_notify(struct notifier_block *notify_block,
|
|
unsigned long mode, void *unused)
|
|
{
|
|
switch (mode) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_RESTORE_PREPARE:
|
|
/*
|
|
* kill pending fallback requests with a custom fallback
|
|
* to avoid stalling suspend.
|
|
*/
|
|
kill_pending_fw_fallback_reqs(true);
|
|
device_cache_fw_images();
|
|
break;
|
|
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_RESTORE:
|
|
/*
|
|
* In case that system sleep failed and syscore_suspend is
|
|
* not called.
|
|
*/
|
|
mutex_lock(&fw_lock);
|
|
fw_cache.state = FW_LOADER_NO_CACHE;
|
|
mutex_unlock(&fw_lock);
|
|
|
|
device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* stop caching firmware once syscore_suspend is reached */
|
|
static int fw_suspend(void)
|
|
{
|
|
fw_cache.state = FW_LOADER_NO_CACHE;
|
|
return 0;
|
|
}
|
|
|
|
static struct syscore_ops fw_syscore_ops = {
|
|
.suspend = fw_suspend,
|
|
};
|
|
|
|
static int __init register_fw_pm_ops(void)
|
|
{
|
|
int ret;
|
|
|
|
spin_lock_init(&fw_cache.name_lock);
|
|
INIT_LIST_HEAD(&fw_cache.fw_names);
|
|
|
|
INIT_DELAYED_WORK(&fw_cache.work,
|
|
device_uncache_fw_images_work);
|
|
|
|
fw_cache.pm_notify.notifier_call = fw_pm_notify;
|
|
ret = register_pm_notifier(&fw_cache.pm_notify);
|
|
if (ret)
|
|
return ret;
|
|
|
|
register_syscore_ops(&fw_syscore_ops);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void unregister_fw_pm_ops(void)
|
|
{
|
|
unregister_syscore_ops(&fw_syscore_ops);
|
|
unregister_pm_notifier(&fw_cache.pm_notify);
|
|
}
|
|
#else
|
|
static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
|
|
{
|
|
}
|
|
static inline int register_fw_pm_ops(void)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void unregister_fw_pm_ops(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void __init fw_cache_init(void)
|
|
{
|
|
spin_lock_init(&fw_cache.lock);
|
|
INIT_LIST_HEAD(&fw_cache.head);
|
|
fw_cache.state = FW_LOADER_NO_CACHE;
|
|
}
|
|
|
|
static int fw_shutdown_notify(struct notifier_block *unused1,
|
|
unsigned long unused2, void *unused3)
|
|
{
|
|
/*
|
|
* Kill all pending fallback requests to avoid both stalling shutdown,
|
|
* and avoid a deadlock with the usermode_lock.
|
|
*/
|
|
kill_pending_fw_fallback_reqs(false);
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block fw_shutdown_nb = {
|
|
.notifier_call = fw_shutdown_notify,
|
|
};
|
|
|
|
static int __init firmware_class_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* No need to unfold these on exit */
|
|
fw_cache_init();
|
|
|
|
ret = register_fw_pm_ops();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = register_reboot_notifier(&fw_shutdown_nb);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return register_sysfs_loader();
|
|
|
|
out:
|
|
unregister_fw_pm_ops();
|
|
return ret;
|
|
}
|
|
|
|
static void __exit firmware_class_exit(void)
|
|
{
|
|
unregister_fw_pm_ops();
|
|
unregister_reboot_notifier(&fw_shutdown_nb);
|
|
unregister_sysfs_loader();
|
|
}
|
|
|
|
fs_initcall(firmware_class_init);
|
|
module_exit(firmware_class_exit);
|