Paul Gortmaker 13dff62d80 blackfin: delete __cpuinit usage from all blackfin files
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications.  For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.

After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out.  Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.

Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit  -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings.  In any case, they are temporary and harmless.

This removes all the arch/blackfin uses of the __cpuinit macros from
all C files.  Currently blackfin does not have any __CPUINIT used in
assembly files.

[1] https://lkml.org/lkml/2013/5/20/589

Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Sonic Zhang <sonic.zhang@analog.com>
Cc: uclinux-dist-devel@blackfin.uclinux.org
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-07-14 19:36:53 -04:00

1463 lines
39 KiB
C

/*
* Copyright 2004-2010 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/pfn.h>
#ifdef CONFIG_MTD_UCLINUX
#include <linux/mtd/map.h>
#include <linux/ext2_fs.h>
#include <linux/cramfs_fs.h>
#include <linux/romfs_fs.h>
#endif
#include <asm/cplb.h>
#include <asm/cacheflush.h>
#include <asm/blackfin.h>
#include <asm/cplbinit.h>
#include <asm/clocks.h>
#include <asm/div64.h>
#include <asm/cpu.h>
#include <asm/fixed_code.h>
#include <asm/early_printk.h>
#include <asm/irq_handler.h>
#include <asm/pda.h>
#ifdef CONFIG_BF60x
#include <mach/pm.h>
#endif
u16 _bfin_swrst;
EXPORT_SYMBOL(_bfin_swrst);
unsigned long memory_start, memory_end, physical_mem_end;
unsigned long _rambase, _ramstart, _ramend;
unsigned long reserved_mem_dcache_on;
unsigned long reserved_mem_icache_on;
EXPORT_SYMBOL(memory_start);
EXPORT_SYMBOL(memory_end);
EXPORT_SYMBOL(physical_mem_end);
EXPORT_SYMBOL(_ramend);
EXPORT_SYMBOL(reserved_mem_dcache_on);
#ifdef CONFIG_MTD_UCLINUX
extern struct map_info uclinux_ram_map;
unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
EXPORT_SYMBOL(memory_mtd_end);
EXPORT_SYMBOL(memory_mtd_start);
EXPORT_SYMBOL(mtd_size);
#endif
char __initdata command_line[COMMAND_LINE_SIZE];
struct blackfin_initial_pda __initdata initial_pda;
/* boot memmap, for parsing "memmap=" */
#define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
#define BFIN_MEMMAP_RAM 1
#define BFIN_MEMMAP_RESERVED 2
static struct bfin_memmap {
int nr_map;
struct bfin_memmap_entry {
unsigned long long addr; /* start of memory segment */
unsigned long long size;
unsigned long type;
} map[BFIN_MEMMAP_MAX];
} bfin_memmap __initdata;
/* for memmap sanitization */
struct change_member {
struct bfin_memmap_entry *pentry; /* pointer to original entry */
unsigned long long addr; /* address for this change point */
};
static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
static int early_init_clkin_hz(char *buf);
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
void __init generate_cplb_tables(void)
{
unsigned int cpu;
generate_cplb_tables_all();
/* Generate per-CPU I&D CPLB tables */
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
generate_cplb_tables_cpu(cpu);
}
#endif
void bfin_setup_caches(unsigned int cpu)
{
#ifdef CONFIG_BFIN_ICACHE
bfin_icache_init(icplb_tbl[cpu]);
#endif
#ifdef CONFIG_BFIN_DCACHE
bfin_dcache_init(dcplb_tbl[cpu]);
#endif
bfin_setup_cpudata(cpu);
/*
* In cache coherence emulation mode, we need to have the
* D-cache enabled before running any atomic operation which
* might involve cache invalidation (i.e. spinlock, rwlock).
* So printk's are deferred until then.
*/
#ifdef CONFIG_BFIN_ICACHE
printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
printk(KERN_INFO " External memory:"
# ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
" cacheable"
# else
" uncacheable"
# endif
" in instruction cache\n");
if (L2_LENGTH)
printk(KERN_INFO " L2 SRAM :"
# ifdef CONFIG_BFIN_L2_ICACHEABLE
" cacheable"
# else
" uncacheable"
# endif
" in instruction cache\n");
#else
printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
#endif
#ifdef CONFIG_BFIN_DCACHE
printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
printk(KERN_INFO " External memory:"
# if defined CONFIG_BFIN_EXTMEM_WRITEBACK
" cacheable (write-back)"
# elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
" cacheable (write-through)"
# else
" uncacheable"
# endif
" in data cache\n");
if (L2_LENGTH)
printk(KERN_INFO " L2 SRAM :"
# if defined CONFIG_BFIN_L2_WRITEBACK
" cacheable (write-back)"
# elif defined CONFIG_BFIN_L2_WRITETHROUGH
" cacheable (write-through)"
# else
" uncacheable"
# endif
" in data cache\n");
#else
printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
#endif
}
void bfin_setup_cpudata(unsigned int cpu)
{
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
cpudata->imemctl = bfin_read_IMEM_CONTROL();
cpudata->dmemctl = bfin_read_DMEM_CONTROL();
}
void __init bfin_cache_init(void)
{
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables();
#endif
bfin_setup_caches(0);
}
void __init bfin_relocate_l1_mem(void)
{
unsigned long text_l1_len = (unsigned long)_text_l1_len;
unsigned long data_l1_len = (unsigned long)_data_l1_len;
unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
unsigned long l2_len = (unsigned long)_l2_len;
early_shadow_stamp();
/*
* due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
* we know that everything about l1 text/data is nice and aligned,
* so copy by 4 byte chunks, and don't worry about overlapping
* src/dest.
*
* We can't use the dma_memcpy functions, since they can call
* scheduler functions which might be in L1 :( and core writes
* into L1 instruction cause bad access errors, so we are stuck,
* we are required to use DMA, but can't use the common dma
* functions. We can't use memcpy either - since that might be
* going to be in the relocated L1
*/
blackfin_dma_early_init();
/* if necessary, copy L1 text to L1 instruction SRAM */
if (L1_CODE_LENGTH && text_l1_len)
early_dma_memcpy(_stext_l1, _text_l1_lma, text_l1_len);
/* if necessary, copy L1 data to L1 data bank A SRAM */
if (L1_DATA_A_LENGTH && data_l1_len)
early_dma_memcpy(_sdata_l1, _data_l1_lma, data_l1_len);
/* if necessary, copy L1 data B to L1 data bank B SRAM */
if (L1_DATA_B_LENGTH && data_b_l1_len)
early_dma_memcpy(_sdata_b_l1, _data_b_l1_lma, data_b_l1_len);
early_dma_memcpy_done();
#if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
blackfin_iflush_l1_entry[0] = (unsigned long)blackfin_icache_flush_range_l1;
#endif
/* if necessary, copy L2 text/data to L2 SRAM */
if (L2_LENGTH && l2_len)
memcpy(_stext_l2, _l2_lma, l2_len);
}
#ifdef CONFIG_SMP
void __init bfin_relocate_coreb_l1_mem(void)
{
unsigned long text_l1_len = (unsigned long)_text_l1_len;
unsigned long data_l1_len = (unsigned long)_data_l1_len;
unsigned long data_b_l1_len = (unsigned long)_data_b_l1_len;
blackfin_dma_early_init();
/* if necessary, copy L1 text to L1 instruction SRAM */
if (L1_CODE_LENGTH && text_l1_len)
early_dma_memcpy((void *)COREB_L1_CODE_START, _text_l1_lma,
text_l1_len);
/* if necessary, copy L1 data to L1 data bank A SRAM */
if (L1_DATA_A_LENGTH && data_l1_len)
early_dma_memcpy((void *)COREB_L1_DATA_A_START, _data_l1_lma,
data_l1_len);
/* if necessary, copy L1 data B to L1 data bank B SRAM */
if (L1_DATA_B_LENGTH && data_b_l1_len)
early_dma_memcpy((void *)COREB_L1_DATA_B_START, _data_b_l1_lma,
data_b_l1_len);
early_dma_memcpy_done();
#ifdef CONFIG_ICACHE_FLUSH_L1
blackfin_iflush_l1_entry[1] = (unsigned long)blackfin_icache_flush_range_l1 -
(unsigned long)_stext_l1 + COREB_L1_CODE_START;
#endif
}
#endif
#ifdef CONFIG_ROMKERNEL
void __init bfin_relocate_xip_data(void)
{
early_shadow_stamp();
memcpy(_sdata, _data_lma, (unsigned long)_data_len - THREAD_SIZE + sizeof(struct thread_info));
memcpy(_sinitdata, _init_data_lma, (unsigned long)_init_data_len);
}
#endif
/* add_memory_region to memmap */
static void __init add_memory_region(unsigned long long start,
unsigned long long size, int type)
{
int i;
i = bfin_memmap.nr_map;
if (i == BFIN_MEMMAP_MAX) {
printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
return;
}
bfin_memmap.map[i].addr = start;
bfin_memmap.map[i].size = size;
bfin_memmap.map[i].type = type;
bfin_memmap.nr_map++;
}
/*
* Sanitize the boot memmap, removing overlaps.
*/
static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
{
struct change_member *change_tmp;
unsigned long current_type, last_type;
unsigned long long last_addr;
int chgidx, still_changing;
int overlap_entries;
int new_entry;
int old_nr, new_nr, chg_nr;
int i;
/*
Visually we're performing the following (1,2,3,4 = memory types)
Sample memory map (w/overlaps):
____22__________________
______________________4_
____1111________________
_44_____________________
11111111________________
____________________33__
___________44___________
__________33333_________
______________22________
___________________2222_
_________111111111______
_____________________11_
_________________4______
Sanitized equivalent (no overlap):
1_______________________
_44_____________________
___1____________________
____22__________________
______11________________
_________1______________
__________3_____________
___________44___________
_____________33_________
_______________2________
________________1_______
_________________4______
___________________2____
____________________33__
______________________4_
*/
/* if there's only one memory region, don't bother */
if (*pnr_map < 2)
return -1;
old_nr = *pnr_map;
/* bail out if we find any unreasonable addresses in memmap */
for (i = 0; i < old_nr; i++)
if (map[i].addr + map[i].size < map[i].addr)
return -1;
/* create pointers for initial change-point information (for sorting) */
for (i = 0; i < 2*old_nr; i++)
change_point[i] = &change_point_list[i];
/* record all known change-points (starting and ending addresses),
omitting those that are for empty memory regions */
chgidx = 0;
for (i = 0; i < old_nr; i++) {
if (map[i].size != 0) {
change_point[chgidx]->addr = map[i].addr;
change_point[chgidx++]->pentry = &map[i];
change_point[chgidx]->addr = map[i].addr + map[i].size;
change_point[chgidx++]->pentry = &map[i];
}
}
chg_nr = chgidx; /* true number of change-points */
/* sort change-point list by memory addresses (low -> high) */
still_changing = 1;
while (still_changing) {
still_changing = 0;
for (i = 1; i < chg_nr; i++) {
/* if <current_addr> > <last_addr>, swap */
/* or, if current=<start_addr> & last=<end_addr>, swap */
if ((change_point[i]->addr < change_point[i-1]->addr) ||
((change_point[i]->addr == change_point[i-1]->addr) &&
(change_point[i]->addr == change_point[i]->pentry->addr) &&
(change_point[i-1]->addr != change_point[i-1]->pentry->addr))
) {
change_tmp = change_point[i];
change_point[i] = change_point[i-1];
change_point[i-1] = change_tmp;
still_changing = 1;
}
}
}
/* create a new memmap, removing overlaps */
overlap_entries = 0; /* number of entries in the overlap table */
new_entry = 0; /* index for creating new memmap entries */
last_type = 0; /* start with undefined memory type */
last_addr = 0; /* start with 0 as last starting address */
/* loop through change-points, determining affect on the new memmap */
for (chgidx = 0; chgidx < chg_nr; chgidx++) {
/* keep track of all overlapping memmap entries */
if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
/* add map entry to overlap list (> 1 entry implies an overlap) */
overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
} else {
/* remove entry from list (order independent, so swap with last) */
for (i = 0; i < overlap_entries; i++) {
if (overlap_list[i] == change_point[chgidx]->pentry)
overlap_list[i] = overlap_list[overlap_entries-1];
}
overlap_entries--;
}
/* if there are overlapping entries, decide which "type" to use */
/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
current_type = 0;
for (i = 0; i < overlap_entries; i++)
if (overlap_list[i]->type > current_type)
current_type = overlap_list[i]->type;
/* continue building up new memmap based on this information */
if (current_type != last_type) {
if (last_type != 0) {
new_map[new_entry].size =
change_point[chgidx]->addr - last_addr;
/* move forward only if the new size was non-zero */
if (new_map[new_entry].size != 0)
if (++new_entry >= BFIN_MEMMAP_MAX)
break; /* no more space left for new entries */
}
if (current_type != 0) {
new_map[new_entry].addr = change_point[chgidx]->addr;
new_map[new_entry].type = current_type;
last_addr = change_point[chgidx]->addr;
}
last_type = current_type;
}
}
new_nr = new_entry; /* retain count for new entries */
/* copy new mapping into original location */
memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
*pnr_map = new_nr;
return 0;
}
static void __init print_memory_map(char *who)
{
int i;
for (i = 0; i < bfin_memmap.nr_map; i++) {
printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
bfin_memmap.map[i].addr,
bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
switch (bfin_memmap.map[i].type) {
case BFIN_MEMMAP_RAM:
printk(KERN_CONT "(usable)\n");
break;
case BFIN_MEMMAP_RESERVED:
printk(KERN_CONT "(reserved)\n");
break;
default:
printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
break;
}
}
}
static __init int parse_memmap(char *arg)
{
unsigned long long start_at, mem_size;
if (!arg)
return -EINVAL;
mem_size = memparse(arg, &arg);
if (*arg == '@') {
start_at = memparse(arg+1, &arg);
add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
} else if (*arg == '$') {
start_at = memparse(arg+1, &arg);
add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
}
return 0;
}
/*
* Initial parsing of the command line. Currently, we support:
* - Controlling the linux memory size: mem=xxx[KMG]
* - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
* $ -> reserved memory is dcacheable
* # -> reserved memory is icacheable
* - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
* @ from <start> to <start>+<mem>, type RAM
* $ from <start> to <start>+<mem>, type RESERVED
*/
static __init void parse_cmdline_early(char *cmdline_p)
{
char c = ' ', *to = cmdline_p;
unsigned int memsize;
for (;;) {
if (c == ' ') {
if (!memcmp(to, "mem=", 4)) {
to += 4;
memsize = memparse(to, &to);
if (memsize)
_ramend = memsize;
} else if (!memcmp(to, "max_mem=", 8)) {
to += 8;
memsize = memparse(to, &to);
if (memsize) {
physical_mem_end = memsize;
if (*to != ' ') {
if (*to == '$'
|| *(to + 1) == '$')
reserved_mem_dcache_on = 1;
if (*to == '#'
|| *(to + 1) == '#')
reserved_mem_icache_on = 1;
}
}
} else if (!memcmp(to, "clkin_hz=", 9)) {
to += 9;
early_init_clkin_hz(to);
#ifdef CONFIG_EARLY_PRINTK
} else if (!memcmp(to, "earlyprintk=", 12)) {
to += 12;
setup_early_printk(to);
#endif
} else if (!memcmp(to, "memmap=", 7)) {
to += 7;
parse_memmap(to);
}
}
c = *(to++);
if (!c)
break;
}
}
/*
* Setup memory defaults from user config.
* The physical memory layout looks like:
*
* [_rambase, _ramstart]: kernel image
* [memory_start, memory_end]: dynamic memory managed by kernel
* [memory_end, _ramend]: reserved memory
* [memory_mtd_start(memory_end),
* memory_mtd_start + mtd_size]: rootfs (if any)
* [_ramend - DMA_UNCACHED_REGION,
* _ramend]: uncached DMA region
* [_ramend, physical_mem_end]: memory not managed by kernel
*/
static __init void memory_setup(void)
{
#ifdef CONFIG_MTD_UCLINUX
unsigned long mtd_phys = 0;
#endif
unsigned long max_mem;
_rambase = CONFIG_BOOT_LOAD;
_ramstart = (unsigned long)_end;
if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
console_init();
panic("DMA region exceeds memory limit: %lu.",
_ramend - _ramstart);
}
max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
/* Due to a Hardware Anomaly we need to limit the size of usable
* instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
* 05000263 - Hardware loop corrupted when taking an ICPLB exception
*/
# if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
if (max_mem >= 56 * 1024 * 1024)
max_mem = 56 * 1024 * 1024;
# else
if (max_mem >= 60 * 1024 * 1024)
max_mem = 60 * 1024 * 1024;
# endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
#endif /* ANOMALY_05000263 */
#ifdef CONFIG_MPU
/* Round up to multiple of 4MB */
memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
#else
memory_start = PAGE_ALIGN(_ramstart);
#endif
#if defined(CONFIG_MTD_UCLINUX)
/* generic memory mapped MTD driver */
memory_mtd_end = memory_end;
mtd_phys = _ramstart;
mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
# if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
mtd_size =
PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
# endif
# if defined(CONFIG_CRAMFS)
if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
# endif
# if defined(CONFIG_ROMFS_FS)
if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
&& ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
mtd_size =
PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
/* ROM_FS is XIP, so if we found it, we need to limit memory */
if (memory_end > max_mem) {
pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
(max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
memory_end = max_mem;
}
}
# endif /* CONFIG_ROMFS_FS */
/* Since the default MTD_UCLINUX has no magic number, we just blindly
* read 8 past the end of the kernel's image, and look at it.
* When no image is attached, mtd_size is set to a random number
* Do some basic sanity checks before operating on things
*/
if (mtd_size == 0 || memory_end <= mtd_size) {
pr_emerg("Could not find valid ram mtd attached.\n");
} else {
memory_end -= mtd_size;
/* Relocate MTD image to the top of memory after the uncached memory area */
uclinux_ram_map.phys = memory_mtd_start = memory_end;
uclinux_ram_map.size = mtd_size;
pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
_end, mtd_size, (void *)memory_mtd_start);
dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
}
#endif /* CONFIG_MTD_UCLINUX */
/* We need lo limit memory, since everything could have a text section
* of userspace in it, and expose anomaly 05000263. If the anomaly
* doesn't exist, or we don't need to - then dont.
*/
if (memory_end > max_mem) {
pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n",
(max_mem - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
memory_end = max_mem;
}
#ifdef CONFIG_MPU
#if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
page_mask_nelts = (((_ramend + ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE -
ASYNC_BANK0_BASE) >> PAGE_SHIFT) + 31) / 32;
#else
page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
#endif
page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
#endif
init_mm.start_code = (unsigned long)_stext;
init_mm.end_code = (unsigned long)_etext;
init_mm.end_data = (unsigned long)_edata;
init_mm.brk = (unsigned long)0;
printk(KERN_INFO "Board Memory: %ldMB\n", (physical_mem_end - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", (_ramend - CONFIG_PHY_RAM_BASE_ADDRESS) >> 20);
printk(KERN_INFO "Memory map:\n"
" fixedcode = 0x%p-0x%p\n"
" text = 0x%p-0x%p\n"
" rodata = 0x%p-0x%p\n"
" bss = 0x%p-0x%p\n"
" data = 0x%p-0x%p\n"
" stack = 0x%p-0x%p\n"
" init = 0x%p-0x%p\n"
" available = 0x%p-0x%p\n"
#ifdef CONFIG_MTD_UCLINUX
" rootfs = 0x%p-0x%p\n"
#endif
#if DMA_UNCACHED_REGION > 0
" DMA Zone = 0x%p-0x%p\n"
#endif
, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
_stext, _etext,
__start_rodata, __end_rodata,
__bss_start, __bss_stop,
_sdata, _edata,
(void *)&init_thread_union,
(void *)((int)(&init_thread_union) + THREAD_SIZE),
__init_begin, __init_end,
(void *)_ramstart, (void *)memory_end
#ifdef CONFIG_MTD_UCLINUX
, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
#endif
#if DMA_UNCACHED_REGION > 0
, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
#endif
);
}
/*
* Find the lowest, highest page frame number we have available
*/
void __init find_min_max_pfn(void)
{
int i;
max_pfn = 0;
min_low_pfn = PFN_DOWN(memory_end);
for (i = 0; i < bfin_memmap.nr_map; i++) {
unsigned long start, end;
/* RAM? */
if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
continue;
start = PFN_UP(bfin_memmap.map[i].addr);
end = PFN_DOWN(bfin_memmap.map[i].addr +
bfin_memmap.map[i].size);
if (start >= end)
continue;
if (end > max_pfn)
max_pfn = end;
if (start < min_low_pfn)
min_low_pfn = start;
}
}
static __init void setup_bootmem_allocator(void)
{
int bootmap_size;
int i;
unsigned long start_pfn, end_pfn;
unsigned long curr_pfn, last_pfn, size;
/* mark memory between memory_start and memory_end usable */
add_memory_region(memory_start,
memory_end - memory_start, BFIN_MEMMAP_RAM);
/* sanity check for overlap */
sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
print_memory_map("boot memmap");
/* initialize globals in linux/bootmem.h */
find_min_max_pfn();
/* pfn of the last usable page frame */
if (max_pfn > memory_end >> PAGE_SHIFT)
max_pfn = memory_end >> PAGE_SHIFT;
/* pfn of last page frame directly mapped by kernel */
max_low_pfn = max_pfn;
/* pfn of the first usable page frame after kernel image*/
if (min_low_pfn < memory_start >> PAGE_SHIFT)
min_low_pfn = memory_start >> PAGE_SHIFT;
start_pfn = CONFIG_PHY_RAM_BASE_ADDRESS >> PAGE_SHIFT;
end_pfn = memory_end >> PAGE_SHIFT;
/*
* give all the memory to the bootmap allocator, tell it to put the
* boot mem_map at the start of memory.
*/
bootmap_size = init_bootmem_node(NODE_DATA(0),
memory_start >> PAGE_SHIFT, /* map goes here */
start_pfn, end_pfn);
/* register the memmap regions with the bootmem allocator */
for (i = 0; i < bfin_memmap.nr_map; i++) {
/*
* Reserve usable memory
*/
if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
continue;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
if (curr_pfn >= end_pfn)
continue;
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
bfin_memmap.map[i].size);
if (last_pfn > end_pfn)
last_pfn = end_pfn;
/*
* .. finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
size = last_pfn - curr_pfn;
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
}
/* reserve memory before memory_start, including bootmap */
reserve_bootmem(CONFIG_PHY_RAM_BASE_ADDRESS,
memory_start + bootmap_size + PAGE_SIZE - 1 - CONFIG_PHY_RAM_BASE_ADDRESS,
BOOTMEM_DEFAULT);
}
#define EBSZ_TO_MEG(ebsz) \
({ \
int meg = 0; \
switch (ebsz & 0xf) { \
case 0x1: meg = 16; break; \
case 0x3: meg = 32; break; \
case 0x5: meg = 64; break; \
case 0x7: meg = 128; break; \
case 0x9: meg = 256; break; \
case 0xb: meg = 512; break; \
} \
meg; \
})
static inline int __init get_mem_size(void)
{
#if defined(EBIU_SDBCTL)
# if defined(BF561_FAMILY)
int ret = 0;
u32 sdbctl = bfin_read_EBIU_SDBCTL();
ret += EBSZ_TO_MEG(sdbctl >> 0);
ret += EBSZ_TO_MEG(sdbctl >> 8);
ret += EBSZ_TO_MEG(sdbctl >> 16);
ret += EBSZ_TO_MEG(sdbctl >> 24);
return ret;
# else
return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
# endif
#elif defined(EBIU_DDRCTL1)
u32 ddrctl = bfin_read_EBIU_DDRCTL1();
int ret = 0;
switch (ddrctl & 0xc0000) {
case DEVSZ_64:
ret = 64 / 8;
break;
case DEVSZ_128:
ret = 128 / 8;
break;
case DEVSZ_256:
ret = 256 / 8;
break;
case DEVSZ_512:
ret = 512 / 8;
break;
}
switch (ddrctl & 0x30000) {
case DEVWD_4:
ret *= 2;
case DEVWD_8:
ret *= 2;
case DEVWD_16:
break;
}
if ((ddrctl & 0xc000) == 0x4000)
ret *= 2;
return ret;
#elif defined(CONFIG_BF60x)
u32 ddrctl = bfin_read_DMC0_CFG();
int ret;
switch (ddrctl & 0xf00) {
case DEVSZ_64:
ret = 64 / 8;
break;
case DEVSZ_128:
ret = 128 / 8;
break;
case DEVSZ_256:
ret = 256 / 8;
break;
case DEVSZ_512:
ret = 512 / 8;
break;
case DEVSZ_1G:
ret = 1024 / 8;
break;
case DEVSZ_2G:
ret = 2048 / 8;
break;
}
return ret;
#endif
BUG();
}
__attribute__((weak))
void __init native_machine_early_platform_add_devices(void)
{
}
#ifdef CONFIG_BF60x
static inline u_long bfin_get_clk(char *name)
{
struct clk *clk;
u_long clk_rate;
clk = clk_get(NULL, name);
if (IS_ERR(clk))
return 0;
clk_rate = clk_get_rate(clk);
clk_put(clk);
return clk_rate;
}
#endif
void __init setup_arch(char **cmdline_p)
{
u32 mmr;
unsigned long sclk, cclk;
native_machine_early_platform_add_devices();
enable_shadow_console();
/* Check to make sure we are running on the right processor */
mmr = bfin_cpuid();
if (unlikely(CPUID != bfin_cpuid()))
printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
CPU, bfin_cpuid(), bfin_revid());
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
#if defined(CONFIG_CMDLINE_BOOL)
strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
command_line[sizeof(command_line) - 1] = 0;
#endif
/* Keep a copy of command line */
*cmdline_p = &command_line[0];
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
memset(&bfin_memmap, 0, sizeof(bfin_memmap));
#ifdef CONFIG_BF60x
/* Should init clock device before parse command early */
clk_init();
#endif
/* If the user does not specify things on the command line, use
* what the bootloader set things up as
*/
physical_mem_end = 0;
parse_cmdline_early(&command_line[0]);
if (_ramend == 0)
_ramend = get_mem_size() * 1024 * 1024;
if (physical_mem_end == 0)
physical_mem_end = _ramend;
memory_setup();
#ifndef CONFIG_BF60x
/* Initialize Async memory banks */
bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
bfin_write_EBIU_AMGCTL(AMGCTLVAL);
#ifdef CONFIG_EBIU_MBSCTLVAL
bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
#endif
#endif
#ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
bfin_write_PORTF_HYSTERESIS(HYST_PORTF_0_15);
bfin_write_PORTG_HYSTERESIS(HYST_PORTG_0_15);
bfin_write_PORTH_HYSTERESIS(HYST_PORTH_0_15);
bfin_write_MISCPORT_HYSTERESIS((bfin_read_MISCPORT_HYSTERESIS() &
~HYST_NONEGPIO_MASK) | HYST_NONEGPIO);
#endif
cclk = get_cclk();
sclk = get_sclk();
if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
#ifdef BF561_FAMILY
if (ANOMALY_05000266) {
bfin_read_IMDMA_D0_IRQ_STATUS();
bfin_read_IMDMA_D1_IRQ_STATUS();
}
#endif
mmr = bfin_read_TBUFCTL();
printk(KERN_INFO "Hardware Trace %s and %sabled\n",
(mmr & 0x1) ? "active" : "off",
(mmr & 0x2) ? "en" : "dis");
#ifndef CONFIG_BF60x
mmr = bfin_read_SYSCR();
printk(KERN_INFO "Boot Mode: %i\n", mmr & 0xF);
/* Newer parts mirror SWRST bits in SYSCR */
#if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
defined(CONFIG_BF538) || defined(CONFIG_BF539)
_bfin_swrst = bfin_read_SWRST();
#else
/* Clear boot mode field */
_bfin_swrst = mmr & ~0xf;
#endif
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
#endif
#ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
#endif
#ifdef CONFIG_SMP
if (_bfin_swrst & SWRST_DBL_FAULT_A) {
#else
if (_bfin_swrst & RESET_DOUBLE) {
#endif
printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
#ifdef CONFIG_DEBUG_DOUBLEFAULT
/* We assume the crashing kernel, and the current symbol table match */
printk(KERN_EMERG " While handling exception (EXCAUSE = %#x) at %pF\n",
initial_pda.seqstat_doublefault & SEQSTAT_EXCAUSE,
initial_pda.retx_doublefault);
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n",
initial_pda.dcplb_doublefault_addr);
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n",
initial_pda.icplb_doublefault_addr);
#endif
printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
initial_pda.retx);
} else if (_bfin_swrst & RESET_WDOG)
printk(KERN_INFO "Recovering from Watchdog event\n");
else if (_bfin_swrst & RESET_SOFTWARE)
printk(KERN_NOTICE "Reset caused by Software reset\n");
#endif
printk(KERN_INFO "Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
if (bfin_compiled_revid() == 0xffff)
printk(KERN_INFO "Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU, bfin_revid());
else if (bfin_compiled_revid() == -1)
printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
else
printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
if (likely(CPUID == bfin_cpuid())) {
if (bfin_revid() != bfin_compiled_revid()) {
if (bfin_compiled_revid() == -1)
printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
bfin_revid());
else if (bfin_compiled_revid() != 0xffff) {
printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
bfin_compiled_revid(), bfin_revid());
if (bfin_compiled_revid() > bfin_revid())
panic("Error: you are missing anomaly workarounds for this rev");
}
}
if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
CPU, bfin_revid());
}
printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
#ifdef CONFIG_BF60x
printk(KERN_INFO "Processor Speed: %lu MHz core clock, %lu MHz SCLk, %lu MHz SCLK0, %lu MHz SCLK1 and %lu MHz DCLK\n",
cclk / 1000000, bfin_get_clk("SYSCLK") / 1000000, get_sclk0() / 1000000, get_sclk1() / 1000000, get_dclk() / 1000000);
#else
printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
cclk / 1000000, sclk / 1000000);
#endif
setup_bootmem_allocator();
paging_init();
/* Copy atomic sequences to their fixed location, and sanity check that
these locations are the ones that we advertise to userspace. */
memcpy((void *)FIXED_CODE_START, &fixed_code_start,
FIXED_CODE_END - FIXED_CODE_START);
BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
!= SIGRETURN_STUB - FIXED_CODE_START);
BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
!= ATOMIC_XCHG32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
!= ATOMIC_CAS32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
!= ATOMIC_ADD32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
!= ATOMIC_SUB32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
!= ATOMIC_IOR32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
!= ATOMIC_AND32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
!= ATOMIC_XOR32 - FIXED_CODE_START);
BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
#ifdef CONFIG_SMP
platform_init_cpus();
#endif
init_exception_vectors();
bfin_cache_init(); /* Initialize caches for the boot CPU */
}
static int __init topology_init(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
/* Get the input clock frequency */
static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
#ifndef CONFIG_BF60x
static u_long get_clkin_hz(void)
{
return cached_clkin_hz;
}
#endif
static int __init early_init_clkin_hz(char *buf)
{
cached_clkin_hz = simple_strtoul(buf, NULL, 0);
#ifdef BFIN_KERNEL_CLOCK
if (cached_clkin_hz != CONFIG_CLKIN_HZ)
panic("cannot change clkin_hz when reprogramming clocks");
#endif
return 1;
}
early_param("clkin_hz=", early_init_clkin_hz);
#ifndef CONFIG_BF60x
/* Get the voltage input multiplier */
static u_long get_vco(void)
{
static u_long cached_vco;
u_long msel, pll_ctl;
/* The assumption here is that VCO never changes at runtime.
* If, someday, we support that, then we'll have to change this.
*/
if (cached_vco)
return cached_vco;
pll_ctl = bfin_read_PLL_CTL();
msel = (pll_ctl >> 9) & 0x3F;
if (0 == msel)
msel = 64;
cached_vco = get_clkin_hz();
cached_vco >>= (1 & pll_ctl); /* DF bit */
cached_vco *= msel;
return cached_vco;
}
#endif
/* Get the Core clock */
u_long get_cclk(void)
{
#ifdef CONFIG_BF60x
return bfin_get_clk("CCLK");
#else
static u_long cached_cclk_pll_div, cached_cclk;
u_long csel, ssel;
if (bfin_read_PLL_STAT() & 0x1)
return get_clkin_hz();
ssel = bfin_read_PLL_DIV();
if (ssel == cached_cclk_pll_div)
return cached_cclk;
else
cached_cclk_pll_div = ssel;
csel = ((ssel >> 4) & 0x03);
ssel &= 0xf;
if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
cached_cclk = get_vco() / ssel;
else
cached_cclk = get_vco() >> csel;
return cached_cclk;
#endif
}
EXPORT_SYMBOL(get_cclk);
#ifdef CONFIG_BF60x
/* Get the bf60x clock of SCLK0 domain */
u_long get_sclk0(void)
{
return bfin_get_clk("SCLK0");
}
EXPORT_SYMBOL(get_sclk0);
/* Get the bf60x clock of SCLK1 domain */
u_long get_sclk1(void)
{
return bfin_get_clk("SCLK1");
}
EXPORT_SYMBOL(get_sclk1);
/* Get the bf60x DRAM clock */
u_long get_dclk(void)
{
return bfin_get_clk("DCLK");
}
EXPORT_SYMBOL(get_dclk);
#endif
/* Get the default system clock */
u_long get_sclk(void)
{
#ifdef CONFIG_BF60x
return get_sclk0();
#else
static u_long cached_sclk;
u_long ssel;
/* The assumption here is that SCLK never changes at runtime.
* If, someday, we support that, then we'll have to change this.
*/
if (cached_sclk)
return cached_sclk;
if (bfin_read_PLL_STAT() & 0x1)
return get_clkin_hz();
ssel = bfin_read_PLL_DIV() & 0xf;
if (0 == ssel) {
printk(KERN_WARNING "Invalid System Clock\n");
ssel = 1;
}
cached_sclk = get_vco() / ssel;
return cached_sclk;
#endif
}
EXPORT_SYMBOL(get_sclk);
unsigned long sclk_to_usecs(unsigned long sclk)
{
u64 tmp = USEC_PER_SEC * (u64)sclk;
do_div(tmp, get_sclk());
return tmp;
}
EXPORT_SYMBOL(sclk_to_usecs);
unsigned long usecs_to_sclk(unsigned long usecs)
{
u64 tmp = get_sclk() * (u64)usecs;
do_div(tmp, USEC_PER_SEC);
return tmp;
}
EXPORT_SYMBOL(usecs_to_sclk);
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *cpu, *mmu, *fpu, *vendor, *cache;
uint32_t revid;
int cpu_num = *(unsigned int *)v;
u_long sclk, cclk;
u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
cpu = CPU;
mmu = "none";
fpu = "none";
revid = bfin_revid();
sclk = get_sclk();
cclk = get_cclk();
switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
case 0xca:
vendor = "Analog Devices";
break;
default:
vendor = "unknown";
break;
}
seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
if (CPUID == bfin_cpuid())
seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
else
seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
CPUID, bfin_cpuid());
seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
"stepping\t: %d ",
cpu, cclk/1000000, sclk/1000000,
#ifdef CONFIG_MPU
"mpu on",
#else
"mpu off",
#endif
revid);
if (bfin_revid() != bfin_compiled_revid()) {
if (bfin_compiled_revid() == -1)
seq_printf(m, "(Compiled for Rev none)");
else if (bfin_compiled_revid() == 0xffff)
seq_printf(m, "(Compiled for Rev any)");
else
seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
}
seq_printf(m, "\ncpu MHz\t\t: %lu.%06lu/%lu.%06lu\n",
cclk/1000000, cclk%1000000,
sclk/1000000, sclk%1000000);
seq_printf(m, "bogomips\t: %lu.%02lu\n"
"Calibration\t: %lu loops\n",
(loops_per_jiffy * HZ) / 500000,
((loops_per_jiffy * HZ) / 5000) % 100,
(loops_per_jiffy * HZ));
/* Check Cache configutation */
switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
case ACACHE_BSRAM:
cache = "dbank-A/B\t: cache/sram";
dcache_size = 16;
dsup_banks = 1;
break;
case ACACHE_BCACHE:
cache = "dbank-A/B\t: cache/cache";
dcache_size = 32;
dsup_banks = 2;
break;
case ASRAM_BSRAM:
cache = "dbank-A/B\t: sram/sram";
dcache_size = 0;
dsup_banks = 0;
break;
default:
cache = "unknown";
dcache_size = 0;
dsup_banks = 0;
break;
}
/* Is it turned on? */
if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
dcache_size = 0;
if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
icache_size = 0;
seq_printf(m, "cache size\t: %d KB(L1 icache) "
"%d KB(L1 dcache) %d KB(L2 cache)\n",
icache_size, dcache_size, 0);
seq_printf(m, "%s\n", cache);
seq_printf(m, "external memory\t: "
#if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
"cacheable"
#else
"uncacheable"
#endif
" in instruction cache\n");
seq_printf(m, "external memory\t: "
#if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
"cacheable (write-back)"
#elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
"cacheable (write-through)"
#else
"uncacheable"
#endif
" in data cache\n");
if (icache_size)
seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
else
seq_printf(m, "icache setup\t: off\n");
seq_printf(m,
"dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
BFIN_DLINES);
#ifdef __ARCH_SYNC_CORE_DCACHE
seq_printf(m, "dcache flushes\t: %lu\n", dcache_invld_count[cpu_num]);
#endif
#ifdef __ARCH_SYNC_CORE_ICACHE
seq_printf(m, "icache flushes\t: %lu\n", icache_invld_count[cpu_num]);
#endif
seq_printf(m, "\n");
if (cpu_num != num_possible_cpus() - 1)
return 0;
if (L2_LENGTH) {
seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
seq_printf(m, "L2 SRAM\t\t: "
#if defined(CONFIG_BFIN_L2_ICACHEABLE)
"cacheable"
#else
"uncacheable"
#endif
" in instruction cache\n");
seq_printf(m, "L2 SRAM\t\t: "
#if defined(CONFIG_BFIN_L2_WRITEBACK)
"cacheable (write-back)"
#elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
"cacheable (write-through)"
#else
"uncacheable"
#endif
" in data cache\n");
}
seq_printf(m, "board name\t: %s\n", bfin_board_name);
seq_printf(m, "board memory\t: %ld kB (0x%08lx -> 0x%08lx)\n",
physical_mem_end >> 10, 0ul, physical_mem_end);
seq_printf(m, "kernel memory\t: %d kB (0x%08lx -> 0x%08lx)\n",
((int)memory_end - (int)_rambase) >> 10,
_rambase, memory_end);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0)
*pos = cpumask_first(cpu_online_mask);
if (*pos >= num_online_cpus())
return NULL;
return pos;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
*pos = cpumask_next(*pos, cpu_online_mask);
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
void __init cmdline_init(const char *r0)
{
early_shadow_stamp();
if (r0)
strncpy(command_line, r0, COMMAND_LINE_SIZE);
}