linux/fs/bcachefs/recovery.c
Kent Overstreet 2776369266 bcachefs: Add a cond_resched() call to journal_keys_sort()
We're just doing cpu work here and it could take awhile, a
cond_resched() is definitely needed.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:09:59 -04:00

1667 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "backpointers.h"
#include "bkey_buf.h"
#include "alloc_background.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "buckets.h"
#include "dirent.h"
#include "ec.h"
#include "errcode.h"
#include "error.h"
#include "fs-common.h"
#include "fsck.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "lru.h"
#include "move.h"
#include "quota.h"
#include "recovery.h"
#include "replicas.h"
#include "subvolume.h"
#include "super-io.h"
#include <linux/sort.h>
#include <linux/stat.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
/* for -o reconstruct_alloc: */
static void drop_alloc_keys(struct journal_keys *keys)
{
size_t src, dst;
for (src = 0, dst = 0; src < keys->nr; src++)
if (keys->d[src].btree_id != BTREE_ID_alloc)
keys->d[dst++] = keys->d[src];
keys->nr = dst;
}
/*
* Btree node pointers have a field to stack a pointer to the in memory btree
* node; we need to zero out this field when reading in btree nodes, or when
* reading in keys from the journal:
*/
static void zero_out_btree_mem_ptr(struct journal_keys *keys)
{
struct journal_key *i;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
}
/* iterate over keys read from the journal: */
static int __journal_key_cmp(enum btree_id l_btree_id,
unsigned l_level,
struct bpos l_pos,
const struct journal_key *r)
{
return (cmp_int(l_btree_id, r->btree_id) ?:
cmp_int(l_level, r->level) ?:
bpos_cmp(l_pos, r->k->k.p));
}
static int journal_key_cmp(const struct journal_key *l, const struct journal_key *r)
{
return __journal_key_cmp(l->btree_id, l->level, l->k->k.p, r);
}
static inline size_t idx_to_pos(struct journal_keys *keys, size_t idx)
{
size_t gap_size = keys->size - keys->nr;
if (idx >= keys->gap)
idx += gap_size;
return idx;
}
static inline struct journal_key *idx_to_key(struct journal_keys *keys, size_t idx)
{
return keys->d + idx_to_pos(keys, idx);
}
static size_t __bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
size_t l = 0, r = keys->nr, m;
while (l < r) {
m = l + ((r - l) >> 1);
if (__journal_key_cmp(id, level, pos, idx_to_key(keys, m)) > 0)
l = m + 1;
else
r = m;
}
BUG_ON(l < keys->nr &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l)) > 0);
BUG_ON(l &&
__journal_key_cmp(id, level, pos, idx_to_key(keys, l - 1)) <= 0);
return l;
}
static size_t bch2_journal_key_search(struct journal_keys *keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
return idx_to_pos(keys, __bch2_journal_key_search(keys, id, level, pos));
}
struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos,
struct bpos end_pos, size_t *idx)
{
struct journal_keys *keys = &c->journal_keys;
unsigned iters = 0;
struct journal_key *k;
search:
if (!*idx)
*idx = __bch2_journal_key_search(keys, btree_id, level, pos);
while ((k = *idx < keys->nr ? idx_to_key(keys, *idx) : NULL)) {
if (__journal_key_cmp(btree_id, level, end_pos, k) < 0)
return NULL;
if (__journal_key_cmp(btree_id, level, pos, k) <= 0 &&
!k->overwritten)
return k->k;
(*idx)++;
iters++;
if (iters == 10) {
*idx = 0;
goto search;
}
}
return NULL;
}
struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *c, enum btree_id btree_id,
unsigned level, struct bpos pos)
{
size_t idx = 0;
return bch2_journal_keys_peek_upto(c, btree_id, level, pos, pos, &idx);
}
static void journal_iters_fix(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
/* The key we just inserted is immediately before the gap: */
size_t gap_end = keys->gap + (keys->size - keys->nr);
struct btree_and_journal_iter *iter;
/*
* If an iterator points one after the key we just inserted, decrement
* the iterator so it points at the key we just inserted - if the
* decrement was unnecessary, bch2_btree_and_journal_iter_peek() will
* handle that:
*/
list_for_each_entry(iter, &c->journal_iters, journal.list)
if (iter->journal.idx == gap_end)
iter->journal.idx = keys->gap - 1;
}
static void journal_iters_move_gap(struct bch_fs *c, size_t old_gap, size_t new_gap)
{
struct journal_keys *keys = &c->journal_keys;
struct journal_iter *iter;
size_t gap_size = keys->size - keys->nr;
list_for_each_entry(iter, &c->journal_iters, list) {
if (iter->idx > old_gap)
iter->idx -= gap_size;
if (iter->idx >= new_gap)
iter->idx += gap_size;
}
}
int bch2_journal_key_insert_take(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct journal_key n = {
.btree_id = id,
.level = level,
.k = k,
.allocated = true,
/*
* Ensure these keys are done last by journal replay, to unblock
* journal reclaim:
*/
.journal_seq = U32_MAX,
};
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, id, level, k->k.p);
BUG_ON(test_bit(BCH_FS_RW, &c->flags));
if (idx < keys->size &&
journal_key_cmp(&n, &keys->d[idx]) == 0) {
if (keys->d[idx].allocated)
kfree(keys->d[idx].k);
keys->d[idx] = n;
return 0;
}
if (idx > keys->gap)
idx -= keys->size - keys->nr;
if (keys->nr == keys->size) {
struct journal_keys new_keys = {
.nr = keys->nr,
.size = max_t(size_t, keys->size, 8) * 2,
};
new_keys.d = kvmalloc_array(new_keys.size, sizeof(new_keys.d[0]), GFP_KERNEL);
if (!new_keys.d) {
bch_err(c, "%s: error allocating new key array (size %zu)",
__func__, new_keys.size);
return -BCH_ERR_ENOMEM_journal_key_insert;
}
/* Since @keys was full, there was no gap: */
memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr);
kvfree(keys->d);
*keys = new_keys;
/* And now the gap is at the end: */
keys->gap = keys->nr;
}
journal_iters_move_gap(c, keys->gap, idx);
move_gap(keys->d, keys->nr, keys->size, keys->gap, idx);
keys->gap = idx;
keys->nr++;
keys->d[keys->gap++] = n;
journal_iters_fix(c);
return 0;
}
/*
* Can only be used from the recovery thread while we're still RO - can't be
* used once we've got RW, as journal_keys is at that point used by multiple
* threads:
*/
int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct bkey_i *n;
int ret;
n = kmalloc(bkey_bytes(&k->k), GFP_KERNEL);
if (!n)
return -BCH_ERR_ENOMEM_journal_key_insert;
bkey_copy(n, k);
ret = bch2_journal_key_insert_take(c, id, level, n);
if (ret)
kfree(n);
return ret;
}
int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id,
unsigned level, struct bpos pos)
{
struct bkey_i whiteout;
bkey_init(&whiteout.k);
whiteout.k.p = pos;
return bch2_journal_key_insert(c, id, level, &whiteout);
}
void bch2_journal_key_overwritten(struct bch_fs *c, enum btree_id btree,
unsigned level, struct bpos pos)
{
struct journal_keys *keys = &c->journal_keys;
size_t idx = bch2_journal_key_search(keys, btree, level, pos);
if (idx < keys->size &&
keys->d[idx].btree_id == btree &&
keys->d[idx].level == level &&
bpos_eq(keys->d[idx].k->k.p, pos))
keys->d[idx].overwritten = true;
}
static void bch2_journal_iter_advance(struct journal_iter *iter)
{
if (iter->idx < iter->keys->size) {
iter->idx++;
if (iter->idx == iter->keys->gap)
iter->idx += iter->keys->size - iter->keys->nr;
}
}
struct bkey_s_c bch2_journal_iter_peek(struct journal_iter *iter)
{
struct journal_key *k = iter->keys->d + iter->idx;
while (k < iter->keys->d + iter->keys->size &&
k->btree_id == iter->btree_id &&
k->level == iter->level) {
if (!k->overwritten)
return bkey_i_to_s_c(k->k);
bch2_journal_iter_advance(iter);
k = iter->keys->d + iter->idx;
}
return bkey_s_c_null;
}
static void bch2_journal_iter_exit(struct journal_iter *iter)
{
list_del(&iter->list);
}
static void bch2_journal_iter_init(struct bch_fs *c,
struct journal_iter *iter,
enum btree_id id, unsigned level,
struct bpos pos)
{
iter->btree_id = id;
iter->level = level;
iter->keys = &c->journal_keys;
iter->idx = bch2_journal_key_search(&c->journal_keys, id, level, pos);
}
static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter)
{
return bch2_btree_node_iter_peek_unpack(&iter->node_iter,
iter->b, &iter->unpacked);
}
static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter)
{
bch2_btree_node_iter_advance(&iter->node_iter, iter->b);
}
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter)
{
if (bpos_eq(iter->pos, SPOS_MAX))
iter->at_end = true;
else
iter->pos = bpos_successor(iter->pos);
}
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter)
{
struct bkey_s_c btree_k, journal_k, ret;
again:
if (iter->at_end)
return bkey_s_c_null;
while ((btree_k = bch2_journal_iter_peek_btree(iter)).k &&
bpos_lt(btree_k.k->p, iter->pos))
bch2_journal_iter_advance_btree(iter);
while ((journal_k = bch2_journal_iter_peek(&iter->journal)).k &&
bpos_lt(journal_k.k->p, iter->pos))
bch2_journal_iter_advance(&iter->journal);
ret = journal_k.k &&
(!btree_k.k || bpos_le(journal_k.k->p, btree_k.k->p))
? journal_k
: btree_k;
if (ret.k && iter->b && bpos_gt(ret.k->p, iter->b->data->max_key))
ret = bkey_s_c_null;
if (ret.k) {
iter->pos = ret.k->p;
if (bkey_deleted(ret.k)) {
bch2_btree_and_journal_iter_advance(iter);
goto again;
}
} else {
iter->pos = SPOS_MAX;
iter->at_end = true;
}
return ret;
}
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter)
{
bch2_journal_iter_exit(&iter->journal);
}
void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b,
struct btree_node_iter node_iter,
struct bpos pos)
{
memset(iter, 0, sizeof(*iter));
iter->b = b;
iter->node_iter = node_iter;
bch2_journal_iter_init(c, &iter->journal, b->c.btree_id, b->c.level, pos);
INIT_LIST_HEAD(&iter->journal.list);
iter->pos = b->data->min_key;
iter->at_end = false;
}
/*
* this version is used by btree_gc before filesystem has gone RW and
* multithreaded, so uses the journal_iters list:
*/
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b)
{
struct btree_node_iter node_iter;
bch2_btree_node_iter_init_from_start(&node_iter, b);
__bch2_btree_and_journal_iter_init_node_iter(iter, c, b, node_iter, b->data->min_key);
list_add(&iter->journal.list, &c->journal_iters);
}
/* sort and dedup all keys in the journal: */
void bch2_journal_entries_free(struct bch_fs *c)
{
struct journal_replay **i;
struct genradix_iter iter;
genradix_for_each(&c->journal_entries, iter, i)
if (*i)
kvpfree(*i, offsetof(struct journal_replay, j) +
vstruct_bytes(&(*i)->j));
genradix_free(&c->journal_entries);
}
/*
* When keys compare equal, oldest compares first:
*/
static int journal_sort_key_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return journal_key_cmp(l, r) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
void bch2_journal_keys_free(struct journal_keys *keys)
{
struct journal_key *i;
move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
keys->gap = keys->nr;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->allocated)
kfree(i->k);
kvfree(keys->d);
keys->d = NULL;
keys->nr = keys->gap = keys->size = 0;
}
static void __journal_keys_sort(struct journal_keys *keys)
{
struct journal_key *src, *dst;
sort(keys->d, keys->nr, sizeof(keys->d[0]), journal_sort_key_cmp, NULL);
src = dst = keys->d;
while (src < keys->d + keys->nr) {
while (src + 1 < keys->d + keys->nr &&
src[0].btree_id == src[1].btree_id &&
src[0].level == src[1].level &&
bpos_eq(src[0].k->k.p, src[1].k->k.p))
src++;
*dst++ = *src++;
}
keys->nr = dst - keys->d;
}
static int journal_keys_sort(struct bch_fs *c)
{
struct genradix_iter iter;
struct journal_replay *i, **_i;
struct jset_entry *entry;
struct bkey_i *k;
struct journal_keys *keys = &c->journal_keys;
size_t nr_keys = 0, nr_read = 0;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
for_each_jset_key(k, entry, &i->j)
nr_keys++;
}
if (!nr_keys)
return 0;
keys->size = roundup_pow_of_two(nr_keys);
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
if (!keys->d) {
bch_err(c, "Failed to allocate buffer for sorted journal keys (%zu keys); trying slowpath",
nr_keys);
do {
keys->size >>= 1;
keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL);
} while (!keys->d && keys->size > nr_keys / 8);
if (!keys->d) {
bch_err(c, "Failed to allocate %zu size buffer for sorted journal keys; exiting",
keys->size);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
cond_resched();
for_each_jset_key(k, entry, &i->j) {
if (keys->nr == keys->size) {
__journal_keys_sort(keys);
if (keys->nr > keys->size * 7 / 8) {
bch_err(c, "Too many journal keys for slowpath; have %zu compacted, buf size %zu, processed %zu/%zu",
keys->nr, keys->size, nr_read, nr_keys);
return -BCH_ERR_ENOMEM_journal_keys_sort;
}
}
keys->d[keys->nr++] = (struct journal_key) {
.btree_id = entry->btree_id,
.level = entry->level,
.k = k,
.journal_seq = le64_to_cpu(i->j.seq),
.journal_offset = k->_data - i->j._data,
};
nr_read++;
}
}
__journal_keys_sort(keys);
keys->gap = keys->nr;
bch_verbose(c, "Journal keys: %zu read, %zu after sorting and compacting", nr_keys, keys->nr);
return 0;
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
{
BUG_ON(seq < j->replay_journal_seq);
seq = min(seq, j->replay_journal_seq_end);
while (j->replay_journal_seq < seq)
bch2_journal_pin_put(j, j->replay_journal_seq++);
}
static int bch2_journal_replay_key(struct btree_trans *trans,
struct journal_key *k)
{
struct btree_iter iter;
unsigned iter_flags =
BTREE_ITER_INTENT|
BTREE_ITER_NOT_EXTENTS;
int ret;
if (!k->level && k->btree_id == BTREE_ID_alloc)
iter_flags |= BTREE_ITER_CACHED;
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, k->level,
iter_flags);
ret = bch2_btree_iter_traverse(&iter);
if (ret)
goto out;
/* Must be checked with btree locked: */
if (k->overwritten)
goto out;
ret = bch2_trans_update(trans, &iter, k->k, BTREE_TRIGGER_NORUN);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int journal_sort_seq_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = *((const struct journal_key **)_l);
const struct journal_key *r = *((const struct journal_key **)_r);
return cmp_int(l->journal_seq, r->journal_seq);
}
static int bch2_journal_replay(struct bch_fs *c, u64 start_seq, u64 end_seq)
{
struct journal_keys *keys = &c->journal_keys;
struct journal_key **keys_sorted, *k;
struct journal *j = &c->journal;
size_t i;
int ret;
move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr);
keys->gap = keys->nr;
keys_sorted = kvmalloc_array(sizeof(*keys_sorted), keys->nr, GFP_KERNEL);
if (!keys_sorted)
return -BCH_ERR_ENOMEM_journal_replay;
for (i = 0; i < keys->nr; i++)
keys_sorted[i] = &keys->d[i];
sort(keys_sorted, keys->nr,
sizeof(keys_sorted[0]),
journal_sort_seq_cmp, NULL);
if (keys->nr) {
ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
keys->nr, start_seq, end_seq);
if (ret)
goto err;
}
for (i = 0; i < keys->nr; i++) {
k = keys_sorted[i];
cond_resched();
replay_now_at(j, k->journal_seq);
ret = bch2_trans_do(c, NULL, NULL,
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_NOFAIL|
(!k->allocated
? BTREE_INSERT_JOURNAL_REPLAY|JOURNAL_WATERMARK_reserved
: 0),
bch2_journal_replay_key(&trans, k));
if (ret) {
bch_err(c, "journal replay: error while replaying key at btree %s level %u: %s",
bch2_btree_ids[k->btree_id], k->level, bch2_err_str(ret));
goto err;
}
}
replay_now_at(j, j->replay_journal_seq_end);
j->replay_journal_seq = 0;
bch2_journal_set_replay_done(j);
bch2_journal_flush_all_pins(j);
ret = bch2_journal_error(j);
if (keys->nr && !ret)
bch2_journal_log_msg(c, "journal replay finished");
err:
kvfree(keys_sorted);
return ret;
}
/* journal replay early: */
static int journal_replay_entry_early(struct bch_fs *c,
struct jset_entry *entry)
{
int ret = 0;
switch (entry->type) {
case BCH_JSET_ENTRY_btree_root: {
struct btree_root *r;
if (entry->btree_id >= BTREE_ID_NR) {
bch_err(c, "filesystem has unknown btree type %u",
entry->btree_id);
return -EINVAL;
}
r = &c->btree_roots[entry->btree_id];
if (entry->u64s) {
r->level = entry->level;
bkey_copy(&r->key, &entry->start[0]);
r->error = 0;
} else {
r->error = -EIO;
}
r->alive = true;
break;
}
case BCH_JSET_ENTRY_usage: {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
switch (entry->btree_id) {
case BCH_FS_USAGE_reserved:
if (entry->level < BCH_REPLICAS_MAX)
c->usage_base->persistent_reserved[entry->level] =
le64_to_cpu(u->v);
break;
case BCH_FS_USAGE_inodes:
c->usage_base->nr_inodes = le64_to_cpu(u->v);
break;
case BCH_FS_USAGE_key_version:
atomic64_set(&c->key_version,
le64_to_cpu(u->v));
break;
}
break;
}
case BCH_JSET_ENTRY_data_usage: {
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
ret = bch2_replicas_set_usage(c, &u->r,
le64_to_cpu(u->v));
break;
}
case BCH_JSET_ENTRY_dev_usage: {
struct jset_entry_dev_usage *u =
container_of(entry, struct jset_entry_dev_usage, entry);
struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev));
unsigned i, nr_types = jset_entry_dev_usage_nr_types(u);
ca->usage_base->buckets_ec = le64_to_cpu(u->buckets_ec);
for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) {
ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets);
ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors);
ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented);
}
break;
}
case BCH_JSET_ENTRY_blacklist: {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->seq),
le64_to_cpu(bl_entry->seq) + 1);
break;
}
case BCH_JSET_ENTRY_blacklist_v2: {
struct jset_entry_blacklist_v2 *bl_entry =
container_of(entry, struct jset_entry_blacklist_v2, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->start),
le64_to_cpu(bl_entry->end) + 1);
break;
}
case BCH_JSET_ENTRY_clock: {
struct jset_entry_clock *clock =
container_of(entry, struct jset_entry_clock, entry);
atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
}
}
return ret;
}
static int journal_replay_early(struct bch_fs *c,
struct bch_sb_field_clean *clean)
{
struct jset_entry *entry;
int ret;
if (clean) {
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
} else {
struct genradix_iter iter;
struct journal_replay *i, **_i;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (!i || i->ignore)
continue;
vstruct_for_each(&i->j, entry) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
}
}
bch2_fs_usage_initialize(c);
return 0;
}
/* sb clean section: */
static struct bkey_i *btree_root_find(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry, *start, *end;
if (clean) {
start = clean->start;
end = vstruct_end(&clean->field);
} else {
start = j->start;
end = vstruct_last(j);
}
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root &&
entry->btree_id == id)
goto found;
return NULL;
found:
if (!entry->u64s)
return ERR_PTR(-EINVAL);
k = entry->start;
*level = entry->level;
return k;
}
static int verify_superblock_clean(struct bch_fs *c,
struct bch_sb_field_clean **cleanp,
struct jset *j)
{
unsigned i;
struct bch_sb_field_clean *clean = *cleanp;
struct printbuf buf1 = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret = 0;
if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
le64_to_cpu(clean->journal_seq),
le64_to_cpu(j->seq))) {
kfree(clean);
*cleanp = NULL;
return 0;
}
for (i = 0; i < BTREE_ID_NR; i++) {
struct bkey_i *k1, *k2;
unsigned l1 = 0, l2 = 0;
k1 = btree_root_find(c, clean, NULL, i, &l1);
k2 = btree_root_find(c, NULL, j, i, &l2);
if (!k1 && !k2)
continue;
printbuf_reset(&buf1);
printbuf_reset(&buf2);
if (k1)
bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1));
else
prt_printf(&buf1, "(none)");
if (k2)
bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2));
else
prt_printf(&buf2, "(none)");
mustfix_fsck_err_on(!k1 || !k2 ||
IS_ERR(k1) ||
IS_ERR(k2) ||
k1->k.u64s != k2->k.u64s ||
memcmp(k1, k2, bkey_bytes(&k1->k)) ||
l1 != l2, c,
"superblock btree root %u doesn't match journal after clean shutdown\n"
"sb: l=%u %s\n"
"journal: l=%u %s\n", i,
l1, buf1.buf,
l2, buf2.buf);
}
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *clean, *sb_clean;
int ret;
mutex_lock(&c->sb_lock);
sb_clean = bch2_sb_get_clean(c->disk_sb.sb);
if (fsck_err_on(!sb_clean, c,
"superblock marked clean but clean section not present")) {
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
mutex_unlock(&c->sb_lock);
return NULL;
}
clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
GFP_KERNEL);
if (!clean) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean);
}
ret = bch2_sb_clean_validate_late(c, clean, READ);
if (ret) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
mutex_unlock(&c->sb_lock);
return clean;
fsck_err:
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
static bool btree_id_is_alloc(enum btree_id id)
{
switch (id) {
case BTREE_ID_alloc:
case BTREE_ID_backpointers:
case BTREE_ID_need_discard:
case BTREE_ID_freespace:
case BTREE_ID_bucket_gens:
return true;
default:
return false;
}
}
static int read_btree_roots(struct bch_fs *c)
{
unsigned i;
int ret = 0;
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = &c->btree_roots[i];
if (!r->alive)
continue;
if (btree_id_is_alloc(i) &&
c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
continue;
}
if (r->error) {
__fsck_err(c, btree_id_is_alloc(i)
? FSCK_CAN_IGNORE : 0,
"invalid btree root %s",
bch2_btree_ids[i]);
if (i == BTREE_ID_alloc)
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
}
ret = bch2_btree_root_read(c, i, &r->key, r->level);
if (ret) {
__fsck_err(c,
btree_id_is_alloc(i)
? FSCK_CAN_IGNORE : 0,
"error reading btree root %s",
bch2_btree_ids[i]);
if (btree_id_is_alloc(i))
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
}
}
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = &c->btree_roots[i];
if (!r->b) {
r->alive = false;
r->level = 0;
bch2_btree_root_alloc(c, i);
}
}
fsck_err:
return ret;
}
static int bch2_fs_initialize_subvolumes(struct bch_fs *c)
{
struct bkey_i_snapshot root_snapshot;
struct bkey_i_subvolume root_volume;
int ret;
bkey_snapshot_init(&root_snapshot.k_i);
root_snapshot.k.p.offset = U32_MAX;
root_snapshot.v.flags = 0;
root_snapshot.v.parent = 0;
root_snapshot.v.subvol = BCACHEFS_ROOT_SUBVOL;
root_snapshot.v.pad = 0;
SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true);
ret = bch2_btree_insert(c, BTREE_ID_snapshots,
&root_snapshot.k_i,
NULL, NULL, 0);
if (ret)
return ret;
bkey_subvolume_init(&root_volume.k_i);
root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL;
root_volume.v.flags = 0;
root_volume.v.snapshot = cpu_to_le32(U32_MAX);
root_volume.v.inode = cpu_to_le64(BCACHEFS_ROOT_INO);
ret = bch2_btree_insert(c, BTREE_ID_subvolumes,
&root_volume.k_i,
NULL, NULL, 0);
if (ret)
return ret;
return 0;
}
static int bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans)
{
struct btree_iter iter;
struct bkey_s_c k;
struct bch_inode_unpacked inode;
int ret;
bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes,
SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0);
k = bch2_btree_iter_peek_slot(&iter);
ret = bkey_err(k);
if (ret)
goto err;
if (!bkey_is_inode(k.k)) {
bch_err(trans->c, "root inode not found");
ret = -ENOENT;
goto err;
}
ret = bch2_inode_unpack(k, &inode);
BUG_ON(ret);
inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
ret = bch2_inode_write(trans, &iter, &inode);
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int bch2_fs_recovery(struct bch_fs *c)
{
const char *err = "cannot allocate memory";
struct bch_sb_field_clean *clean = NULL;
struct jset *last_journal_entry = NULL;
u64 last_seq, blacklist_seq, journal_seq;
bool write_sb = false;
int ret = 0;
if (c->sb.clean)
clean = read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
if (c->sb.clean)
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
else
bch_info(c, "recovering from unclean shutdown");
if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
ret = -EINVAL;
goto err;
}
if (!c->sb.clean &&
!(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
ret = -EINVAL;
goto err;
}
if (!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done))) {
bch_err(c, "filesystem may have incompatible bkey formats; run fsck from the compat branch to fix");
ret = -EINVAL;
goto err;
}
if (!(c->sb.features & (1ULL << BCH_FEATURE_alloc_v2))) {
bch_info(c, "alloc_v2 feature bit not set, fsck required");
c->opts.fsck = true;
c->opts.fix_errors = FSCK_OPT_YES;
}
if (!c->opts.nochanges) {
if (c->sb.version < bcachefs_metadata_version_no_bps_in_alloc_keys) {
bch_info(c, "version prior to no_bps_in_alloc_keys, upgrade and fsck required");
c->opts.version_upgrade = true;
c->opts.fsck = true;
c->opts.fix_errors = FSCK_OPT_YES;
}
}
if (c->opts.fsck && c->opts.norecovery) {
bch_err(c, "cannot select both norecovery and fsck");
ret = -EINVAL;
goto err;
}
ret = bch2_blacklist_table_initialize(c);
if (ret) {
bch_err(c, "error initializing blacklist table");
goto err;
}
if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
struct genradix_iter iter;
struct journal_replay **i;
bch_verbose(c, "starting journal read");
ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
if (ret)
goto err;
/*
* note: cmd_list_journal needs the blacklist table fully up to date so
* it can asterisk ignored journal entries:
*/
if (c->opts.read_journal_only)
goto out;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (*i && !(*i)->ignore) {
last_journal_entry = &(*i)->j;
break;
}
if (mustfix_fsck_err_on(c->sb.clean &&
last_journal_entry &&
!journal_entry_empty(last_journal_entry), c,
"filesystem marked clean but journal not empty")) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
}
if (!last_journal_entry) {
fsck_err_on(!c->sb.clean, c, "no journal entries found");
if (clean)
goto use_clean;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (*i) {
last_journal_entry = &(*i)->j;
(*i)->ignore = false;
break;
}
}
ret = journal_keys_sort(c);
if (ret)
goto err;
if (c->sb.clean && last_journal_entry) {
ret = verify_superblock_clean(c, &clean,
last_journal_entry);
if (ret)
goto err;
}
} else {
use_clean:
if (!clean) {
bch_err(c, "no superblock clean section found");
ret = -BCH_ERR_fsck_repair_impossible;
goto err;
}
blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
}
if (c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
drop_alloc_keys(&c->journal_keys);
}
zero_out_btree_mem_ptr(&c->journal_keys);
ret = journal_replay_early(c, clean);
if (ret)
goto err;
/*
* After an unclean shutdown, skip then next few journal sequence
* numbers as they may have been referenced by btree writes that
* happened before their corresponding journal writes - those btree
* writes need to be ignored, by skipping and blacklisting the next few
* journal sequence numbers:
*/
if (!c->sb.clean)
journal_seq += 8;
if (blacklist_seq != journal_seq) {
ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
blacklist_seq, journal_seq) ?:
bch2_journal_seq_blacklist_add(c,
blacklist_seq, journal_seq);
if (ret) {
bch_err(c, "error creating new journal seq blacklist entry");
goto err;
}
}
ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
journal_seq, last_seq, blacklist_seq - 1) ?:
bch2_fs_journal_start(&c->journal, journal_seq);
if (ret)
goto err;
if (c->opts.reconstruct_alloc)
bch2_journal_log_msg(c, "dropping alloc info");
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type && !c->sb.clean)
atomic64_add(1 << 16, &c->key_version);
ret = read_btree_roots(c);
if (ret)
goto err;
bch_verbose(c, "starting alloc read");
err = "error reading allocation information";
down_read(&c->gc_lock);
ret = c->sb.version < bcachefs_metadata_version_bucket_gens
? bch2_alloc_read(c)
: bch2_bucket_gens_read(c);
up_read(&c->gc_lock);
if (ret)
goto err;
bch_verbose(c, "alloc read done");
bch_verbose(c, "starting stripes_read");
err = "error reading stripes";
ret = bch2_stripes_read(c);
if (ret)
goto err;
bch_verbose(c, "stripes_read done");
if (c->sb.version < bcachefs_metadata_version_snapshot_2) {
err = "error creating root snapshot node";
ret = bch2_fs_initialize_subvolumes(c);
if (ret)
goto err;
}
bch_verbose(c, "reading snapshots table");
err = "error reading snapshots table";
ret = bch2_fs_snapshots_start(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots done");
if (c->opts.fsck) {
bool metadata_only = c->opts.norecovery;
bch_info(c, "checking allocations");
err = "error checking allocations";
ret = bch2_gc(c, true, metadata_only);
if (ret)
goto err;
bch_verbose(c, "done checking allocations");
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
bch_info(c, "starting journal replay, %zu keys", c->journal_keys.nr);
err = "journal replay failed";
ret = bch2_journal_replay(c, last_seq, blacklist_seq - 1);
if (ret)
goto err;
if (c->opts.verbose || !c->sb.clean)
bch_info(c, "journal replay done");
bch_info(c, "checking need_discard and freespace btrees");
err = "error checking need_discard and freespace btrees";
ret = bch2_check_alloc_info(c);
if (ret)
goto err;
bch_verbose(c, "done checking need_discard and freespace btrees");
set_bit(BCH_FS_CHECK_ALLOC_DONE, &c->flags);
bch_info(c, "checking lrus");
err = "error checking lrus";
ret = bch2_check_lrus(c);
if (ret)
goto err;
bch_verbose(c, "done checking lrus");
set_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags);
bch_info(c, "checking backpointers to alloc keys");
err = "error checking backpointers to alloc keys";
ret = bch2_check_btree_backpointers(c);
if (ret)
goto err;
bch_verbose(c, "done checking backpointers to alloc keys");
bch_info(c, "checking backpointers to extents");
err = "error checking backpointers to extents";
ret = bch2_check_backpointers_to_extents(c);
if (ret)
goto err;
bch_verbose(c, "done checking backpointers to extents");
bch_info(c, "checking extents to backpointers");
err = "error checking extents to backpointers";
ret = bch2_check_extents_to_backpointers(c);
if (ret)
goto err;
bch_verbose(c, "done checking extents to backpointers");
set_bit(BCH_FS_CHECK_BACKPOINTERS_DONE, &c->flags);
bch_info(c, "checking alloc to lru refs");
err = "error checking alloc to lru refs";
ret = bch2_check_alloc_to_lru_refs(c);
if (ret)
goto err;
bch_verbose(c, "done checking alloc to lru refs");
set_bit(BCH_FS_CHECK_ALLOC_TO_LRU_REFS_DONE, &c->flags);
} else {
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
set_bit(BCH_FS_CHECK_ALLOC_DONE, &c->flags);
set_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags);
set_bit(BCH_FS_CHECK_BACKPOINTERS_DONE, &c->flags);
set_bit(BCH_FS_CHECK_ALLOC_TO_LRU_REFS_DONE, &c->flags);
set_bit(BCH_FS_FSCK_DONE, &c->flags);
if (c->opts.norecovery)
goto out;
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
bch_verbose(c, "starting journal replay, %zu keys", c->journal_keys.nr);
err = "journal replay failed";
ret = bch2_journal_replay(c, last_seq, blacklist_seq - 1);
if (ret)
goto err;
if (c->opts.verbose || !c->sb.clean)
bch_info(c, "journal replay done");
}
err = "error initializing freespace";
ret = bch2_fs_freespace_init(c);
if (ret)
goto err;
if (c->sb.version < bcachefs_metadata_version_bucket_gens &&
c->opts.version_upgrade) {
bch_info(c, "initializing bucket_gens");
err = "error initializing bucket gens";
ret = bch2_bucket_gens_init(c);
if (ret)
goto err;
bch_verbose(c, "bucket_gens init done");
}
if (c->sb.version < bcachefs_metadata_version_snapshot_2) {
/* set bi_subvol on root inode */
err = "error upgrade root inode for subvolumes";
ret = bch2_trans_do(c, NULL, NULL, BTREE_INSERT_LAZY_RW,
bch2_fs_upgrade_for_subvolumes(&trans));
if (ret)
goto err;
}
if (c->opts.fsck) {
bch_info(c, "starting fsck");
err = "error in fsck";
ret = bch2_fsck_full(c);
if (ret)
goto err;
bch_verbose(c, "fsck done");
} else if (!c->sb.clean) {
bch_verbose(c, "checking for deleted inodes");
err = "error in recovery";
ret = bch2_fsck_walk_inodes_only(c);
if (ret)
goto err;
bch_verbose(c, "check inodes done");
}
if (enabled_qtypes(c)) {
bch_verbose(c, "reading quotas");
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
bch_verbose(c, "quotas done");
}
mutex_lock(&c->sb_lock);
if (c->opts.version_upgrade) {
c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current);
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL);
write_sb = true;
}
if (!test_bit(BCH_FS_ERROR, &c->flags)) {
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
write_sb = true;
}
if (c->opts.fsck &&
!test_bit(BCH_FS_ERROR, &c->flags) &&
!test_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags)) {
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
write_sb = true;
}
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done)) ||
le16_to_cpu(c->sb.version_min) < bcachefs_metadata_version_btree_ptr_sectors_written) {
struct bch_move_stats stats;
bch2_move_stats_init(&stats, "recovery");
bch_info(c, "scanning for old btree nodes");
ret = bch2_fs_read_write(c);
if (ret)
goto err;
ret = bch2_scan_old_btree_nodes(c, &stats);
if (ret)
goto err;
bch_info(c, "scanning for old btree nodes done");
}
if (c->journal_seq_blacklist_table &&
c->journal_seq_blacklist_table->nr > 128)
queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
ret = 0;
out:
set_bit(BCH_FS_FSCK_DONE, &c->flags);
bch2_flush_fsck_errs(c);
if (!c->opts.keep_journal &&
test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) {
bch2_journal_keys_free(&c->journal_keys);
bch2_journal_entries_free(c);
}
kfree(clean);
if (!ret && test_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags)) {
bch2_fs_read_write_early(c);
bch2_delete_dead_snapshots_async(c);
}
if (ret)
bch_err(c, "Error in recovery: %s (%s)", err, bch2_err_str(ret));
else
bch_verbose(c, "ret %s", bch2_err_str(ret));
return ret;
err:
fsck_err:
bch2_fs_emergency_read_only(c);
goto out;
}
int bch2_fs_initialize(struct bch_fs *c)
{
struct bch_inode_unpacked root_inode, lostfound_inode;
struct bkey_inode_buf packed_inode;
struct qstr lostfound = QSTR("lost+found");
const char *err = "cannot allocate memory";
struct bch_dev *ca;
unsigned i;
int ret;
bch_notice(c, "initializing new filesystem");
mutex_lock(&c->sb_lock);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
if (c->sb.version < bcachefs_metadata_version_inode_v3)
c->opts.version_upgrade = true;
if (c->opts.version_upgrade) {
c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current);
c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL);
bch2_write_super(c);
}
mutex_unlock(&c->sb_lock);
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
set_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags);
set_bit(BCH_FS_CHECK_BACKPOINTERS_DONE, &c->flags);
set_bit(BCH_FS_CHECK_ALLOC_TO_LRU_REFS_DONE, &c->flags);
set_bit(BCH_FS_MAY_GO_RW, &c->flags);
set_bit(BCH_FS_FSCK_DONE, &c->flags);
for (i = 0; i < BTREE_ID_NR; i++)
bch2_btree_root_alloc(c, i);
for_each_online_member(ca, c, i)
bch2_dev_usage_init(ca);
err = "unable to allocate journal buckets";
for_each_online_member(ca, c, i) {
ret = bch2_dev_journal_alloc(ca);
if (ret) {
percpu_ref_put(&ca->io_ref);
goto err;
}
}
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_fs_journal_start(&c->journal, 1);
bch2_journal_set_replay_done(&c->journal);
err = "error going read-write";
ret = bch2_fs_read_write_early(c);
if (ret)
goto err;
/*
* Write out the superblock and journal buckets, now that we can do
* btree updates
*/
bch_verbose(c, "marking superblocks");
err = "error marking superblock and journal";
for_each_member_device(ca, c, i) {
ret = bch2_trans_mark_dev_sb(c, ca);
if (ret) {
percpu_ref_put(&ca->ref);
goto err;
}
ca->new_fs_bucket_idx = 0;
}
bch_verbose(c, "initializing freespace");
err = "error initializing freespace";
ret = bch2_fs_freespace_init(c);
if (ret)
goto err;
err = "error creating root snapshot node";
ret = bch2_fs_initialize_subvolumes(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots table");
err = "error reading snapshots table";
ret = bch2_fs_snapshots_start(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots done");
bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
root_inode.bi_inum = BCACHEFS_ROOT_INO;
root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
bch2_inode_pack(&packed_inode, &root_inode);
packed_inode.inode.k.p.snapshot = U32_MAX;
err = "error creating root directory";
ret = bch2_btree_insert(c, BTREE_ID_inodes,
&packed_inode.inode.k_i,
NULL, NULL, 0);
if (ret)
goto err;
bch2_inode_init_early(c, &lostfound_inode);
err = "error creating lost+found";
ret = bch2_trans_do(c, NULL, NULL, 0,
bch2_create_trans(&trans,
BCACHEFS_ROOT_SUBVOL_INUM,
&root_inode, &lostfound_inode,
&lostfound,
0, 0, S_IFDIR|0700, 0,
NULL, NULL, (subvol_inum) { 0 }, 0));
if (ret) {
bch_err(c, "error creating lost+found");
goto err;
}
if (enabled_qtypes(c)) {
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
}
err = "error writing first journal entry";
ret = bch2_journal_flush(&c->journal);
if (ret)
goto err;
mutex_lock(&c->sb_lock);
SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
err:
pr_err("Error initializing new filesystem: %s (%s)", err, bch2_err_str(ret));
return ret;
}