6948300c79
Part of reorganising wireless drivers directory and Kconfig. Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
1561 lines
39 KiB
C
1561 lines
39 KiB
C
/* ZD1211 USB-WLAN driver for Linux
|
|
*
|
|
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
|
|
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/* This file implements all the hardware specific functions for the ZD1211
|
|
* and ZD1211B chips. Support for the ZD1211B was possible after Timothy
|
|
* Legge sent me a ZD1211B device. Thank you Tim. -- Uli
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "zd_def.h"
|
|
#include "zd_chip.h"
|
|
#include "zd_mac.h"
|
|
#include "zd_rf.h"
|
|
|
|
void zd_chip_init(struct zd_chip *chip,
|
|
struct ieee80211_hw *hw,
|
|
struct usb_interface *intf)
|
|
{
|
|
memset(chip, 0, sizeof(*chip));
|
|
mutex_init(&chip->mutex);
|
|
zd_usb_init(&chip->usb, hw, intf);
|
|
zd_rf_init(&chip->rf);
|
|
}
|
|
|
|
void zd_chip_clear(struct zd_chip *chip)
|
|
{
|
|
ZD_ASSERT(!mutex_is_locked(&chip->mutex));
|
|
zd_usb_clear(&chip->usb);
|
|
zd_rf_clear(&chip->rf);
|
|
mutex_destroy(&chip->mutex);
|
|
ZD_MEMCLEAR(chip, sizeof(*chip));
|
|
}
|
|
|
|
static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
|
|
{
|
|
u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
|
|
return scnprintf(buffer, size, "%02x-%02x-%02x",
|
|
addr[0], addr[1], addr[2]);
|
|
}
|
|
|
|
/* Prints an identifier line, which will support debugging. */
|
|
static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
|
|
{
|
|
int i = 0;
|
|
|
|
i = scnprintf(buffer, size, "zd1211%s chip ",
|
|
zd_chip_is_zd1211b(chip) ? "b" : "");
|
|
i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
|
|
i += scnprintf(buffer+i, size-i, " ");
|
|
i += scnprint_mac_oui(chip, buffer+i, size-i);
|
|
i += scnprintf(buffer+i, size-i, " ");
|
|
i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
|
|
i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
|
|
chip->patch_cck_gain ? 'g' : '-',
|
|
chip->patch_cr157 ? '7' : '-',
|
|
chip->patch_6m_band_edge ? '6' : '-',
|
|
chip->new_phy_layout ? 'N' : '-',
|
|
chip->al2230s_bit ? 'S' : '-');
|
|
return i;
|
|
}
|
|
|
|
static void print_id(struct zd_chip *chip)
|
|
{
|
|
char buffer[80];
|
|
|
|
scnprint_id(chip, buffer, sizeof(buffer));
|
|
buffer[sizeof(buffer)-1] = 0;
|
|
dev_info(zd_chip_dev(chip), "%s\n", buffer);
|
|
}
|
|
|
|
static zd_addr_t inc_addr(zd_addr_t addr)
|
|
{
|
|
u16 a = (u16)addr;
|
|
/* Control registers use byte addressing, but everything else uses word
|
|
* addressing. */
|
|
if ((a & 0xf000) == CR_START)
|
|
a += 2;
|
|
else
|
|
a += 1;
|
|
return (zd_addr_t)a;
|
|
}
|
|
|
|
/* Read a variable number of 32-bit values. Parameter count is not allowed to
|
|
* exceed USB_MAX_IOREAD32_COUNT.
|
|
*/
|
|
int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
|
|
unsigned int count)
|
|
{
|
|
int r;
|
|
int i;
|
|
zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
|
|
u16 v16[USB_MAX_IOREAD32_COUNT * 2];
|
|
unsigned int count16;
|
|
|
|
if (count > USB_MAX_IOREAD32_COUNT)
|
|
return -EINVAL;
|
|
|
|
/* Use stack for values and addresses. */
|
|
count16 = 2 * count;
|
|
BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
|
|
BUG_ON(count16 * sizeof(u16) > sizeof(v16));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
int j = 2*i;
|
|
/* We read the high word always first. */
|
|
a16[j] = inc_addr(addr[i]);
|
|
a16[j+1] = addr[i];
|
|
}
|
|
|
|
r = zd_ioread16v_locked(chip, v16, a16, count16);
|
|
if (r) {
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"error: %s. Error number %d\n", __func__, r);
|
|
return r;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
int j = 2*i;
|
|
values[i] = (v16[j] << 16) | v16[j+1];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
|
|
const struct zd_ioreq32 *ioreqs,
|
|
unsigned int count)
|
|
{
|
|
int i, j, r;
|
|
struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
|
|
unsigned int count16;
|
|
|
|
/* Use stack for values and addresses. */
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
|
|
if (count == 0)
|
|
return 0;
|
|
if (count > USB_MAX_IOWRITE32_COUNT)
|
|
return -EINVAL;
|
|
|
|
count16 = 2 * count;
|
|
BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
j = 2*i;
|
|
/* We write the high word always first. */
|
|
ioreqs16[j].value = ioreqs[i].value >> 16;
|
|
ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
|
|
ioreqs16[j+1].value = ioreqs[i].value;
|
|
ioreqs16[j+1].addr = ioreqs[i].addr;
|
|
}
|
|
|
|
r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
|
|
#ifdef DEBUG
|
|
if (r) {
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"error %d in zd_usb_write16v\n", r);
|
|
}
|
|
#endif /* DEBUG */
|
|
return r;
|
|
}
|
|
|
|
int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
|
|
unsigned int count)
|
|
{
|
|
int r;
|
|
|
|
zd_usb_iowrite16v_async_start(&chip->usb);
|
|
r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
|
|
if (r) {
|
|
zd_usb_iowrite16v_async_end(&chip->usb, 0);
|
|
return r;
|
|
}
|
|
return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
|
|
}
|
|
|
|
int zd_iowrite16a_locked(struct zd_chip *chip,
|
|
const struct zd_ioreq16 *ioreqs, unsigned int count)
|
|
{
|
|
int r;
|
|
unsigned int i, j, t, max;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
zd_usb_iowrite16v_async_start(&chip->usb);
|
|
|
|
for (i = 0; i < count; i += j + t) {
|
|
t = 0;
|
|
max = count-i;
|
|
if (max > USB_MAX_IOWRITE16_COUNT)
|
|
max = USB_MAX_IOWRITE16_COUNT;
|
|
for (j = 0; j < max; j++) {
|
|
if (!ioreqs[i+j].addr) {
|
|
t = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
|
|
if (r) {
|
|
zd_usb_iowrite16v_async_end(&chip->usb, 0);
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"error zd_usb_iowrite16v. Error number %d\n",
|
|
r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
|
|
}
|
|
|
|
/* Writes a variable number of 32 bit registers. The functions will split
|
|
* that in several USB requests. A split can be forced by inserting an IO
|
|
* request with an zero address field.
|
|
*/
|
|
int zd_iowrite32a_locked(struct zd_chip *chip,
|
|
const struct zd_ioreq32 *ioreqs, unsigned int count)
|
|
{
|
|
int r;
|
|
unsigned int i, j, t, max;
|
|
|
|
zd_usb_iowrite16v_async_start(&chip->usb);
|
|
|
|
for (i = 0; i < count; i += j + t) {
|
|
t = 0;
|
|
max = count-i;
|
|
if (max > USB_MAX_IOWRITE32_COUNT)
|
|
max = USB_MAX_IOWRITE32_COUNT;
|
|
for (j = 0; j < max; j++) {
|
|
if (!ioreqs[i+j].addr) {
|
|
t = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
|
|
if (r) {
|
|
zd_usb_iowrite16v_async_end(&chip->usb, 0);
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"error _%s. Error number %d\n", __func__,
|
|
r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
|
|
}
|
|
|
|
int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread16_locked(chip, value, addr);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread32_locked(chip, value, addr);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite16_locked(chip, value, addr);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite32_locked(chip, value, addr);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
|
|
u32 *values, unsigned int count)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread32v_locked(chip, values, addresses, count);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
|
|
unsigned int count)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite32a_locked(chip, ioreqs, count);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static int read_pod(struct zd_chip *chip, u8 *rf_type)
|
|
{
|
|
int r;
|
|
u32 value;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_ioread32_locked(chip, &value, E2P_POD);
|
|
if (r)
|
|
goto error;
|
|
dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
|
|
|
|
/* FIXME: AL2230 handling (Bit 7 in POD) */
|
|
*rf_type = value & 0x0f;
|
|
chip->pa_type = (value >> 16) & 0x0f;
|
|
chip->patch_cck_gain = (value >> 8) & 0x1;
|
|
chip->patch_cr157 = (value >> 13) & 0x1;
|
|
chip->patch_6m_band_edge = (value >> 21) & 0x1;
|
|
chip->new_phy_layout = (value >> 31) & 0x1;
|
|
chip->al2230s_bit = (value >> 7) & 0x1;
|
|
chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
|
|
chip->supports_tx_led = 1;
|
|
if (value & (1 << 24)) { /* LED scenario */
|
|
if (value & (1 << 29))
|
|
chip->supports_tx_led = 0;
|
|
}
|
|
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
|
|
"patch 6M %d new PHY %d link LED%d tx led %d\n",
|
|
zd_rf_name(*rf_type), *rf_type,
|
|
chip->pa_type, chip->patch_cck_gain,
|
|
chip->patch_cr157, chip->patch_6m_band_edge,
|
|
chip->new_phy_layout,
|
|
chip->link_led == LED1 ? 1 : 2,
|
|
chip->supports_tx_led);
|
|
return 0;
|
|
error:
|
|
*rf_type = 0;
|
|
chip->pa_type = 0;
|
|
chip->patch_cck_gain = 0;
|
|
chip->patch_cr157 = 0;
|
|
chip->patch_6m_band_edge = 0;
|
|
chip->new_phy_layout = 0;
|
|
return r;
|
|
}
|
|
|
|
static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
|
|
const struct zd_ioreq32 *in_reqs,
|
|
const char *type)
|
|
{
|
|
int r;
|
|
struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
|
|
|
|
if (mac_addr) {
|
|
reqs[0].value = (mac_addr[3] << 24)
|
|
| (mac_addr[2] << 16)
|
|
| (mac_addr[1] << 8)
|
|
| mac_addr[0];
|
|
reqs[1].value = (mac_addr[5] << 8)
|
|
| mac_addr[4];
|
|
dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
|
|
} else {
|
|
dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
|
|
}
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
|
|
* CR_MAC_ADDR_P2 must be overwritten
|
|
*/
|
|
int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
|
|
{
|
|
static const struct zd_ioreq32 reqs[2] = {
|
|
[0] = { .addr = CR_MAC_ADDR_P1 },
|
|
[1] = { .addr = CR_MAC_ADDR_P2 },
|
|
};
|
|
|
|
return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
|
|
}
|
|
|
|
int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
|
|
{
|
|
static const struct zd_ioreq32 reqs[2] = {
|
|
[0] = { .addr = CR_BSSID_P1 },
|
|
[1] = { .addr = CR_BSSID_P2 },
|
|
};
|
|
|
|
return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
|
|
}
|
|
|
|
int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
|
|
{
|
|
int r;
|
|
u32 value;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread32_locked(chip, &value, E2P_SUBID);
|
|
mutex_unlock(&chip->mutex);
|
|
if (r)
|
|
return r;
|
|
|
|
*regdomain = value >> 16;
|
|
dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_values(struct zd_chip *chip, u8 *values, size_t count,
|
|
zd_addr_t e2p_addr, u32 guard)
|
|
{
|
|
int r;
|
|
int i;
|
|
u32 v;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
for (i = 0;;) {
|
|
r = zd_ioread32_locked(chip, &v,
|
|
(zd_addr_t)((u16)e2p_addr+i/2));
|
|
if (r)
|
|
return r;
|
|
v -= guard;
|
|
if (i+4 < count) {
|
|
values[i++] = v;
|
|
values[i++] = v >> 8;
|
|
values[i++] = v >> 16;
|
|
values[i++] = v >> 24;
|
|
continue;
|
|
}
|
|
for (;i < count; i++)
|
|
values[i] = v >> (8*(i%3));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int read_pwr_cal_values(struct zd_chip *chip)
|
|
{
|
|
return read_values(chip, chip->pwr_cal_values,
|
|
E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
|
|
0);
|
|
}
|
|
|
|
static int read_pwr_int_values(struct zd_chip *chip)
|
|
{
|
|
return read_values(chip, chip->pwr_int_values,
|
|
E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
|
|
E2P_PWR_INT_GUARD);
|
|
}
|
|
|
|
static int read_ofdm_cal_values(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
int i;
|
|
static const zd_addr_t addresses[] = {
|
|
E2P_36M_CAL_VALUE1,
|
|
E2P_48M_CAL_VALUE1,
|
|
E2P_54M_CAL_VALUE1,
|
|
};
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
r = read_values(chip, chip->ofdm_cal_values[i],
|
|
E2P_CHANNEL_COUNT, addresses[i], 0);
|
|
if (r)
|
|
return r;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int read_cal_int_tables(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = read_pwr_cal_values(chip);
|
|
if (r)
|
|
return r;
|
|
r = read_pwr_int_values(chip);
|
|
if (r)
|
|
return r;
|
|
r = read_ofdm_cal_values(chip);
|
|
if (r)
|
|
return r;
|
|
return 0;
|
|
}
|
|
|
|
/* phy means physical registers */
|
|
int zd_chip_lock_phy_regs(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
u32 tmp;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_ioread32_locked(chip, &tmp, CR_REG1);
|
|
if (r) {
|
|
dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
tmp &= ~UNLOCK_PHY_REGS;
|
|
|
|
r = zd_iowrite32_locked(chip, tmp, CR_REG1);
|
|
if (r)
|
|
dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
int zd_chip_unlock_phy_regs(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
u32 tmp;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_ioread32_locked(chip, &tmp, CR_REG1);
|
|
if (r) {
|
|
dev_err(zd_chip_dev(chip),
|
|
"error ioread32(CR_REG1): %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
tmp |= UNLOCK_PHY_REGS;
|
|
|
|
r = zd_iowrite32_locked(chip, tmp, CR_REG1);
|
|
if (r)
|
|
dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
|
|
return r;
|
|
}
|
|
|
|
/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
|
|
static int patch_cr157(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
u16 value;
|
|
|
|
if (!chip->patch_cr157)
|
|
return 0;
|
|
|
|
r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
|
|
if (r)
|
|
return r;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
|
|
return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
|
|
}
|
|
|
|
/*
|
|
* 6M band edge can be optionally overwritten for certain RF's
|
|
* Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
|
|
* bit (for AL2230, AL2230S)
|
|
*/
|
|
static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
|
|
{
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
if (!chip->patch_6m_band_edge)
|
|
return 0;
|
|
|
|
return zd_rf_patch_6m_band_edge(&chip->rf, channel);
|
|
}
|
|
|
|
/* Generic implementation of 6M band edge patching, used by most RFs via
|
|
* zd_rf_generic_patch_6m() */
|
|
int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
|
|
{
|
|
struct zd_ioreq16 ioreqs[] = {
|
|
{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
|
|
{ ZD_CR47, 0x1e },
|
|
};
|
|
|
|
/* FIXME: Channel 11 is not the edge for all regulatory domains. */
|
|
if (channel == 1 || channel == 11)
|
|
ioreqs[0].value = 0x12;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
|
|
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
static int zd1211_hw_reset_phy(struct zd_chip *chip)
|
|
{
|
|
static const struct zd_ioreq16 ioreqs[] = {
|
|
{ ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
|
|
{ ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
|
|
{ ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
|
|
{ ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
|
|
{ ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
|
|
{ ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
|
|
{ ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
|
|
{ ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
|
|
{ ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
|
|
{ ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
|
|
{ ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
|
|
{ ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
|
|
{ ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
|
|
{ ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
|
|
{ ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
|
|
{ ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
|
|
{ ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
|
|
{ ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
|
|
{ ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
|
|
{ ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
|
|
{ ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
|
|
{ ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
|
|
{ ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
|
|
{ ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
|
|
{ ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
|
|
{ ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
|
|
{ ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
|
|
{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
|
|
{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
|
|
{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
|
|
{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
|
|
{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
|
|
{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
|
|
{ },
|
|
{ ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
|
|
{ ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
|
|
{ ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
|
|
{ ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
|
|
{ ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
|
|
{ ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
|
|
{ ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
|
|
{ ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
|
|
{ ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
|
|
{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
|
|
{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
|
|
{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
|
|
{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
|
|
{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
|
|
{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
|
|
{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
|
|
{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
|
|
{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
|
|
{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
|
|
{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
|
|
{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
|
|
{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
|
|
{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
|
|
{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
|
|
{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
|
|
/* Note: ZD_CR204 must lead the ZD_CR203 */
|
|
{ ZD_CR204, 0x7d },
|
|
{ },
|
|
{ ZD_CR203, 0x30 },
|
|
};
|
|
|
|
int r, t;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
|
|
r = zd_chip_lock_phy_regs(chip);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
if (r)
|
|
goto unlock;
|
|
|
|
r = patch_cr157(chip);
|
|
unlock:
|
|
t = zd_chip_unlock_phy_regs(chip);
|
|
if (t && !r)
|
|
r = t;
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int zd1211b_hw_reset_phy(struct zd_chip *chip)
|
|
{
|
|
static const struct zd_ioreq16 ioreqs[] = {
|
|
{ ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
|
|
{ ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
|
|
{ ZD_CR10, 0x81 },
|
|
/* power control { { ZD_CR11, 1 << 6 }, */
|
|
{ ZD_CR11, 0x00 },
|
|
{ ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
|
|
{ ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
|
|
{ ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
|
|
{ ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
|
|
{ ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
|
|
{ ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
|
|
{ ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
|
|
{ ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
|
|
{ ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
|
|
{ ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
|
|
{ ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
|
|
{ ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
|
|
{ ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
|
|
{ ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
|
|
{ ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
|
|
{ ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
|
|
{ ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
|
|
{ ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
|
|
{ ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
|
|
{ ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
|
|
{ ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
|
|
{ ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
|
|
{ ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
|
|
{ ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
|
|
{ ZD_CR94, 0x01 },
|
|
{ ZD_CR95, 0x20 }, /* ZD1211B */
|
|
{ ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
|
|
{ ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
|
|
{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
|
|
{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
|
|
{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
|
|
{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
|
|
{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
|
|
{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
|
|
{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
|
|
{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
|
|
{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
|
|
{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
|
|
{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
|
|
{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
|
|
{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
|
|
{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
|
|
{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
|
|
{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
|
|
{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
|
|
{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
|
|
{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
|
|
/* Note: ZD_CR204 must lead the ZD_CR203 */
|
|
{ ZD_CR204, 0x7d },
|
|
{},
|
|
{ ZD_CR203, 0x30 },
|
|
};
|
|
|
|
int r, t;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
|
|
r = zd_chip_lock_phy_regs(chip);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
t = zd_chip_unlock_phy_regs(chip);
|
|
if (t && !r)
|
|
r = t;
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int hw_reset_phy(struct zd_chip *chip)
|
|
{
|
|
return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
|
|
zd1211_hw_reset_phy(chip);
|
|
}
|
|
|
|
static int zd1211_hw_init_hmac(struct zd_chip *chip)
|
|
{
|
|
static const struct zd_ioreq32 ioreqs[] = {
|
|
{ CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT },
|
|
{ CR_RX_THRESHOLD, 0x000c0640 },
|
|
};
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
static int zd1211b_hw_init_hmac(struct zd_chip *chip)
|
|
{
|
|
static const struct zd_ioreq32 ioreqs[] = {
|
|
{ CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT },
|
|
{ CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
|
|
{ CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
|
|
{ CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
|
|
{ CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
|
|
{ CR_ZD1211B_AIFS_CTL1, 0x00280028 },
|
|
{ CR_ZD1211B_AIFS_CTL2, 0x008C003C },
|
|
{ CR_ZD1211B_TXOP, 0x01800824 },
|
|
{ CR_RX_THRESHOLD, 0x000c0eff, },
|
|
};
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
static int hw_init_hmac(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
static const struct zd_ioreq32 ioreqs[] = {
|
|
{ CR_ACK_TIMEOUT_EXT, 0x20 },
|
|
{ CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
|
|
{ CR_SNIFFER_ON, 0 },
|
|
{ CR_RX_FILTER, STA_RX_FILTER },
|
|
{ CR_GROUP_HASH_P1, 0x00 },
|
|
{ CR_GROUP_HASH_P2, 0x80000000 },
|
|
{ CR_REG1, 0xa4 },
|
|
{ CR_ADDA_PWR_DWN, 0x7f },
|
|
{ CR_BCN_PLCP_CFG, 0x00f00401 },
|
|
{ CR_PHY_DELAY, 0x00 },
|
|
{ CR_ACK_TIMEOUT_EXT, 0x80 },
|
|
{ CR_ADDA_PWR_DWN, 0x00 },
|
|
{ CR_ACK_TIME_80211, 0x100 },
|
|
{ CR_RX_PE_DELAY, 0x70 },
|
|
{ CR_PS_CTRL, 0x10000000 },
|
|
{ CR_RTS_CTS_RATE, 0x02030203 },
|
|
{ CR_AFTER_PNP, 0x1 },
|
|
{ CR_WEP_PROTECT, 0x114 },
|
|
{ CR_IFS_VALUE, IFS_VALUE_DEFAULT },
|
|
{ CR_CAM_MODE, MODE_AP_WDS},
|
|
};
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
if (r)
|
|
return r;
|
|
|
|
return zd_chip_is_zd1211b(chip) ?
|
|
zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
|
|
}
|
|
|
|
struct aw_pt_bi {
|
|
u32 atim_wnd_period;
|
|
u32 pre_tbtt;
|
|
u32 beacon_interval;
|
|
};
|
|
|
|
static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
|
|
{
|
|
int r;
|
|
static const zd_addr_t aw_pt_bi_addr[] =
|
|
{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
|
|
u32 values[3];
|
|
|
|
r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
|
|
ARRAY_SIZE(aw_pt_bi_addr));
|
|
if (r) {
|
|
memset(s, 0, sizeof(*s));
|
|
return r;
|
|
}
|
|
|
|
s->atim_wnd_period = values[0];
|
|
s->pre_tbtt = values[1];
|
|
s->beacon_interval = values[2];
|
|
return 0;
|
|
}
|
|
|
|
static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
|
|
{
|
|
struct zd_ioreq32 reqs[3];
|
|
u16 b_interval = s->beacon_interval & 0xffff;
|
|
|
|
if (b_interval <= 5)
|
|
b_interval = 5;
|
|
if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
|
|
s->pre_tbtt = b_interval - 1;
|
|
if (s->atim_wnd_period >= s->pre_tbtt)
|
|
s->atim_wnd_period = s->pre_tbtt - 1;
|
|
|
|
reqs[0].addr = CR_ATIM_WND_PERIOD;
|
|
reqs[0].value = s->atim_wnd_period;
|
|
reqs[1].addr = CR_PRE_TBTT;
|
|
reqs[1].value = s->pre_tbtt;
|
|
reqs[2].addr = CR_BCN_INTERVAL;
|
|
reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
|
|
|
|
return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
|
|
}
|
|
|
|
|
|
static int set_beacon_interval(struct zd_chip *chip, u16 interval,
|
|
u8 dtim_period, int type)
|
|
{
|
|
int r;
|
|
struct aw_pt_bi s;
|
|
u32 b_interval, mode_flag;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
|
|
if (interval > 0) {
|
|
switch (type) {
|
|
case NL80211_IFTYPE_ADHOC:
|
|
case NL80211_IFTYPE_MESH_POINT:
|
|
mode_flag = BCN_MODE_IBSS;
|
|
break;
|
|
case NL80211_IFTYPE_AP:
|
|
mode_flag = BCN_MODE_AP;
|
|
break;
|
|
default:
|
|
mode_flag = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
dtim_period = 0;
|
|
mode_flag = 0;
|
|
}
|
|
|
|
b_interval = mode_flag | (dtim_period << 16) | interval;
|
|
|
|
r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
|
|
if (r)
|
|
return r;
|
|
r = get_aw_pt_bi(chip, &s);
|
|
if (r)
|
|
return r;
|
|
return set_aw_pt_bi(chip, &s);
|
|
}
|
|
|
|
int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
|
|
int type)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = set_beacon_interval(chip, interval, dtim_period, type);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static int hw_init(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = hw_reset_phy(chip);
|
|
if (r)
|
|
return r;
|
|
|
|
r = hw_init_hmac(chip);
|
|
if (r)
|
|
return r;
|
|
|
|
return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
|
|
}
|
|
|
|
static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
|
|
{
|
|
return (zd_addr_t)((u16)chip->fw_regs_base + offset);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
|
|
const char *addr_string)
|
|
{
|
|
int r;
|
|
u32 value;
|
|
|
|
r = zd_ioread32_locked(chip, &value, addr);
|
|
if (r) {
|
|
dev_dbg_f(zd_chip_dev(chip),
|
|
"error reading %s. Error number %d\n", addr_string, r);
|
|
return r;
|
|
}
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
|
|
addr_string, (unsigned int)value);
|
|
return 0;
|
|
}
|
|
|
|
static int test_init(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
|
|
if (r)
|
|
return r;
|
|
r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
|
|
if (r)
|
|
return r;
|
|
return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
|
|
}
|
|
|
|
static void dump_fw_registers(struct zd_chip *chip)
|
|
{
|
|
const zd_addr_t addr[4] = {
|
|
fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
|
|
fw_reg_addr(chip, FW_REG_USB_SPEED),
|
|
fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
|
|
fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
|
|
};
|
|
|
|
int r;
|
|
u16 values[4];
|
|
|
|
r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
|
|
ARRAY_SIZE(addr));
|
|
if (r) {
|
|
dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
|
|
r);
|
|
return;
|
|
}
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
|
|
dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
|
|
dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
|
|
dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
static int print_fw_version(struct zd_chip *chip)
|
|
{
|
|
struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
|
|
int r;
|
|
u16 version;
|
|
|
|
r = zd_ioread16_locked(chip, &version,
|
|
fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
|
|
if (r)
|
|
return r;
|
|
|
|
dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
|
|
|
|
snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
|
|
"%04hx", version);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_mandatory_rates(struct zd_chip *chip, int gmode)
|
|
{
|
|
u32 rates;
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
/* This sets the mandatory rates, which only depend from the standard
|
|
* that the device is supporting. Until further notice we should try
|
|
* to support 802.11g also for full speed USB.
|
|
*/
|
|
if (!gmode)
|
|
rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
|
|
else
|
|
rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
|
|
CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
|
|
|
|
return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
|
|
}
|
|
|
|
int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
|
|
int preamble)
|
|
{
|
|
u32 value = 0;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
|
|
value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
|
|
value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
|
|
|
|
/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
|
|
value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
|
|
value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
|
|
value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
|
|
value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
|
|
|
|
return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
|
|
}
|
|
|
|
int zd_chip_enable_hwint(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static int disable_hwint(struct zd_chip *chip)
|
|
{
|
|
return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
|
|
}
|
|
|
|
int zd_chip_disable_hwint(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = disable_hwint(chip);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static int read_fw_regs_offset(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
|
|
FWRAW_REGS_ADDR);
|
|
if (r)
|
|
return r;
|
|
dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
|
|
(u16)chip->fw_regs_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read mac address using pre-firmware interface */
|
|
int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
|
|
{
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
|
|
ETH_ALEN);
|
|
}
|
|
|
|
int zd_chip_init_hw(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
u8 rf_type;
|
|
|
|
dev_dbg_f(zd_chip_dev(chip), "\n");
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
#ifdef DEBUG
|
|
r = test_init(chip);
|
|
if (r)
|
|
goto out;
|
|
#endif
|
|
r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = read_fw_regs_offset(chip);
|
|
if (r)
|
|
goto out;
|
|
|
|
/* GPI is always disabled, also in the other driver.
|
|
*/
|
|
r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
|
|
if (r)
|
|
goto out;
|
|
r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
|
|
if (r)
|
|
goto out;
|
|
/* Currently we support IEEE 802.11g for full and high speed USB.
|
|
* It might be discussed, whether we should support pure b mode for
|
|
* full speed USB.
|
|
*/
|
|
r = set_mandatory_rates(chip, 1);
|
|
if (r)
|
|
goto out;
|
|
/* Disabling interrupts is certainly a smart thing here.
|
|
*/
|
|
r = disable_hwint(chip);
|
|
if (r)
|
|
goto out;
|
|
r = read_pod(chip, &rf_type);
|
|
if (r)
|
|
goto out;
|
|
r = hw_init(chip);
|
|
if (r)
|
|
goto out;
|
|
r = zd_rf_init_hw(&chip->rf, rf_type);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = print_fw_version(chip);
|
|
if (r)
|
|
goto out;
|
|
|
|
#ifdef DEBUG
|
|
dump_fw_registers(chip);
|
|
r = test_init(chip);
|
|
if (r)
|
|
goto out;
|
|
#endif /* DEBUG */
|
|
|
|
r = read_cal_int_tables(chip);
|
|
if (r)
|
|
goto out;
|
|
|
|
print_id(chip);
|
|
out:
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static int update_pwr_int(struct zd_chip *chip, u8 channel)
|
|
{
|
|
u8 value = chip->pwr_int_values[channel - 1];
|
|
return zd_iowrite16_locked(chip, value, ZD_CR31);
|
|
}
|
|
|
|
static int update_pwr_cal(struct zd_chip *chip, u8 channel)
|
|
{
|
|
u8 value = chip->pwr_cal_values[channel-1];
|
|
return zd_iowrite16_locked(chip, value, ZD_CR68);
|
|
}
|
|
|
|
static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
|
|
{
|
|
struct zd_ioreq16 ioreqs[3];
|
|
|
|
ioreqs[0].addr = ZD_CR67;
|
|
ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
|
|
ioreqs[1].addr = ZD_CR66;
|
|
ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
|
|
ioreqs[2].addr = ZD_CR65;
|
|
ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
|
|
|
|
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
static int update_channel_integration_and_calibration(struct zd_chip *chip,
|
|
u8 channel)
|
|
{
|
|
int r;
|
|
|
|
if (!zd_rf_should_update_pwr_int(&chip->rf))
|
|
return 0;
|
|
|
|
r = update_pwr_int(chip, channel);
|
|
if (r)
|
|
return r;
|
|
if (zd_chip_is_zd1211b(chip)) {
|
|
static const struct zd_ioreq16 ioreqs[] = {
|
|
{ ZD_CR69, 0x28 },
|
|
{},
|
|
{ ZD_CR69, 0x2a },
|
|
};
|
|
|
|
r = update_ofdm_cal(chip, channel);
|
|
if (r)
|
|
return r;
|
|
r = update_pwr_cal(chip, channel);
|
|
if (r)
|
|
return r;
|
|
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The CCK baseband gain can be optionally patched by the EEPROM */
|
|
static int patch_cck_gain(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
u32 value;
|
|
|
|
if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
|
|
return 0;
|
|
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
|
|
if (r)
|
|
return r;
|
|
dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
|
|
return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
|
|
}
|
|
|
|
int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
|
|
{
|
|
int r, t;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_chip_lock_phy_regs(chip);
|
|
if (r)
|
|
goto out;
|
|
r = zd_rf_set_channel(&chip->rf, channel);
|
|
if (r)
|
|
goto unlock;
|
|
r = update_channel_integration_and_calibration(chip, channel);
|
|
if (r)
|
|
goto unlock;
|
|
r = patch_cck_gain(chip);
|
|
if (r)
|
|
goto unlock;
|
|
r = patch_6m_band_edge(chip, channel);
|
|
if (r)
|
|
goto unlock;
|
|
r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
|
|
unlock:
|
|
t = zd_chip_unlock_phy_regs(chip);
|
|
if (t && !r)
|
|
r = t;
|
|
out:
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
u8 zd_chip_get_channel(struct zd_chip *chip)
|
|
{
|
|
u8 channel;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
channel = chip->rf.channel;
|
|
mutex_unlock(&chip->mutex);
|
|
return channel;
|
|
}
|
|
|
|
int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
|
|
{
|
|
const zd_addr_t a[] = {
|
|
fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
|
|
CR_LED,
|
|
};
|
|
|
|
int r;
|
|
u16 v[ARRAY_SIZE(a)];
|
|
struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
|
|
[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
|
|
[1] = { CR_LED },
|
|
};
|
|
u16 other_led;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
|
|
if (r)
|
|
goto out;
|
|
|
|
other_led = chip->link_led == LED1 ? LED2 : LED1;
|
|
|
|
switch (status) {
|
|
case ZD_LED_OFF:
|
|
ioreqs[0].value = FW_LINK_OFF;
|
|
ioreqs[1].value = v[1] & ~(LED1|LED2);
|
|
break;
|
|
case ZD_LED_SCANNING:
|
|
ioreqs[0].value = FW_LINK_OFF;
|
|
ioreqs[1].value = v[1] & ~other_led;
|
|
if (get_seconds() % 3 == 0) {
|
|
ioreqs[1].value &= ~chip->link_led;
|
|
} else {
|
|
ioreqs[1].value |= chip->link_led;
|
|
}
|
|
break;
|
|
case ZD_LED_ASSOCIATED:
|
|
ioreqs[0].value = FW_LINK_TX;
|
|
ioreqs[1].value = v[1] & ~other_led;
|
|
ioreqs[1].value |= chip->link_led;
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
|
|
r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
if (r)
|
|
goto out;
|
|
}
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
|
|
{
|
|
int r;
|
|
|
|
if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
|
|
{
|
|
return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
|
|
}
|
|
|
|
/**
|
|
* zd_rx_rate - report zd-rate
|
|
* @rx_frame - received frame
|
|
* @rx_status - rx_status as given by the device
|
|
*
|
|
* This function converts the rate as encoded in the received packet to the
|
|
* zd-rate, we are using on other places in the driver.
|
|
*/
|
|
u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
|
|
{
|
|
u8 zd_rate;
|
|
if (status->frame_status & ZD_RX_OFDM) {
|
|
zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
|
|
} else {
|
|
switch (zd_cck_plcp_header_signal(rx_frame)) {
|
|
case ZD_CCK_PLCP_SIGNAL_1M:
|
|
zd_rate = ZD_CCK_RATE_1M;
|
|
break;
|
|
case ZD_CCK_PLCP_SIGNAL_2M:
|
|
zd_rate = ZD_CCK_RATE_2M;
|
|
break;
|
|
case ZD_CCK_PLCP_SIGNAL_5M5:
|
|
zd_rate = ZD_CCK_RATE_5_5M;
|
|
break;
|
|
case ZD_CCK_PLCP_SIGNAL_11M:
|
|
zd_rate = ZD_CCK_RATE_11M;
|
|
break;
|
|
default:
|
|
zd_rate = 0;
|
|
}
|
|
}
|
|
|
|
return zd_rate;
|
|
}
|
|
|
|
int zd_chip_switch_radio_on(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_switch_radio_on(&chip->rf);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_chip_switch_radio_off(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_switch_radio_off(&chip->rf);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
int zd_chip_enable_int(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_usb_enable_int(&chip->usb);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
void zd_chip_disable_int(struct zd_chip *chip)
|
|
{
|
|
mutex_lock(&chip->mutex);
|
|
zd_usb_disable_int(&chip->usb);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
/* cancel pending interrupt work */
|
|
cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
|
|
}
|
|
|
|
int zd_chip_enable_rxtx(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
zd_usb_enable_tx(&chip->usb);
|
|
r = zd_usb_enable_rx(&chip->usb);
|
|
zd_tx_watchdog_enable(&chip->usb);
|
|
mutex_unlock(&chip->mutex);
|
|
return r;
|
|
}
|
|
|
|
void zd_chip_disable_rxtx(struct zd_chip *chip)
|
|
{
|
|
mutex_lock(&chip->mutex);
|
|
zd_tx_watchdog_disable(&chip->usb);
|
|
zd_usb_disable_rx(&chip->usb);
|
|
zd_usb_disable_tx(&chip->usb);
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
int zd_rfwritev_locked(struct zd_chip *chip,
|
|
const u32* values, unsigned int count, u8 bits)
|
|
{
|
|
int r;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
r = zd_rfwrite_locked(chip, values[i], bits);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We can optionally program the RF directly through CR regs, if supported by
|
|
* the hardware. This is much faster than the older method.
|
|
*/
|
|
int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
|
|
{
|
|
const struct zd_ioreq16 ioreqs[] = {
|
|
{ ZD_CR244, (value >> 16) & 0xff },
|
|
{ ZD_CR243, (value >> 8) & 0xff },
|
|
{ ZD_CR242, value & 0xff },
|
|
};
|
|
ZD_ASSERT(mutex_is_locked(&chip->mutex));
|
|
return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
int zd_rfwritev_cr_locked(struct zd_chip *chip,
|
|
const u32 *values, unsigned int count)
|
|
{
|
|
int r;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
r = zd_rfwrite_cr_locked(chip, values[i]);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int zd_chip_set_multicast_hash(struct zd_chip *chip,
|
|
struct zd_mc_hash *hash)
|
|
{
|
|
const struct zd_ioreq32 ioreqs[] = {
|
|
{ CR_GROUP_HASH_P1, hash->low },
|
|
{ CR_GROUP_HASH_P2, hash->high },
|
|
};
|
|
|
|
return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
|
|
}
|
|
|
|
u64 zd_chip_get_tsf(struct zd_chip *chip)
|
|
{
|
|
int r;
|
|
static const zd_addr_t aw_pt_bi_addr[] =
|
|
{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
|
|
u32 values[2];
|
|
u64 tsf;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
|
|
ARRAY_SIZE(aw_pt_bi_addr));
|
|
mutex_unlock(&chip->mutex);
|
|
if (r)
|
|
return 0;
|
|
|
|
tsf = values[1];
|
|
tsf = (tsf << 32) | values[0];
|
|
|
|
return tsf;
|
|
}
|