67d93ffc0f
vclocks were using spinlocks to protect access to its timecounter and cyclecounter. Access to timecounter/cyclecounter is backed by the same driver callbacks that are used for non-virtual PHCs, but the usage of the spinlock imposes a new limitation that didn't exist previously: now they're called in atomic context so they mustn't sleep. Some drivers like sfc or ice may sleep on these callbacks, causing errors like "BUG: scheduling while atomic: ptp5/25223/0x00000002" Fix it replacing the vclock's spinlock by a mutex. It fix the mentioned bug and it doesn't introduce longer delays. I've tested synchronizing various different combinations of clocks: - vclock->sysclock - sysclock->vclock - vclock->vclock - hardware PHC in different NIC -> vclock - created 4 vclocks and launch 4 parallel phc2sys processes with lockdep enabled In all cases, comparing the delays reported by phc2sys, they are in the same range of values than before applying the patch. Link: https://lore.kernel.org/netdev/69d0ff33-bd32-6aa5-d36c-fbdc3c01337c@redhat.com/ Fixes: 5d43f951b1ac ("ptp: add ptp virtual clock driver framework") Reported-by: Yalin Li <yalli@redhat.com> Suggested-by: Richard Cochran <richardcochran@gmail.com> Tested-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: Íñigo Huguet <ihuguet@redhat.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Link: https://lore.kernel.org/r/20230221130616.21837-1-ihuguet@redhat.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
296 lines
6.7 KiB
C
296 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* PTP virtual clock driver
|
|
*
|
|
* Copyright 2021 NXP
|
|
*/
|
|
#include <linux/slab.h>
|
|
#include <linux/hashtable.h>
|
|
#include "ptp_private.h"
|
|
|
|
#define PTP_VCLOCK_CC_SHIFT 31
|
|
#define PTP_VCLOCK_CC_MULT (1 << PTP_VCLOCK_CC_SHIFT)
|
|
#define PTP_VCLOCK_FADJ_SHIFT 9
|
|
#define PTP_VCLOCK_FADJ_DENOMINATOR 15625ULL
|
|
#define PTP_VCLOCK_REFRESH_INTERVAL (HZ * 2)
|
|
|
|
/* protects vclock_hash addition/deletion */
|
|
static DEFINE_SPINLOCK(vclock_hash_lock);
|
|
|
|
static DEFINE_READ_MOSTLY_HASHTABLE(vclock_hash, 8);
|
|
|
|
static void ptp_vclock_hash_add(struct ptp_vclock *vclock)
|
|
{
|
|
spin_lock(&vclock_hash_lock);
|
|
|
|
hlist_add_head_rcu(&vclock->vclock_hash_node,
|
|
&vclock_hash[vclock->clock->index % HASH_SIZE(vclock_hash)]);
|
|
|
|
spin_unlock(&vclock_hash_lock);
|
|
}
|
|
|
|
static void ptp_vclock_hash_del(struct ptp_vclock *vclock)
|
|
{
|
|
spin_lock(&vclock_hash_lock);
|
|
|
|
hlist_del_init_rcu(&vclock->vclock_hash_node);
|
|
|
|
spin_unlock(&vclock_hash_lock);
|
|
|
|
synchronize_rcu();
|
|
}
|
|
|
|
static int ptp_vclock_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
s64 adj;
|
|
|
|
adj = (s64)scaled_ppm << PTP_VCLOCK_FADJ_SHIFT;
|
|
adj = div_s64(adj, PTP_VCLOCK_FADJ_DENOMINATOR);
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
timecounter_read(&vclock->tc);
|
|
vclock->cc.mult = PTP_VCLOCK_CC_MULT + adj;
|
|
mutex_unlock(&vclock->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_vclock_adjtime(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
timecounter_adjtime(&vclock->tc, delta);
|
|
mutex_unlock(&vclock->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_vclock_gettime(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
u64 ns;
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
ns = timecounter_read(&vclock->tc);
|
|
mutex_unlock(&vclock->lock);
|
|
*ts = ns_to_timespec64(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_vclock_gettimex(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
struct ptp_clock *pptp = vclock->pclock;
|
|
struct timespec64 pts;
|
|
int err;
|
|
u64 ns;
|
|
|
|
err = pptp->info->getcyclesx64(pptp->info, &pts, sts);
|
|
if (err)
|
|
return err;
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
ns = timecounter_cyc2time(&vclock->tc, timespec64_to_ns(&pts));
|
|
mutex_unlock(&vclock->lock);
|
|
|
|
*ts = ns_to_timespec64(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_vclock_settime(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
u64 ns = timespec64_to_ns(ts);
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
timecounter_init(&vclock->tc, &vclock->cc, ns);
|
|
mutex_unlock(&vclock->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptp_vclock_getcrosststamp(struct ptp_clock_info *ptp,
|
|
struct system_device_crosststamp *xtstamp)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
struct ptp_clock *pptp = vclock->pclock;
|
|
int err;
|
|
u64 ns;
|
|
|
|
err = pptp->info->getcrosscycles(pptp->info, xtstamp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
return -EINTR;
|
|
ns = timecounter_cyc2time(&vclock->tc, ktime_to_ns(xtstamp->device));
|
|
mutex_unlock(&vclock->lock);
|
|
|
|
xtstamp->device = ns_to_ktime(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long ptp_vclock_refresh(struct ptp_clock_info *ptp)
|
|
{
|
|
struct ptp_vclock *vclock = info_to_vclock(ptp);
|
|
struct timespec64 ts;
|
|
|
|
ptp_vclock_gettime(&vclock->info, &ts);
|
|
|
|
return PTP_VCLOCK_REFRESH_INTERVAL;
|
|
}
|
|
|
|
static const struct ptp_clock_info ptp_vclock_info = {
|
|
.owner = THIS_MODULE,
|
|
.name = "ptp virtual clock",
|
|
.max_adj = 500000000,
|
|
.adjfine = ptp_vclock_adjfine,
|
|
.adjtime = ptp_vclock_adjtime,
|
|
.settime64 = ptp_vclock_settime,
|
|
.do_aux_work = ptp_vclock_refresh,
|
|
};
|
|
|
|
static u64 ptp_vclock_read(const struct cyclecounter *cc)
|
|
{
|
|
struct ptp_vclock *vclock = cc_to_vclock(cc);
|
|
struct ptp_clock *ptp = vclock->pclock;
|
|
struct timespec64 ts = {};
|
|
|
|
ptp->info->getcycles64(ptp->info, &ts);
|
|
|
|
return timespec64_to_ns(&ts);
|
|
}
|
|
|
|
static const struct cyclecounter ptp_vclock_cc = {
|
|
.read = ptp_vclock_read,
|
|
.mask = CYCLECOUNTER_MASK(32),
|
|
.mult = PTP_VCLOCK_CC_MULT,
|
|
.shift = PTP_VCLOCK_CC_SHIFT,
|
|
};
|
|
|
|
struct ptp_vclock *ptp_vclock_register(struct ptp_clock *pclock)
|
|
{
|
|
struct ptp_vclock *vclock;
|
|
|
|
vclock = kzalloc(sizeof(*vclock), GFP_KERNEL);
|
|
if (!vclock)
|
|
return NULL;
|
|
|
|
vclock->pclock = pclock;
|
|
vclock->info = ptp_vclock_info;
|
|
if (pclock->info->getcyclesx64)
|
|
vclock->info.gettimex64 = ptp_vclock_gettimex;
|
|
else
|
|
vclock->info.gettime64 = ptp_vclock_gettime;
|
|
if (pclock->info->getcrosscycles)
|
|
vclock->info.getcrosststamp = ptp_vclock_getcrosststamp;
|
|
vclock->cc = ptp_vclock_cc;
|
|
|
|
snprintf(vclock->info.name, PTP_CLOCK_NAME_LEN, "ptp%d_virt",
|
|
pclock->index);
|
|
|
|
INIT_HLIST_NODE(&vclock->vclock_hash_node);
|
|
|
|
mutex_init(&vclock->lock);
|
|
|
|
vclock->clock = ptp_clock_register(&vclock->info, &pclock->dev);
|
|
if (IS_ERR_OR_NULL(vclock->clock)) {
|
|
kfree(vclock);
|
|
return NULL;
|
|
}
|
|
|
|
timecounter_init(&vclock->tc, &vclock->cc, 0);
|
|
ptp_schedule_worker(vclock->clock, PTP_VCLOCK_REFRESH_INTERVAL);
|
|
|
|
ptp_vclock_hash_add(vclock);
|
|
|
|
return vclock;
|
|
}
|
|
|
|
void ptp_vclock_unregister(struct ptp_vclock *vclock)
|
|
{
|
|
ptp_vclock_hash_del(vclock);
|
|
|
|
ptp_clock_unregister(vclock->clock);
|
|
kfree(vclock);
|
|
}
|
|
|
|
#if IS_BUILTIN(CONFIG_PTP_1588_CLOCK)
|
|
int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
|
|
{
|
|
char name[PTP_CLOCK_NAME_LEN] = "";
|
|
struct ptp_clock *ptp;
|
|
struct device *dev;
|
|
int num = 0;
|
|
|
|
if (pclock_index < 0)
|
|
return num;
|
|
|
|
snprintf(name, PTP_CLOCK_NAME_LEN, "ptp%d", pclock_index);
|
|
dev = class_find_device_by_name(ptp_class, name);
|
|
if (!dev)
|
|
return num;
|
|
|
|
ptp = dev_get_drvdata(dev);
|
|
|
|
if (mutex_lock_interruptible(&ptp->n_vclocks_mux)) {
|
|
put_device(dev);
|
|
return num;
|
|
}
|
|
|
|
*vclock_index = kzalloc(sizeof(int) * ptp->n_vclocks, GFP_KERNEL);
|
|
if (!(*vclock_index))
|
|
goto out;
|
|
|
|
memcpy(*vclock_index, ptp->vclock_index, sizeof(int) * ptp->n_vclocks);
|
|
num = ptp->n_vclocks;
|
|
out:
|
|
mutex_unlock(&ptp->n_vclocks_mux);
|
|
put_device(dev);
|
|
return num;
|
|
}
|
|
EXPORT_SYMBOL(ptp_get_vclocks_index);
|
|
|
|
ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index)
|
|
{
|
|
unsigned int hash = vclock_index % HASH_SIZE(vclock_hash);
|
|
struct ptp_vclock *vclock;
|
|
u64 ns;
|
|
u64 vclock_ns = 0;
|
|
|
|
ns = ktime_to_ns(*hwtstamp);
|
|
|
|
rcu_read_lock();
|
|
|
|
hlist_for_each_entry_rcu(vclock, &vclock_hash[hash], vclock_hash_node) {
|
|
if (vclock->clock->index != vclock_index)
|
|
continue;
|
|
|
|
if (mutex_lock_interruptible(&vclock->lock))
|
|
break;
|
|
vclock_ns = timecounter_cyc2time(&vclock->tc, ns);
|
|
mutex_unlock(&vclock->lock);
|
|
break;
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return ns_to_ktime(vclock_ns);
|
|
}
|
|
EXPORT_SYMBOL(ptp_convert_timestamp);
|
|
#endif
|