Jason Gunthorpe c85f4abe66 RDMA/core: Fix double destruction of uobject
Fix use after free when user user space request uobject concurrently for
the same object, within the RCU grace period.

In that case, remove_handle_idr_uobject() is called twice and we will have
an extra put on the uobject which cause use after free.  Fix it by leaving
the uobject write locked after it was removed from the idr.

Call to rdma_lookup_put_uobject with UVERBS_LOOKUP_DESTROY instead of
UVERBS_LOOKUP_WRITE will do the work.

  refcount_t: underflow; use-after-free.
  WARNING: CPU: 0 PID: 1381 at lib/refcount.c:28 refcount_warn_saturate+0xfe/0x1a0
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 0 PID: 1381 Comm: syz-executor.0 Not tainted 5.5.0-rc3 #8
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
  Call Trace:
   dump_stack+0x94/0xce
   panic+0x234/0x56f
   __warn+0x1cc/0x1e1
   report_bug+0x200/0x310
   fixup_bug.part.11+0x32/0x80
   do_error_trap+0xd3/0x100
   do_invalid_op+0x31/0x40
   invalid_op+0x1e/0x30
  RIP: 0010:refcount_warn_saturate+0xfe/0x1a0
  Code: 0f 0b eb 9b e8 23 f6 6d ff 80 3d 6c d4 19 03 00 75 8d e8 15 f6 6d ff 48 c7 c7 c0 02 55 bd c6 05 57 d4 19 03 01 e8 a2 58 49 ff <0f> 0b e9 6e ff ff ff e8 f6 f5 6d ff 80 3d 42 d4 19 03 00 0f 85 5c
  RSP: 0018:ffffc90002df7b98 EFLAGS: 00010282
  RAX: 0000000000000000 RBX: ffff88810f6a193c RCX: ffffffffba649009
  RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffff88811b0283cc
  RBP: 0000000000000003 R08: ffffed10236060e3 R09: ffffed10236060e3
  R10: 0000000000000001 R11: ffffed10236060e2 R12: ffff88810f6a193c
  R13: ffffc90002df7d60 R14: 0000000000000000 R15: ffff888116ae6a08
   uverbs_uobject_put+0xfd/0x140
   __uobj_perform_destroy+0x3d/0x60
   ib_uverbs_close_xrcd+0x148/0x170
   ib_uverbs_write+0xaa5/0xdf0
   __vfs_write+0x7c/0x100
   vfs_write+0x168/0x4a0
   ksys_write+0xc8/0x200
   do_syscall_64+0x9c/0x390
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x465b49
  Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
  RSP: 002b:00007f759d122c58 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
  RAX: ffffffffffffffda RBX: 000000000073bfa8 RCX: 0000000000465b49
  RDX: 000000000000000c RSI: 0000000020000080 RDI: 0000000000000003
  RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000246 R12: 00007f759d1236bc
  R13: 00000000004ca27c R14: 000000000070de40 R15: 00000000ffffffff
  Dumping ftrace buffer:
     (ftrace buffer empty)
  Kernel Offset: 0x39400000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)

Fixes: 7452a3c745a2 ("IB/uverbs: Allow RDMA_REMOVE_DESTROY to work concurrently with disassociate")
Link: https://lore.kernel.org/r/20200527135534.482279-1-leon@kernel.org
Signed-off-by: Maor Gottlieb <maorg@mellanox.com>
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2020-05-27 14:22:57 -03:00

960 lines
26 KiB
C

/*
* Copyright (c) 2016, Mellanox Technologies inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/file.h>
#include <linux/anon_inodes.h>
#include <linux/sched/mm.h>
#include <rdma/ib_verbs.h>
#include <rdma/uverbs_types.h>
#include <linux/rcupdate.h>
#include <rdma/uverbs_ioctl.h>
#include <rdma/rdma_user_ioctl.h>
#include "uverbs.h"
#include "core_priv.h"
#include "rdma_core.h"
static void uverbs_uobject_free(struct kref *ref)
{
kfree_rcu(container_of(ref, struct ib_uobject, ref), rcu);
}
/*
* In order to indicate we no longer needs this uobject, uverbs_uobject_put
* is called. When the reference count is decreased, the uobject is freed.
* For example, this is used when attaching a completion channel to a CQ.
*/
void uverbs_uobject_put(struct ib_uobject *uobject)
{
kref_put(&uobject->ref, uverbs_uobject_free);
}
EXPORT_SYMBOL(uverbs_uobject_put);
static int uverbs_try_lock_object(struct ib_uobject *uobj,
enum rdma_lookup_mode mode)
{
/*
* When a shared access is required, we use a positive counter. Each
* shared access request checks that the value != -1 and increment it.
* Exclusive access is required for operations like write or destroy.
* In exclusive access mode, we check that the counter is zero (nobody
* claimed this object) and we set it to -1. Releasing a shared access
* lock is done simply by decreasing the counter. As for exclusive
* access locks, since only a single one of them is is allowed
* concurrently, setting the counter to zero is enough for releasing
* this lock.
*/
switch (mode) {
case UVERBS_LOOKUP_READ:
return atomic_fetch_add_unless(&uobj->usecnt, 1, -1) == -1 ?
-EBUSY : 0;
case UVERBS_LOOKUP_WRITE:
/* lock is exclusive */
return atomic_cmpxchg(&uobj->usecnt, 0, -1) == 0 ? 0 : -EBUSY;
case UVERBS_LOOKUP_DESTROY:
return 0;
}
return 0;
}
static void assert_uverbs_usecnt(struct ib_uobject *uobj,
enum rdma_lookup_mode mode)
{
#ifdef CONFIG_LOCKDEP
switch (mode) {
case UVERBS_LOOKUP_READ:
WARN_ON(atomic_read(&uobj->usecnt) <= 0);
break;
case UVERBS_LOOKUP_WRITE:
WARN_ON(atomic_read(&uobj->usecnt) != -1);
break;
case UVERBS_LOOKUP_DESTROY:
break;
}
#endif
}
/*
* This must be called with the hw_destroy_rwsem locked for read or write,
* also the uobject itself must be locked for write.
*
* Upon return the HW object is guaranteed to be destroyed.
*
* For RDMA_REMOVE_ABORT, the hw_destroy_rwsem is not required to be held,
* however the type's allocat_commit function cannot have been called and the
* uobject cannot be on the uobjects_lists
*
* For RDMA_REMOVE_DESTROY the caller shold be holding a kref (eg via
* rdma_lookup_get_uobject) and the object is left in a state where the caller
* needs to call rdma_lookup_put_uobject.
*
* For all other destroy modes this function internally unlocks the uobject
* and consumes the kref on the uobj.
*/
static int uverbs_destroy_uobject(struct ib_uobject *uobj,
enum rdma_remove_reason reason,
struct uverbs_attr_bundle *attrs)
{
struct ib_uverbs_file *ufile = attrs->ufile;
unsigned long flags;
int ret;
lockdep_assert_held(&ufile->hw_destroy_rwsem);
assert_uverbs_usecnt(uobj, UVERBS_LOOKUP_WRITE);
if (reason == RDMA_REMOVE_ABORT) {
WARN_ON(!list_empty(&uobj->list));
WARN_ON(!uobj->context);
uobj->uapi_object->type_class->alloc_abort(uobj);
} else if (uobj->object) {
ret = uobj->uapi_object->type_class->destroy_hw(uobj, reason,
attrs);
if (ret) {
if (ib_is_destroy_retryable(ret, reason, uobj))
return ret;
/* Nothing to be done, dangle the memory and move on */
WARN(true,
"ib_uverbs: failed to remove uobject id %d, driver err=%d",
uobj->id, ret);
}
uobj->object = NULL;
}
uobj->context = NULL;
/*
* For DESTROY the usecnt is not changed, the caller is expected to
* manage it via uobj_put_destroy(). Only DESTROY can remove the IDR
* handle.
*/
if (reason != RDMA_REMOVE_DESTROY)
atomic_set(&uobj->usecnt, 0);
else
uobj->uapi_object->type_class->remove_handle(uobj);
if (!list_empty(&uobj->list)) {
spin_lock_irqsave(&ufile->uobjects_lock, flags);
list_del_init(&uobj->list);
spin_unlock_irqrestore(&ufile->uobjects_lock, flags);
/*
* Pairs with the get in rdma_alloc_commit_uobject(), could
* destroy uobj.
*/
uverbs_uobject_put(uobj);
}
/*
* When aborting the stack kref remains owned by the core code, and is
* not transferred into the type. Pairs with the get in alloc_uobj
*/
if (reason == RDMA_REMOVE_ABORT)
uverbs_uobject_put(uobj);
return 0;
}
/*
* This calls uverbs_destroy_uobject() using the RDMA_REMOVE_DESTROY
* sequence. It should only be used from command callbacks. On success the
* caller must pair this with uobj_put_destroy(). This
* version requires the caller to have already obtained an
* LOOKUP_DESTROY uobject kref.
*/
int uobj_destroy(struct ib_uobject *uobj, struct uverbs_attr_bundle *attrs)
{
struct ib_uverbs_file *ufile = attrs->ufile;
int ret;
down_read(&ufile->hw_destroy_rwsem);
/*
* Once the uobject is destroyed by RDMA_REMOVE_DESTROY then it is left
* write locked as the callers put it back with UVERBS_LOOKUP_DESTROY.
* This is because any other concurrent thread can still see the object
* in the xarray due to RCU. Leaving it locked ensures nothing else will
* touch it.
*/
ret = uverbs_try_lock_object(uobj, UVERBS_LOOKUP_WRITE);
if (ret)
goto out_unlock;
ret = uverbs_destroy_uobject(uobj, RDMA_REMOVE_DESTROY, attrs);
if (ret) {
atomic_set(&uobj->usecnt, 0);
goto out_unlock;
}
out_unlock:
up_read(&ufile->hw_destroy_rwsem);
return ret;
}
/*
* uobj_get_destroy destroys the HW object and returns a handle to the uobj
* with a NULL object pointer. The caller must pair this with
* uobj_put_destroy().
*/
struct ib_uobject *__uobj_get_destroy(const struct uverbs_api_object *obj,
u32 id, struct uverbs_attr_bundle *attrs)
{
struct ib_uobject *uobj;
int ret;
uobj = rdma_lookup_get_uobject(obj, attrs->ufile, id,
UVERBS_LOOKUP_DESTROY, attrs);
if (IS_ERR(uobj))
return uobj;
ret = uobj_destroy(uobj, attrs);
if (ret) {
rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_DESTROY);
return ERR_PTR(ret);
}
return uobj;
}
/*
* Does both uobj_get_destroy() and uobj_put_destroy(). Returns 0 on success
* (negative errno on failure). For use by callers that do not need the uobj.
*/
int __uobj_perform_destroy(const struct uverbs_api_object *obj, u32 id,
struct uverbs_attr_bundle *attrs)
{
struct ib_uobject *uobj;
uobj = __uobj_get_destroy(obj, id, attrs);
if (IS_ERR(uobj))
return PTR_ERR(uobj);
uobj_put_destroy(uobj);
return 0;
}
/* alloc_uobj must be undone by uverbs_destroy_uobject() */
static struct ib_uobject *alloc_uobj(struct uverbs_attr_bundle *attrs,
const struct uverbs_api_object *obj)
{
struct ib_uverbs_file *ufile = attrs->ufile;
struct ib_uobject *uobj;
if (!attrs->context) {
struct ib_ucontext *ucontext =
ib_uverbs_get_ucontext_file(ufile);
if (IS_ERR(ucontext))
return ERR_CAST(ucontext);
attrs->context = ucontext;
}
uobj = kzalloc(obj->type_attrs->obj_size, GFP_KERNEL);
if (!uobj)
return ERR_PTR(-ENOMEM);
/*
* user_handle should be filled by the handler,
* The object is added to the list in the commit stage.
*/
uobj->ufile = ufile;
uobj->context = attrs->context;
INIT_LIST_HEAD(&uobj->list);
uobj->uapi_object = obj;
/*
* Allocated objects start out as write locked to deny any other
* syscalls from accessing them until they are committed. See
* rdma_alloc_commit_uobject
*/
atomic_set(&uobj->usecnt, -1);
kref_init(&uobj->ref);
return uobj;
}
static int idr_add_uobj(struct ib_uobject *uobj)
{
/*
* We start with allocating an idr pointing to NULL. This represents an
* object which isn't initialized yet. We'll replace it later on with
* the real object once we commit.
*/
return xa_alloc(&uobj->ufile->idr, &uobj->id, NULL, xa_limit_32b,
GFP_KERNEL);
}
/* Returns the ib_uobject or an error. The caller should check for IS_ERR. */
static struct ib_uobject *
lookup_get_idr_uobject(const struct uverbs_api_object *obj,
struct ib_uverbs_file *ufile, s64 id,
enum rdma_lookup_mode mode)
{
struct ib_uobject *uobj;
if (id < 0 || id > ULONG_MAX)
return ERR_PTR(-EINVAL);
rcu_read_lock();
/*
* The idr_find is guaranteed to return a pointer to something that
* isn't freed yet, or NULL, as the free after idr_remove goes through
* kfree_rcu(). However the object may still have been released and
* kfree() could be called at any time.
*/
uobj = xa_load(&ufile->idr, id);
if (!uobj || !kref_get_unless_zero(&uobj->ref))
uobj = ERR_PTR(-ENOENT);
rcu_read_unlock();
return uobj;
}
static struct ib_uobject *
lookup_get_fd_uobject(const struct uverbs_api_object *obj,
struct ib_uverbs_file *ufile, s64 id,
enum rdma_lookup_mode mode)
{
const struct uverbs_obj_fd_type *fd_type;
struct file *f;
struct ib_uobject *uobject;
int fdno = id;
if (fdno != id)
return ERR_PTR(-EINVAL);
if (mode != UVERBS_LOOKUP_READ)
return ERR_PTR(-EOPNOTSUPP);
if (!obj->type_attrs)
return ERR_PTR(-EIO);
fd_type =
container_of(obj->type_attrs, struct uverbs_obj_fd_type, type);
f = fget(fdno);
if (!f)
return ERR_PTR(-EBADF);
uobject = f->private_data;
/*
* fget(id) ensures we are not currently running
* uverbs_uobject_fd_release(), and the caller is expected to ensure
* that release is never done while a call to lookup is possible.
*/
if (f->f_op != fd_type->fops || uobject->ufile != ufile) {
fput(f);
return ERR_PTR(-EBADF);
}
uverbs_uobject_get(uobject);
return uobject;
}
struct ib_uobject *rdma_lookup_get_uobject(const struct uverbs_api_object *obj,
struct ib_uverbs_file *ufile, s64 id,
enum rdma_lookup_mode mode,
struct uverbs_attr_bundle *attrs)
{
struct ib_uobject *uobj;
int ret;
if (obj == ERR_PTR(-ENOMSG)) {
/* must be UVERBS_IDR_ANY_OBJECT, see uapi_get_object() */
uobj = lookup_get_idr_uobject(NULL, ufile, id, mode);
if (IS_ERR(uobj))
return uobj;
} else {
if (IS_ERR(obj))
return ERR_PTR(-EINVAL);
uobj = obj->type_class->lookup_get(obj, ufile, id, mode);
if (IS_ERR(uobj))
return uobj;
if (uobj->uapi_object != obj) {
ret = -EINVAL;
goto free;
}
}
/*
* If we have been disassociated block every command except for
* DESTROY based commands.
*/
if (mode != UVERBS_LOOKUP_DESTROY &&
!srcu_dereference(ufile->device->ib_dev,
&ufile->device->disassociate_srcu)) {
ret = -EIO;
goto free;
}
ret = uverbs_try_lock_object(uobj, mode);
if (ret)
goto free;
if (attrs)
attrs->context = uobj->context;
return uobj;
free:
uobj->uapi_object->type_class->lookup_put(uobj, mode);
uverbs_uobject_put(uobj);
return ERR_PTR(ret);
}
static struct ib_uobject *
alloc_begin_idr_uobject(const struct uverbs_api_object *obj,
struct uverbs_attr_bundle *attrs)
{
int ret;
struct ib_uobject *uobj;
uobj = alloc_uobj(attrs, obj);
if (IS_ERR(uobj))
return uobj;
ret = idr_add_uobj(uobj);
if (ret)
goto uobj_put;
ret = ib_rdmacg_try_charge(&uobj->cg_obj, uobj->context->device,
RDMACG_RESOURCE_HCA_OBJECT);
if (ret)
goto remove;
return uobj;
remove:
xa_erase(&attrs->ufile->idr, uobj->id);
uobj_put:
uverbs_uobject_put(uobj);
return ERR_PTR(ret);
}
static struct ib_uobject *
alloc_begin_fd_uobject(const struct uverbs_api_object *obj,
struct uverbs_attr_bundle *attrs)
{
const struct uverbs_obj_fd_type *fd_type =
container_of(obj->type_attrs, struct uverbs_obj_fd_type, type);
int new_fd;
struct ib_uobject *uobj;
struct file *filp;
if (WARN_ON(fd_type->fops->release != &uverbs_uobject_fd_release &&
fd_type->fops->release != &uverbs_async_event_release))
return ERR_PTR(-EINVAL);
new_fd = get_unused_fd_flags(O_CLOEXEC);
if (new_fd < 0)
return ERR_PTR(new_fd);
uobj = alloc_uobj(attrs, obj);
if (IS_ERR(uobj))
goto err_fd;
/* Note that uverbs_uobject_fd_release() is called during abort */
filp = anon_inode_getfile(fd_type->name, fd_type->fops, NULL,
fd_type->flags);
if (IS_ERR(filp)) {
uverbs_uobject_put(uobj);
uobj = ERR_CAST(filp);
goto err_fd;
}
uobj->object = filp;
uobj->id = new_fd;
return uobj;
err_fd:
put_unused_fd(new_fd);
return uobj;
}
struct ib_uobject *rdma_alloc_begin_uobject(const struct uverbs_api_object *obj,
struct uverbs_attr_bundle *attrs)
{
struct ib_uverbs_file *ufile = attrs->ufile;
struct ib_uobject *ret;
if (IS_ERR(obj))
return ERR_PTR(-EINVAL);
/*
* The hw_destroy_rwsem is held across the entire object creation and
* released during rdma_alloc_commit_uobject or
* rdma_alloc_abort_uobject
*/
if (!down_read_trylock(&ufile->hw_destroy_rwsem))
return ERR_PTR(-EIO);
ret = obj->type_class->alloc_begin(obj, attrs);
if (IS_ERR(ret)) {
up_read(&ufile->hw_destroy_rwsem);
return ret;
}
return ret;
}
static void alloc_abort_idr_uobject(struct ib_uobject *uobj)
{
ib_rdmacg_uncharge(&uobj->cg_obj, uobj->context->device,
RDMACG_RESOURCE_HCA_OBJECT);
xa_erase(&uobj->ufile->idr, uobj->id);
}
static int __must_check destroy_hw_idr_uobject(struct ib_uobject *uobj,
enum rdma_remove_reason why,
struct uverbs_attr_bundle *attrs)
{
const struct uverbs_obj_idr_type *idr_type =
container_of(uobj->uapi_object->type_attrs,
struct uverbs_obj_idr_type, type);
int ret = idr_type->destroy_object(uobj, why, attrs);
/*
* We can only fail gracefully if the user requested to destroy the
* object or when a retry may be called upon an error.
* In the rest of the cases, just remove whatever you can.
*/
if (ib_is_destroy_retryable(ret, why, uobj))
return ret;
if (why == RDMA_REMOVE_ABORT)
return 0;
ib_rdmacg_uncharge(&uobj->cg_obj, uobj->context->device,
RDMACG_RESOURCE_HCA_OBJECT);
return 0;
}
static void remove_handle_idr_uobject(struct ib_uobject *uobj)
{
xa_erase(&uobj->ufile->idr, uobj->id);
/* Matches the kref in alloc_commit_idr_uobject */
uverbs_uobject_put(uobj);
}
static void alloc_abort_fd_uobject(struct ib_uobject *uobj)
{
struct file *filp = uobj->object;
fput(filp);
put_unused_fd(uobj->id);
}
static int __must_check destroy_hw_fd_uobject(struct ib_uobject *uobj,
enum rdma_remove_reason why,
struct uverbs_attr_bundle *attrs)
{
const struct uverbs_obj_fd_type *fd_type = container_of(
uobj->uapi_object->type_attrs, struct uverbs_obj_fd_type, type);
int ret = fd_type->destroy_object(uobj, why);
if (ib_is_destroy_retryable(ret, why, uobj))
return ret;
return 0;
}
static void remove_handle_fd_uobject(struct ib_uobject *uobj)
{
}
static void alloc_commit_idr_uobject(struct ib_uobject *uobj)
{
struct ib_uverbs_file *ufile = uobj->ufile;
void *old;
/*
* We already allocated this IDR with a NULL object, so
* this shouldn't fail.
*
* NOTE: Storing the uobj transfers our kref on uobj to the XArray.
* It will be put by remove_commit_idr_uobject()
*/
old = xa_store(&ufile->idr, uobj->id, uobj, GFP_KERNEL);
WARN_ON(old != NULL);
}
static void alloc_commit_fd_uobject(struct ib_uobject *uobj)
{
int fd = uobj->id;
struct file *filp = uobj->object;
/* Matching put will be done in uverbs_uobject_fd_release() */
kref_get(&uobj->ufile->ref);
/* This shouldn't be used anymore. Use the file object instead */
uobj->id = 0;
/*
* NOTE: Once we install the file we loose ownership of our kref on
* uobj. It will be put by uverbs_uobject_fd_release()
*/
filp->private_data = uobj;
fd_install(fd, filp);
}
/*
* In all cases rdma_alloc_commit_uobject() consumes the kref to uobj and the
* caller can no longer assume uobj is valid. If this function fails it
* destroys the uboject, including the attached HW object.
*/
void rdma_alloc_commit_uobject(struct ib_uobject *uobj,
struct uverbs_attr_bundle *attrs)
{
struct ib_uverbs_file *ufile = attrs->ufile;
/* alloc_commit consumes the uobj kref */
uobj->uapi_object->type_class->alloc_commit(uobj);
/* kref is held so long as the uobj is on the uobj list. */
uverbs_uobject_get(uobj);
spin_lock_irq(&ufile->uobjects_lock);
list_add(&uobj->list, &ufile->uobjects);
spin_unlock_irq(&ufile->uobjects_lock);
/* matches atomic_set(-1) in alloc_uobj */
atomic_set(&uobj->usecnt, 0);
/* Matches the down_read in rdma_alloc_begin_uobject */
up_read(&ufile->hw_destroy_rwsem);
}
/*
* This consumes the kref for uobj. It is up to the caller to unwind the HW
* object and anything else connected to uobj before calling this.
*/
void rdma_alloc_abort_uobject(struct ib_uobject *uobj,
struct uverbs_attr_bundle *attrs)
{
struct ib_uverbs_file *ufile = uobj->ufile;
uverbs_destroy_uobject(uobj, RDMA_REMOVE_ABORT, attrs);
/* Matches the down_read in rdma_alloc_begin_uobject */
up_read(&ufile->hw_destroy_rwsem);
}
static void lookup_put_idr_uobject(struct ib_uobject *uobj,
enum rdma_lookup_mode mode)
{
}
static void lookup_put_fd_uobject(struct ib_uobject *uobj,
enum rdma_lookup_mode mode)
{
struct file *filp = uobj->object;
WARN_ON(mode != UVERBS_LOOKUP_READ);
/*
* This indirectly calls uverbs_uobject_fd_release() and free the
* object
*/
fput(filp);
}
void rdma_lookup_put_uobject(struct ib_uobject *uobj,
enum rdma_lookup_mode mode)
{
assert_uverbs_usecnt(uobj, mode);
/*
* In order to unlock an object, either decrease its usecnt for
* read access or zero it in case of exclusive access. See
* uverbs_try_lock_object for locking schema information.
*/
switch (mode) {
case UVERBS_LOOKUP_READ:
atomic_dec(&uobj->usecnt);
break;
case UVERBS_LOOKUP_WRITE:
atomic_set(&uobj->usecnt, 0);
break;
case UVERBS_LOOKUP_DESTROY:
break;
}
uobj->uapi_object->type_class->lookup_put(uobj, mode);
/* Pairs with the kref obtained by type->lookup_get */
uverbs_uobject_put(uobj);
}
void setup_ufile_idr_uobject(struct ib_uverbs_file *ufile)
{
xa_init_flags(&ufile->idr, XA_FLAGS_ALLOC);
}
void release_ufile_idr_uobject(struct ib_uverbs_file *ufile)
{
struct ib_uobject *entry;
unsigned long id;
/*
* At this point uverbs_cleanup_ufile() is guaranteed to have run, and
* there are no HW objects left, however the xarray is still populated
* with anything that has not been cleaned up by userspace. Since the
* kref on ufile is 0, nothing is allowed to call lookup_get.
*
* This is an optimized equivalent to remove_handle_idr_uobject
*/
xa_for_each(&ufile->idr, id, entry) {
WARN_ON(entry->object);
uverbs_uobject_put(entry);
}
xa_destroy(&ufile->idr);
}
const struct uverbs_obj_type_class uverbs_idr_class = {
.alloc_begin = alloc_begin_idr_uobject,
.lookup_get = lookup_get_idr_uobject,
.alloc_commit = alloc_commit_idr_uobject,
.alloc_abort = alloc_abort_idr_uobject,
.lookup_put = lookup_put_idr_uobject,
.destroy_hw = destroy_hw_idr_uobject,
.remove_handle = remove_handle_idr_uobject,
};
EXPORT_SYMBOL(uverbs_idr_class);
/*
* Users of UVERBS_TYPE_ALLOC_FD should set this function as the struct
* file_operations release method.
*/
int uverbs_uobject_fd_release(struct inode *inode, struct file *filp)
{
struct ib_uverbs_file *ufile;
struct ib_uobject *uobj;
/*
* This can only happen if the fput came from alloc_abort_fd_uobject()
*/
if (!filp->private_data)
return 0;
uobj = filp->private_data;
ufile = uobj->ufile;
if (down_read_trylock(&ufile->hw_destroy_rwsem)) {
struct uverbs_attr_bundle attrs = {
.context = uobj->context,
.ufile = ufile,
};
/*
* lookup_get_fd_uobject holds the kref on the struct file any
* time a FD uobj is locked, which prevents this release
* method from being invoked. Meaning we can always get the
* write lock here, or we have a kernel bug.
*/
WARN_ON(uverbs_try_lock_object(uobj, UVERBS_LOOKUP_WRITE));
uverbs_destroy_uobject(uobj, RDMA_REMOVE_CLOSE, &attrs);
up_read(&ufile->hw_destroy_rwsem);
}
/* Matches the get in alloc_commit_fd_uobject() */
kref_put(&ufile->ref, ib_uverbs_release_file);
/* Pairs with filp->private_data in alloc_begin_fd_uobject */
uverbs_uobject_put(uobj);
return 0;
}
EXPORT_SYMBOL(uverbs_uobject_fd_release);
/*
* Drop the ucontext off the ufile and completely disconnect it from the
* ib_device
*/
static void ufile_destroy_ucontext(struct ib_uverbs_file *ufile,
enum rdma_remove_reason reason)
{
struct ib_ucontext *ucontext = ufile->ucontext;
struct ib_device *ib_dev = ucontext->device;
/*
* If we are closing the FD then the user mmap VMAs must have
* already been destroyed as they hold on to the filep, otherwise
* they need to be zap'd.
*/
if (reason == RDMA_REMOVE_DRIVER_REMOVE) {
uverbs_user_mmap_disassociate(ufile);
if (ib_dev->ops.disassociate_ucontext)
ib_dev->ops.disassociate_ucontext(ucontext);
}
ib_rdmacg_uncharge(&ucontext->cg_obj, ib_dev,
RDMACG_RESOURCE_HCA_HANDLE);
rdma_restrack_del(&ucontext->res);
ib_dev->ops.dealloc_ucontext(ucontext);
WARN_ON(!xa_empty(&ucontext->mmap_xa));
kfree(ucontext);
ufile->ucontext = NULL;
}
static int __uverbs_cleanup_ufile(struct ib_uverbs_file *ufile,
enum rdma_remove_reason reason)
{
struct ib_uobject *obj, *next_obj;
int ret = -EINVAL;
struct uverbs_attr_bundle attrs = { .ufile = ufile };
/*
* This shouldn't run while executing other commands on this
* context. Thus, the only thing we should take care of is
* releasing a FD while traversing this list. The FD could be
* closed and released from the _release fop of this FD.
* In order to mitigate this, we add a lock.
* We take and release the lock per traversal in order to let
* other threads (which might still use the FDs) chance to run.
*/
list_for_each_entry_safe(obj, next_obj, &ufile->uobjects, list) {
attrs.context = obj->context;
/*
* if we hit this WARN_ON, that means we are
* racing with a lookup_get.
*/
WARN_ON(uverbs_try_lock_object(obj, UVERBS_LOOKUP_WRITE));
if (!uverbs_destroy_uobject(obj, reason, &attrs))
ret = 0;
else
atomic_set(&obj->usecnt, 0);
}
return ret;
}
/*
* Destroy the uncontext and every uobject associated with it.
*
* This is internally locked and can be called in parallel from multiple
* contexts.
*/
void uverbs_destroy_ufile_hw(struct ib_uverbs_file *ufile,
enum rdma_remove_reason reason)
{
down_write(&ufile->hw_destroy_rwsem);
/*
* If a ucontext was never created then we can't have any uobjects to
* cleanup, nothing to do.
*/
if (!ufile->ucontext)
goto done;
ufile->ucontext->closing = true;
ufile->ucontext->cleanup_retryable = true;
while (!list_empty(&ufile->uobjects))
if (__uverbs_cleanup_ufile(ufile, reason)) {
/*
* No entry was cleaned-up successfully during this
* iteration
*/
break;
}
ufile->ucontext->cleanup_retryable = false;
if (!list_empty(&ufile->uobjects))
__uverbs_cleanup_ufile(ufile, reason);
ufile_destroy_ucontext(ufile, reason);
done:
up_write(&ufile->hw_destroy_rwsem);
}
const struct uverbs_obj_type_class uverbs_fd_class = {
.alloc_begin = alloc_begin_fd_uobject,
.lookup_get = lookup_get_fd_uobject,
.alloc_commit = alloc_commit_fd_uobject,
.alloc_abort = alloc_abort_fd_uobject,
.lookup_put = lookup_put_fd_uobject,
.destroy_hw = destroy_hw_fd_uobject,
.remove_handle = remove_handle_fd_uobject,
};
EXPORT_SYMBOL(uverbs_fd_class);
struct ib_uobject *
uverbs_get_uobject_from_file(u16 object_id, enum uverbs_obj_access access,
s64 id, struct uverbs_attr_bundle *attrs)
{
const struct uverbs_api_object *obj =
uapi_get_object(attrs->ufile->device->uapi, object_id);
switch (access) {
case UVERBS_ACCESS_READ:
return rdma_lookup_get_uobject(obj, attrs->ufile, id,
UVERBS_LOOKUP_READ, attrs);
case UVERBS_ACCESS_DESTROY:
/* Actual destruction is done inside uverbs_handle_method */
return rdma_lookup_get_uobject(obj, attrs->ufile, id,
UVERBS_LOOKUP_DESTROY, attrs);
case UVERBS_ACCESS_WRITE:
return rdma_lookup_get_uobject(obj, attrs->ufile, id,
UVERBS_LOOKUP_WRITE, attrs);
case UVERBS_ACCESS_NEW:
return rdma_alloc_begin_uobject(obj, attrs);
default:
WARN_ON(true);
return ERR_PTR(-EOPNOTSUPP);
}
}
void uverbs_finalize_object(struct ib_uobject *uobj,
enum uverbs_obj_access access, bool commit,
struct uverbs_attr_bundle *attrs)
{
/*
* refcounts should be handled at the object level and not at the
* uobject level. Refcounts of the objects themselves are done in
* handlers.
*/
switch (access) {
case UVERBS_ACCESS_READ:
rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_READ);
break;
case UVERBS_ACCESS_WRITE:
rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_WRITE);
break;
case UVERBS_ACCESS_DESTROY:
if (uobj)
rdma_lookup_put_uobject(uobj, UVERBS_LOOKUP_DESTROY);
break;
case UVERBS_ACCESS_NEW:
if (commit)
rdma_alloc_commit_uobject(uobj, attrs);
else
rdma_alloc_abort_uobject(uobj, attrs);
break;
default:
WARN_ON(true);
}
}