97d052ea3f
- Untangle the header spaghetti which causes build failures in various situations caused by the lockdep additions to seqcount to validate that the write side critical sections are non-preemptible. - The seqcount associated lock debug addons which were blocked by the above fallout. seqcount writers contrary to seqlock writers must be externally serialized, which usually happens via locking - except for strict per CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot validate that the lock is held. This new debug mechanism adds the concept of associated locks. sequence count has now lock type variants and corresponding initializers which take a pointer to the associated lock used for writer serialization. If lockdep is enabled the pointer is stored and write_seqcount_begin() has a lockdep assertion to validate that the lock is held. Aside of the type and the initializer no other code changes are required at the seqcount usage sites. The rest of the seqcount API is unchanged and determines the type at compile time with the help of _Generic which is possible now that the minimal GCC version has been moved up. Adding this lockdep coverage unearthed a handful of seqcount bugs which have been addressed already independent of this. While generaly useful this comes with a Trojan Horse twist: On RT kernels the write side critical section can become preemtible if the writers are serialized by an associated lock, which leads to the well known reader preempts writer livelock. RT prevents this by storing the associated lock pointer independent of lockdep in the seqcount and changing the reader side to block on the lock when a reader detects that a writer is in the write side critical section. - Conversion of seqcount usage sites to associated types and initializers. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8xmPYTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoTuQEACyzQCjU8PgehPp9oMqWzaX2fcVyuZO QU2yw6gmz2oTz3ZHUNwdW8UnzGh2OWosK3kDruoD9FtSS51lER1/ISfSPCGfyqxC KTjOcB1Kvxwq/3LcCx7Zi3ZxWApat74qs3EhYhKtEiQ2Y9xv9rLq8VV1UWAwyxq0 eHpjlIJ6b6rbt+ARslaB7drnccOsdK+W/roNj4kfyt+gezjBfojGRdMGQNMFcpnv shuTC+vYurAVIiVA/0IuizgHfwZiXOtVpjVoEWaxg6bBH6HNuYMYzdSa/YrlDkZs n/aBI/Xkvx+Eacu8b1Zwmbzs5EnikUK/2dMqbzXKUZK61eV4hX5c2xrnr1yGWKTs F/juh69Squ7X6VZyKVgJ9RIccVueqwR2EprXWgH3+RMice5kjnXH4zURp0GHALxa DFPfB6fawcH3Ps87kcRFvjgm6FBo0hJ1AxmsW1dY4ACFB9azFa2euW+AARDzHOy2 VRsUdhL9CGwtPjXcZ/9Rhej6fZLGBXKr8uq5QiMuvttp4b6+j9FEfBgD4S6h8csl AT2c2I9LcbWqyUM9P4S7zY/YgOZw88vHRuDH7tEBdIeoiHfrbSBU7EQ9jlAKq/59 f+Htu2Io281c005g7DEeuCYvpzSYnJnAitj5Lmp/kzk2Wn3utY1uIAVszqwf95Ul 81ppn2KlvzUK8g== =7Gj+ -----END PGP SIGNATURE----- Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Thomas Gleixner: "A set of locking fixes and updates: - Untangle the header spaghetti which causes build failures in various situations caused by the lockdep additions to seqcount to validate that the write side critical sections are non-preemptible. - The seqcount associated lock debug addons which were blocked by the above fallout. seqcount writers contrary to seqlock writers must be externally serialized, which usually happens via locking - except for strict per CPU seqcounts. As the lock is not part of the seqcount, lockdep cannot validate that the lock is held. This new debug mechanism adds the concept of associated locks. sequence count has now lock type variants and corresponding initializers which take a pointer to the associated lock used for writer serialization. If lockdep is enabled the pointer is stored and write_seqcount_begin() has a lockdep assertion to validate that the lock is held. Aside of the type and the initializer no other code changes are required at the seqcount usage sites. The rest of the seqcount API is unchanged and determines the type at compile time with the help of _Generic which is possible now that the minimal GCC version has been moved up. Adding this lockdep coverage unearthed a handful of seqcount bugs which have been addressed already independent of this. While generally useful this comes with a Trojan Horse twist: On RT kernels the write side critical section can become preemtible if the writers are serialized by an associated lock, which leads to the well known reader preempts writer livelock. RT prevents this by storing the associated lock pointer independent of lockdep in the seqcount and changing the reader side to block on the lock when a reader detects that a writer is in the write side critical section. - Conversion of seqcount usage sites to associated types and initializers" * tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits) locking/seqlock, headers: Untangle the spaghetti monster locking, arch/ia64: Reduce <asm/smp.h> header dependencies by moving XTP bits into the new <asm/xtp.h> header x86/headers: Remove APIC headers from <asm/smp.h> seqcount: More consistent seqprop names seqcount: Compress SEQCNT_LOCKNAME_ZERO() seqlock: Fold seqcount_LOCKNAME_init() definition seqlock: Fold seqcount_LOCKNAME_t definition seqlock: s/__SEQ_LOCKDEP/__SEQ_LOCK/g hrtimer: Use sequence counter with associated raw spinlock kvm/eventfd: Use sequence counter with associated spinlock userfaultfd: Use sequence counter with associated spinlock NFSv4: Use sequence counter with associated spinlock iocost: Use sequence counter with associated spinlock raid5: Use sequence counter with associated spinlock vfs: Use sequence counter with associated spinlock timekeeping: Use sequence counter with associated raw spinlock xfrm: policy: Use sequence counters with associated lock netfilter: nft_set_rbtree: Use sequence counter with associated rwlock netfilter: conntrack: Use sequence counter with associated spinlock sched: tasks: Use sequence counter with associated spinlock ...
663 lines
18 KiB
C
663 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Architecture-specific setup.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
|
|
*
|
|
* 2005-10-07 Keith Owens <kaos@sgi.com>
|
|
* Add notify_die() hooks.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/tracehook.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <asm/cpu.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unwind.h>
|
|
#include <asm/user.h>
|
|
#include <asm/xtp.h>
|
|
|
|
#include "entry.h"
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
# include <asm/perfmon.h>
|
|
#endif
|
|
|
|
#include "sigframe.h"
|
|
|
|
void (*ia64_mark_idle)(int);
|
|
|
|
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
|
|
EXPORT_SYMBOL(boot_option_idle_override);
|
|
void (*pm_power_off) (void);
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
static void
|
|
ia64_do_show_stack (struct unw_frame_info *info, void *arg)
|
|
{
|
|
unsigned long ip, sp, bsp;
|
|
const char *loglvl = arg;
|
|
|
|
printk("%s\nCall Trace:\n", loglvl);
|
|
do {
|
|
unw_get_ip(info, &ip);
|
|
if (ip == 0)
|
|
break;
|
|
|
|
unw_get_sp(info, &sp);
|
|
unw_get_bsp(info, &bsp);
|
|
printk("%s [<%016lx>] %pS\n"
|
|
" sp=%016lx bsp=%016lx\n",
|
|
loglvl, ip, (void *)ip, sp, bsp);
|
|
} while (unw_unwind(info) >= 0);
|
|
}
|
|
|
|
void
|
|
show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
|
|
{
|
|
if (!task)
|
|
unw_init_running(ia64_do_show_stack, (void *)loglvl);
|
|
else {
|
|
struct unw_frame_info info;
|
|
|
|
unw_init_from_blocked_task(&info, task);
|
|
ia64_do_show_stack(&info, (void *)loglvl);
|
|
}
|
|
}
|
|
|
|
void
|
|
show_regs (struct pt_regs *regs)
|
|
{
|
|
unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
|
|
|
|
print_modules();
|
|
printk("\n");
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
|
|
regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
|
|
init_utsname()->release);
|
|
printk("ip is at %pS\n", (void *)ip);
|
|
printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
|
|
regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
|
|
printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
|
|
regs->ar_rnat, regs->ar_bspstore, regs->pr);
|
|
printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
|
|
regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
|
|
printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
|
|
printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
|
|
printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
|
|
regs->f6.u.bits[1], regs->f6.u.bits[0],
|
|
regs->f7.u.bits[1], regs->f7.u.bits[0]);
|
|
printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
|
|
regs->f8.u.bits[1], regs->f8.u.bits[0],
|
|
regs->f9.u.bits[1], regs->f9.u.bits[0]);
|
|
printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
|
|
regs->f10.u.bits[1], regs->f10.u.bits[0],
|
|
regs->f11.u.bits[1], regs->f11.u.bits[0]);
|
|
|
|
printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
|
|
printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
|
|
printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
|
|
printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
|
|
printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
|
|
printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
|
|
printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
|
|
printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
|
|
printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
|
|
|
|
if (user_mode(regs)) {
|
|
/* print the stacked registers */
|
|
unsigned long val, *bsp, ndirty;
|
|
int i, sof, is_nat = 0;
|
|
|
|
sof = regs->cr_ifs & 0x7f; /* size of frame */
|
|
ndirty = (regs->loadrs >> 19);
|
|
bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
|
|
for (i = 0; i < sof; ++i) {
|
|
get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
|
|
printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
|
|
((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
|
|
}
|
|
} else
|
|
show_stack(NULL, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
/* local support for deprecated console_print */
|
|
void
|
|
console_print(const char *s)
|
|
{
|
|
printk(KERN_EMERG "%s", s);
|
|
}
|
|
|
|
void
|
|
do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
|
|
{
|
|
if (fsys_mode(current, &scr->pt)) {
|
|
/*
|
|
* defer signal-handling etc. until we return to
|
|
* privilege-level 0.
|
|
*/
|
|
if (!ia64_psr(&scr->pt)->lp)
|
|
ia64_psr(&scr->pt)->lp = 1;
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if (current->thread.pfm_needs_checking)
|
|
/*
|
|
* Note: pfm_handle_work() allow us to call it with interrupts
|
|
* disabled, and may enable interrupts within the function.
|
|
*/
|
|
pfm_handle_work();
|
|
#endif
|
|
|
|
/* deal with pending signal delivery */
|
|
if (test_thread_flag(TIF_SIGPENDING)) {
|
|
local_irq_enable(); /* force interrupt enable */
|
|
ia64_do_signal(scr, in_syscall);
|
|
}
|
|
|
|
if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
|
|
local_irq_enable(); /* force interrupt enable */
|
|
tracehook_notify_resume(&scr->pt);
|
|
}
|
|
|
|
/* copy user rbs to kernel rbs */
|
|
if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
|
|
local_irq_enable(); /* force interrupt enable */
|
|
ia64_sync_krbs();
|
|
}
|
|
|
|
local_irq_disable(); /* force interrupt disable */
|
|
}
|
|
|
|
static int __init nohalt_setup(char * str)
|
|
{
|
|
cpu_idle_poll_ctrl(true);
|
|
return 1;
|
|
}
|
|
__setup("nohalt", nohalt_setup);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* We don't actually take CPU down, just spin without interrupts. */
|
|
static inline void play_dead(void)
|
|
{
|
|
unsigned int this_cpu = smp_processor_id();
|
|
|
|
/* Ack it */
|
|
__this_cpu_write(cpu_state, CPU_DEAD);
|
|
|
|
max_xtp();
|
|
local_irq_disable();
|
|
idle_task_exit();
|
|
ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
|
|
/*
|
|
* The above is a point of no-return, the processor is
|
|
* expected to be in SAL loop now.
|
|
*/
|
|
BUG();
|
|
}
|
|
#else
|
|
static inline void play_dead(void)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
void arch_cpu_idle_dead(void)
|
|
{
|
|
play_dead();
|
|
}
|
|
|
|
void arch_cpu_idle(void)
|
|
{
|
|
void (*mark_idle)(int) = ia64_mark_idle;
|
|
|
|
#ifdef CONFIG_SMP
|
|
min_xtp();
|
|
#endif
|
|
rmb();
|
|
if (mark_idle)
|
|
(*mark_idle)(1);
|
|
|
|
safe_halt();
|
|
|
|
if (mark_idle)
|
|
(*mark_idle)(0);
|
|
#ifdef CONFIG_SMP
|
|
normal_xtp();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ia64_save_extra (struct task_struct *task)
|
|
{
|
|
#ifdef CONFIG_PERFMON
|
|
unsigned long info;
|
|
#endif
|
|
|
|
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
|
|
ia64_save_debug_regs(&task->thread.dbr[0]);
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
|
|
pfm_save_regs(task);
|
|
|
|
info = __this_cpu_read(pfm_syst_info);
|
|
if (info & PFM_CPUINFO_SYST_WIDE)
|
|
pfm_syst_wide_update_task(task, info, 0);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ia64_load_extra (struct task_struct *task)
|
|
{
|
|
#ifdef CONFIG_PERFMON
|
|
unsigned long info;
|
|
#endif
|
|
|
|
if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
|
|
ia64_load_debug_regs(&task->thread.dbr[0]);
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
|
|
pfm_load_regs(task);
|
|
|
|
info = __this_cpu_read(pfm_syst_info);
|
|
if (info & PFM_CPUINFO_SYST_WIDE)
|
|
pfm_syst_wide_update_task(task, info, 1);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Copy the state of an ia-64 thread.
|
|
*
|
|
* We get here through the following call chain:
|
|
*
|
|
* from user-level: from kernel:
|
|
*
|
|
* <clone syscall> <some kernel call frames>
|
|
* sys_clone :
|
|
* _do_fork _do_fork
|
|
* copy_thread copy_thread
|
|
*
|
|
* This means that the stack layout is as follows:
|
|
*
|
|
* +---------------------+ (highest addr)
|
|
* | struct pt_regs |
|
|
* +---------------------+
|
|
* | struct switch_stack |
|
|
* +---------------------+
|
|
* | |
|
|
* | memory stack |
|
|
* | | <-- sp (lowest addr)
|
|
* +---------------------+
|
|
*
|
|
* Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
|
|
* integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
|
|
* with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
|
|
* pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
|
|
* the stack is page aligned and the page size is at least 4KB, this is always the case,
|
|
* so there is nothing to worry about.
|
|
*/
|
|
int
|
|
copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
|
|
unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
|
|
{
|
|
extern char ia64_ret_from_clone;
|
|
struct switch_stack *child_stack, *stack;
|
|
unsigned long rbs, child_rbs, rbs_size;
|
|
struct pt_regs *child_ptregs;
|
|
struct pt_regs *regs = current_pt_regs();
|
|
int retval = 0;
|
|
|
|
child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
|
|
child_stack = (struct switch_stack *) child_ptregs - 1;
|
|
|
|
rbs = (unsigned long) current + IA64_RBS_OFFSET;
|
|
child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
|
|
|
|
/* copy parts of thread_struct: */
|
|
p->thread.ksp = (unsigned long) child_stack - 16;
|
|
|
|
/*
|
|
* NOTE: The calling convention considers all floating point
|
|
* registers in the high partition (fph) to be scratch. Since
|
|
* the only way to get to this point is through a system call,
|
|
* we know that the values in fph are all dead. Hence, there
|
|
* is no need to inherit the fph state from the parent to the
|
|
* child and all we have to do is to make sure that
|
|
* IA64_THREAD_FPH_VALID is cleared in the child.
|
|
*
|
|
* XXX We could push this optimization a bit further by
|
|
* clearing IA64_THREAD_FPH_VALID on ANY system call.
|
|
* However, it's not clear this is worth doing. Also, it
|
|
* would be a slight deviation from the normal Linux system
|
|
* call behavior where scratch registers are preserved across
|
|
* system calls (unless used by the system call itself).
|
|
*/
|
|
# define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
|
|
| IA64_THREAD_PM_VALID)
|
|
# define THREAD_FLAGS_TO_SET 0
|
|
p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
|
|
| THREAD_FLAGS_TO_SET);
|
|
|
|
ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
if (unlikely(!user_stack_base)) {
|
|
/* fork_idle() called us */
|
|
return 0;
|
|
}
|
|
memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
|
|
child_stack->r4 = user_stack_base; /* payload */
|
|
child_stack->r5 = user_stack_size; /* argument */
|
|
/*
|
|
* Preserve PSR bits, except for bits 32-34 and 37-45,
|
|
* which we can't read.
|
|
*/
|
|
child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
|
|
/* mark as valid, empty frame */
|
|
child_ptregs->cr_ifs = 1UL << 63;
|
|
child_stack->ar_fpsr = child_ptregs->ar_fpsr
|
|
= ia64_getreg(_IA64_REG_AR_FPSR);
|
|
child_stack->pr = (1 << PRED_KERNEL_STACK);
|
|
child_stack->ar_bspstore = child_rbs;
|
|
child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
|
|
|
|
/* stop some PSR bits from being inherited.
|
|
* the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
|
|
* therefore we must specify them explicitly here and not include them in
|
|
* IA64_PSR_BITS_TO_CLEAR.
|
|
*/
|
|
child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
|
|
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
|
|
|
|
return 0;
|
|
}
|
|
stack = ((struct switch_stack *) regs) - 1;
|
|
/* copy parent's switch_stack & pt_regs to child: */
|
|
memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
|
|
|
|
/* copy the parent's register backing store to the child: */
|
|
rbs_size = stack->ar_bspstore - rbs;
|
|
memcpy((void *) child_rbs, (void *) rbs, rbs_size);
|
|
if (clone_flags & CLONE_SETTLS)
|
|
child_ptregs->r13 = tls;
|
|
if (user_stack_base) {
|
|
child_ptregs->r12 = user_stack_base + user_stack_size - 16;
|
|
child_ptregs->ar_bspstore = user_stack_base;
|
|
child_ptregs->ar_rnat = 0;
|
|
child_ptregs->loadrs = 0;
|
|
}
|
|
child_stack->ar_bspstore = child_rbs + rbs_size;
|
|
child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
|
|
|
|
/* stop some PSR bits from being inherited.
|
|
* the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
|
|
* therefore we must specify them explicitly here and not include them in
|
|
* IA64_PSR_BITS_TO_CLEAR.
|
|
*/
|
|
child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
|
|
& ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
|
|
|
|
#ifdef CONFIG_PERFMON
|
|
if (current->thread.pfm_context)
|
|
pfm_inherit(p, child_ptregs);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
|
|
unsigned long stack_size, unsigned long parent_tidptr,
|
|
unsigned long child_tidptr, unsigned long tls)
|
|
{
|
|
struct kernel_clone_args args = {
|
|
.flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
|
|
.pidfd = (int __user *)parent_tidptr,
|
|
.child_tid = (int __user *)child_tidptr,
|
|
.parent_tid = (int __user *)parent_tidptr,
|
|
.exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
|
|
.stack = stack_start,
|
|
.stack_size = stack_size,
|
|
.tls = tls,
|
|
};
|
|
|
|
return _do_fork(&args);
|
|
}
|
|
|
|
static void
|
|
do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
|
|
{
|
|
unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
|
|
unsigned long ip;
|
|
elf_greg_t *dst = arg;
|
|
struct pt_regs *pt;
|
|
char nat;
|
|
int i;
|
|
|
|
memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
|
|
|
|
if (unw_unwind_to_user(info) < 0)
|
|
return;
|
|
|
|
unw_get_sp(info, &sp);
|
|
pt = (struct pt_regs *) (sp + 16);
|
|
|
|
urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
|
|
|
|
if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
|
|
return;
|
|
|
|
ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
|
|
&ar_rnat);
|
|
|
|
/*
|
|
* coredump format:
|
|
* r0-r31
|
|
* NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
|
|
* predicate registers (p0-p63)
|
|
* b0-b7
|
|
* ip cfm user-mask
|
|
* ar.rsc ar.bsp ar.bspstore ar.rnat
|
|
* ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
|
|
*/
|
|
|
|
/* r0 is zero */
|
|
for (i = 1, mask = (1UL << i); i < 32; ++i) {
|
|
unw_get_gr(info, i, &dst[i], &nat);
|
|
if (nat)
|
|
nat_bits |= mask;
|
|
mask <<= 1;
|
|
}
|
|
dst[32] = nat_bits;
|
|
unw_get_pr(info, &dst[33]);
|
|
|
|
for (i = 0; i < 8; ++i)
|
|
unw_get_br(info, i, &dst[34 + i]);
|
|
|
|
unw_get_rp(info, &ip);
|
|
dst[42] = ip + ia64_psr(pt)->ri;
|
|
dst[43] = cfm;
|
|
dst[44] = pt->cr_ipsr & IA64_PSR_UM;
|
|
|
|
unw_get_ar(info, UNW_AR_RSC, &dst[45]);
|
|
/*
|
|
* For bsp and bspstore, unw_get_ar() would return the kernel
|
|
* addresses, but we need the user-level addresses instead:
|
|
*/
|
|
dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
|
|
dst[47] = pt->ar_bspstore;
|
|
dst[48] = ar_rnat;
|
|
unw_get_ar(info, UNW_AR_CCV, &dst[49]);
|
|
unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
|
|
unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
|
|
dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
|
|
unw_get_ar(info, UNW_AR_LC, &dst[53]);
|
|
unw_get_ar(info, UNW_AR_EC, &dst[54]);
|
|
unw_get_ar(info, UNW_AR_CSD, &dst[55]);
|
|
unw_get_ar(info, UNW_AR_SSD, &dst[56]);
|
|
}
|
|
|
|
void
|
|
do_copy_regs (struct unw_frame_info *info, void *arg)
|
|
{
|
|
do_copy_task_regs(current, info, arg);
|
|
}
|
|
|
|
void
|
|
ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
|
|
{
|
|
unw_init_running(do_copy_regs, dst);
|
|
}
|
|
|
|
/*
|
|
* Flush thread state. This is called when a thread does an execve().
|
|
*/
|
|
void
|
|
flush_thread (void)
|
|
{
|
|
/* drop floating-point and debug-register state if it exists: */
|
|
current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
|
|
ia64_drop_fpu(current);
|
|
}
|
|
|
|
/*
|
|
* Clean up state associated with a thread. This is called when
|
|
* the thread calls exit().
|
|
*/
|
|
void
|
|
exit_thread (struct task_struct *tsk)
|
|
{
|
|
|
|
ia64_drop_fpu(tsk);
|
|
#ifdef CONFIG_PERFMON
|
|
/* if needed, stop monitoring and flush state to perfmon context */
|
|
if (tsk->thread.pfm_context)
|
|
pfm_exit_thread(tsk);
|
|
|
|
/* free debug register resources */
|
|
if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
|
|
pfm_release_debug_registers(tsk);
|
|
#endif
|
|
}
|
|
|
|
unsigned long
|
|
get_wchan (struct task_struct *p)
|
|
{
|
|
struct unw_frame_info info;
|
|
unsigned long ip;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
/*
|
|
* Note: p may not be a blocked task (it could be current or
|
|
* another process running on some other CPU. Rather than
|
|
* trying to determine if p is really blocked, we just assume
|
|
* it's blocked and rely on the unwind routines to fail
|
|
* gracefully if the process wasn't really blocked after all.
|
|
* --davidm 99/12/15
|
|
*/
|
|
unw_init_from_blocked_task(&info, p);
|
|
do {
|
|
if (p->state == TASK_RUNNING)
|
|
return 0;
|
|
if (unw_unwind(&info) < 0)
|
|
return 0;
|
|
unw_get_ip(&info, &ip);
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cpu_halt (void)
|
|
{
|
|
pal_power_mgmt_info_u_t power_info[8];
|
|
unsigned long min_power;
|
|
int i, min_power_state;
|
|
|
|
if (ia64_pal_halt_info(power_info) != 0)
|
|
return;
|
|
|
|
min_power_state = 0;
|
|
min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
|
|
for (i = 1; i < 8; ++i)
|
|
if (power_info[i].pal_power_mgmt_info_s.im
|
|
&& power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
|
|
min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
|
|
min_power_state = i;
|
|
}
|
|
|
|
while (1)
|
|
ia64_pal_halt(min_power_state);
|
|
}
|
|
|
|
void machine_shutdown(void)
|
|
{
|
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
kexec_disable_iosapic();
|
|
#endif
|
|
}
|
|
|
|
void
|
|
machine_restart (char *restart_cmd)
|
|
{
|
|
(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
|
|
efi_reboot(REBOOT_WARM, NULL);
|
|
}
|
|
|
|
void
|
|
machine_halt (void)
|
|
{
|
|
(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
|
|
cpu_halt();
|
|
}
|
|
|
|
void
|
|
machine_power_off (void)
|
|
{
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
machine_halt();
|
|
}
|
|
|
|
EXPORT_SYMBOL(ia64_delay_loop);
|