81d2c6f819
Currently bitops-instrumented.h assumes that the architecture provides atomic, non-atomic and locking bitops (e.g. both set_bit and __set_bit). This is true on x86 and s390, but is not always true: there is a generic bitops/non-atomic.h header that provides generic non-atomic operations, and also a generic bitops/lock.h for locking operations. powerpc uses the generic non-atomic version, so it does not have it's own e.g. __set_bit that could be renamed arch___set_bit. Split up bitops-instrumented.h to mirror the atomic/non-atomic/lock split. This allows arches to only include the headers where they have arch-specific versions to rename. Update x86 and s390. (The generic operations are automatically instrumented because they're written in C, not asm.) Suggested-by: Christophe Leroy <christophe.leroy@c-s.fr> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Daniel Axtens <dja@axtens.net> Acked-by: Marco Elver <elver@google.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190820024941.12640-1-dja@axtens.net
82 lines
2.5 KiB
C
82 lines
2.5 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
* This file provides wrappers with sanitizer instrumentation for bit
|
|
* locking operations.
|
|
*
|
|
* To use this functionality, an arch's bitops.h file needs to define each of
|
|
* the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
|
|
* arch___set_bit(), etc.).
|
|
*/
|
|
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_LOCK_H
|
|
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_LOCK_H
|
|
|
|
#include <linux/kasan-checks.h>
|
|
|
|
/**
|
|
* clear_bit_unlock - Clear a bit in memory, for unlock
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This operation is atomic and provides release barrier semantics.
|
|
*/
|
|
static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
|
|
{
|
|
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
|
arch_clear_bit_unlock(nr, addr);
|
|
}
|
|
|
|
/**
|
|
* __clear_bit_unlock - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* This is a non-atomic operation but implies a release barrier before the
|
|
* memory operation. It can be used for an unlock if no other CPUs can
|
|
* concurrently modify other bits in the word.
|
|
*/
|
|
static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
|
|
{
|
|
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
|
arch___clear_bit_unlock(nr, addr);
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit_lock - Set a bit and return its old value, for lock
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and provides acquire barrier semantics if
|
|
* the returned value is 0.
|
|
* It can be used to implement bit locks.
|
|
*/
|
|
static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
|
{
|
|
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
|
return arch_test_and_set_bit_lock(nr, addr);
|
|
}
|
|
|
|
#if defined(arch_clear_bit_unlock_is_negative_byte)
|
|
/**
|
|
* clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
|
|
* byte is negative, for unlock.
|
|
* @nr: the bit to clear
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This operation is atomic and provides release barrier semantics.
|
|
*
|
|
* This is a bit of a one-trick-pony for the filemap code, which clears
|
|
* PG_locked and tests PG_waiters,
|
|
*/
|
|
static inline bool
|
|
clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
|
|
{
|
|
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
|
return arch_clear_bit_unlock_is_negative_byte(nr, addr);
|
|
}
|
|
/* Let everybody know we have it. */
|
|
#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
|
|
#endif
|
|
|
|
#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_LOCK_H */
|