86564c3f0f
Remove most of the sparse warnings in the bnx2x compilation (i.e., thus resulting when compiling with `C=2 CF=-D__CHECK_ENDIAN__'). Signed-off-by: Yuval Mintz <yuvalmin@broadcom.com> Signed-off-by: Ariel Elior <ariele@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
4603 lines
121 KiB
C
4603 lines
121 KiB
C
/* bnx2x_cmn.c: Broadcom Everest network driver.
|
|
*
|
|
* Copyright (c) 2007-2013 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
|
* Written by: Eliezer Tamir
|
|
* Based on code from Michael Chan's bnx2 driver
|
|
* UDP CSUM errata workaround by Arik Gendelman
|
|
* Slowpath and fastpath rework by Vladislav Zolotarov
|
|
* Statistics and Link management by Yitchak Gertner
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ip6_checksum.h>
|
|
#include <linux/prefetch.h>
|
|
#include "bnx2x_cmn.h"
|
|
#include "bnx2x_init.h"
|
|
#include "bnx2x_sp.h"
|
|
|
|
/**
|
|
* bnx2x_move_fp - move content of the fastpath structure.
|
|
*
|
|
* @bp: driver handle
|
|
* @from: source FP index
|
|
* @to: destination FP index
|
|
*
|
|
* Makes sure the contents of the bp->fp[to].napi is kept
|
|
* intact. This is done by first copying the napi struct from
|
|
* the target to the source, and then mem copying the entire
|
|
* source onto the target. Update txdata pointers and related
|
|
* content.
|
|
*/
|
|
static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
|
|
{
|
|
struct bnx2x_fastpath *from_fp = &bp->fp[from];
|
|
struct bnx2x_fastpath *to_fp = &bp->fp[to];
|
|
struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
|
|
struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
|
|
struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
|
|
struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
|
|
int old_max_eth_txqs, new_max_eth_txqs;
|
|
int old_txdata_index = 0, new_txdata_index = 0;
|
|
|
|
/* Copy the NAPI object as it has been already initialized */
|
|
from_fp->napi = to_fp->napi;
|
|
|
|
/* Move bnx2x_fastpath contents */
|
|
memcpy(to_fp, from_fp, sizeof(*to_fp));
|
|
to_fp->index = to;
|
|
|
|
/* move sp_objs contents as well, as their indices match fp ones */
|
|
memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
|
|
|
|
/* move fp_stats contents as well, as their indices match fp ones */
|
|
memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
|
|
|
|
/* Update txdata pointers in fp and move txdata content accordingly:
|
|
* Each fp consumes 'max_cos' txdata structures, so the index should be
|
|
* decremented by max_cos x delta.
|
|
*/
|
|
|
|
old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
|
|
new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
|
|
(bp)->max_cos;
|
|
if (from == FCOE_IDX(bp)) {
|
|
old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
|
|
new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
|
|
}
|
|
|
|
memcpy(&bp->bnx2x_txq[new_txdata_index],
|
|
&bp->bnx2x_txq[old_txdata_index],
|
|
sizeof(struct bnx2x_fp_txdata));
|
|
to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
|
|
}
|
|
|
|
/**
|
|
* bnx2x_fill_fw_str - Fill buffer with FW version string.
|
|
*
|
|
* @bp: driver handle
|
|
* @buf: character buffer to fill with the fw name
|
|
* @buf_len: length of the above buffer
|
|
*
|
|
*/
|
|
void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
|
|
{
|
|
if (IS_PF(bp)) {
|
|
u8 phy_fw_ver[PHY_FW_VER_LEN];
|
|
|
|
phy_fw_ver[0] = '\0';
|
|
bnx2x_get_ext_phy_fw_version(&bp->link_params,
|
|
phy_fw_ver, PHY_FW_VER_LEN);
|
|
strlcpy(buf, bp->fw_ver, buf_len);
|
|
snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
|
|
"bc %d.%d.%d%s%s",
|
|
(bp->common.bc_ver & 0xff0000) >> 16,
|
|
(bp->common.bc_ver & 0xff00) >> 8,
|
|
(bp->common.bc_ver & 0xff),
|
|
((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
|
|
} else {
|
|
bnx2x_vf_fill_fw_str(bp, buf, buf_len);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
|
|
*
|
|
* @bp: driver handle
|
|
* @delta: number of eth queues which were not allocated
|
|
*/
|
|
static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
|
|
{
|
|
int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
|
|
|
|
/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
|
|
* backward along the array could cause memory to be overriden
|
|
*/
|
|
for (cos = 1; cos < bp->max_cos; cos++) {
|
|
for (i = 0; i < old_eth_num - delta; i++) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
int new_idx = cos * (old_eth_num - delta) + i;
|
|
|
|
memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
|
|
sizeof(struct bnx2x_fp_txdata));
|
|
fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
|
|
|
|
/* free skb in the packet ring at pos idx
|
|
* return idx of last bd freed
|
|
*/
|
|
static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
|
|
u16 idx, unsigned int *pkts_compl,
|
|
unsigned int *bytes_compl)
|
|
{
|
|
struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
|
|
struct eth_tx_start_bd *tx_start_bd;
|
|
struct eth_tx_bd *tx_data_bd;
|
|
struct sk_buff *skb = tx_buf->skb;
|
|
u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
|
|
int nbd;
|
|
|
|
/* prefetch skb end pointer to speedup dev_kfree_skb() */
|
|
prefetch(&skb->end);
|
|
|
|
DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
|
|
txdata->txq_index, idx, tx_buf, skb);
|
|
|
|
/* unmap first bd */
|
|
tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
|
|
dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
|
|
BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE);
|
|
|
|
|
|
nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
|
|
BNX2X_ERR("BAD nbd!\n");
|
|
bnx2x_panic();
|
|
}
|
|
#endif
|
|
new_cons = nbd + tx_buf->first_bd;
|
|
|
|
/* Get the next bd */
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
|
|
/* Skip a parse bd... */
|
|
--nbd;
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
|
|
/* ...and the TSO split header bd since they have no mapping */
|
|
if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
|
|
--nbd;
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
}
|
|
|
|
/* now free frags */
|
|
while (nbd > 0) {
|
|
|
|
tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
|
|
dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
|
|
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
|
|
if (--nbd)
|
|
bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
|
|
}
|
|
|
|
/* release skb */
|
|
WARN_ON(!skb);
|
|
if (likely(skb)) {
|
|
(*pkts_compl)++;
|
|
(*bytes_compl) += skb->len;
|
|
}
|
|
|
|
dev_kfree_skb_any(skb);
|
|
tx_buf->first_bd = 0;
|
|
tx_buf->skb = NULL;
|
|
|
|
return new_cons;
|
|
}
|
|
|
|
int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
|
|
{
|
|
struct netdev_queue *txq;
|
|
u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return -1;
|
|
#endif
|
|
|
|
txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
|
|
hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
|
|
sw_cons = txdata->tx_pkt_cons;
|
|
|
|
while (sw_cons != hw_cons) {
|
|
u16 pkt_cons;
|
|
|
|
pkt_cons = TX_BD(sw_cons);
|
|
|
|
DP(NETIF_MSG_TX_DONE,
|
|
"queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
|
|
txdata->txq_index, hw_cons, sw_cons, pkt_cons);
|
|
|
|
bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
|
|
&pkts_compl, &bytes_compl);
|
|
|
|
sw_cons++;
|
|
}
|
|
|
|
netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
|
|
|
|
txdata->tx_pkt_cons = sw_cons;
|
|
txdata->tx_bd_cons = bd_cons;
|
|
|
|
/* Need to make the tx_bd_cons update visible to start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that
|
|
* start_xmit() will miss it and cause the queue to be stopped
|
|
* forever.
|
|
* On the other hand we need an rmb() here to ensure the proper
|
|
* ordering of bit testing in the following
|
|
* netif_tx_queue_stopped(txq) call.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(txq))) {
|
|
/* Taking tx_lock() is needed to prevent reenabling the queue
|
|
* while it's empty. This could have happen if rx_action() gets
|
|
* suspended in bnx2x_tx_int() after the condition before
|
|
* netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
|
|
*
|
|
* stops the queue->sees fresh tx_bd_cons->releases the queue->
|
|
* sends some packets consuming the whole queue again->
|
|
* stops the queue
|
|
*/
|
|
|
|
__netif_tx_lock(txq, smp_processor_id());
|
|
|
|
if ((netif_tx_queue_stopped(txq)) &&
|
|
(bp->state == BNX2X_STATE_OPEN) &&
|
|
(bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
|
|
netif_tx_wake_queue(txq);
|
|
|
|
__netif_tx_unlock(txq);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
|
|
u16 idx)
|
|
{
|
|
u16 last_max = fp->last_max_sge;
|
|
|
|
if (SUB_S16(idx, last_max) > 0)
|
|
fp->last_max_sge = idx;
|
|
}
|
|
|
|
static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
|
|
u16 sge_len,
|
|
struct eth_end_agg_rx_cqe *cqe)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
u16 last_max, last_elem, first_elem;
|
|
u16 delta = 0;
|
|
u16 i;
|
|
|
|
if (!sge_len)
|
|
return;
|
|
|
|
/* First mark all used pages */
|
|
for (i = 0; i < sge_len; i++)
|
|
BIT_VEC64_CLEAR_BIT(fp->sge_mask,
|
|
RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
|
|
|
|
DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
|
|
sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
|
|
|
|
/* Here we assume that the last SGE index is the biggest */
|
|
prefetch((void *)(fp->sge_mask));
|
|
bnx2x_update_last_max_sge(fp,
|
|
le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
|
|
|
|
last_max = RX_SGE(fp->last_max_sge);
|
|
last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
|
|
first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
|
|
|
|
/* If ring is not full */
|
|
if (last_elem + 1 != first_elem)
|
|
last_elem++;
|
|
|
|
/* Now update the prod */
|
|
for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
|
|
if (likely(fp->sge_mask[i]))
|
|
break;
|
|
|
|
fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
|
|
delta += BIT_VEC64_ELEM_SZ;
|
|
}
|
|
|
|
if (delta > 0) {
|
|
fp->rx_sge_prod += delta;
|
|
/* clear page-end entries */
|
|
bnx2x_clear_sge_mask_next_elems(fp);
|
|
}
|
|
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
|
|
fp->last_max_sge, fp->rx_sge_prod);
|
|
}
|
|
|
|
/* Get Toeplitz hash value in the skb using the value from the
|
|
* CQE (calculated by HW).
|
|
*/
|
|
static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
|
|
const struct eth_fast_path_rx_cqe *cqe,
|
|
bool *l4_rxhash)
|
|
{
|
|
/* Get Toeplitz hash from CQE */
|
|
if ((bp->dev->features & NETIF_F_RXHASH) &&
|
|
(cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
|
|
enum eth_rss_hash_type htype;
|
|
|
|
htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
|
|
*l4_rxhash = (htype == TCP_IPV4_HASH_TYPE) ||
|
|
(htype == TCP_IPV6_HASH_TYPE);
|
|
return le32_to_cpu(cqe->rss_hash_result);
|
|
}
|
|
*l4_rxhash = false;
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
|
|
u16 cons, u16 prod,
|
|
struct eth_fast_path_rx_cqe *cqe)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
|
|
struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
|
|
struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
|
|
dma_addr_t mapping;
|
|
struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
|
|
struct sw_rx_bd *first_buf = &tpa_info->first_buf;
|
|
|
|
/* print error if current state != stop */
|
|
if (tpa_info->tpa_state != BNX2X_TPA_STOP)
|
|
BNX2X_ERR("start of bin not in stop [%d]\n", queue);
|
|
|
|
/* Try to map an empty data buffer from the aggregation info */
|
|
mapping = dma_map_single(&bp->pdev->dev,
|
|
first_buf->data + NET_SKB_PAD,
|
|
fp->rx_buf_size, DMA_FROM_DEVICE);
|
|
/*
|
|
* ...if it fails - move the skb from the consumer to the producer
|
|
* and set the current aggregation state as ERROR to drop it
|
|
* when TPA_STOP arrives.
|
|
*/
|
|
|
|
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
|
|
/* Move the BD from the consumer to the producer */
|
|
bnx2x_reuse_rx_data(fp, cons, prod);
|
|
tpa_info->tpa_state = BNX2X_TPA_ERROR;
|
|
return;
|
|
}
|
|
|
|
/* move empty data from pool to prod */
|
|
prod_rx_buf->data = first_buf->data;
|
|
dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
|
|
/* point prod_bd to new data */
|
|
prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
|
|
/* move partial skb from cons to pool (don't unmap yet) */
|
|
*first_buf = *cons_rx_buf;
|
|
|
|
/* mark bin state as START */
|
|
tpa_info->parsing_flags =
|
|
le16_to_cpu(cqe->pars_flags.flags);
|
|
tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
|
|
tpa_info->tpa_state = BNX2X_TPA_START;
|
|
tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
|
|
tpa_info->placement_offset = cqe->placement_offset;
|
|
tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->l4_rxhash);
|
|
if (fp->mode == TPA_MODE_GRO) {
|
|
u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
|
|
tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
|
|
tpa_info->gro_size = gro_size;
|
|
}
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
fp->tpa_queue_used |= (1 << queue);
|
|
#ifdef _ASM_GENERIC_INT_L64_H
|
|
DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
|
|
#else
|
|
DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
|
|
#endif
|
|
fp->tpa_queue_used);
|
|
#endif
|
|
}
|
|
|
|
/* Timestamp option length allowed for TPA aggregation:
|
|
*
|
|
* nop nop kind length echo val
|
|
*/
|
|
#define TPA_TSTAMP_OPT_LEN 12
|
|
/**
|
|
* bnx2x_set_gro_params - compute GRO values
|
|
*
|
|
* @skb: packet skb
|
|
* @parsing_flags: parsing flags from the START CQE
|
|
* @len_on_bd: total length of the first packet for the
|
|
* aggregation.
|
|
* @pkt_len: length of all segments
|
|
*
|
|
* Approximate value of the MSS for this aggregation calculated using
|
|
* the first packet of it.
|
|
* Compute number of aggregated segments, and gso_type.
|
|
*/
|
|
static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
|
|
u16 len_on_bd, unsigned int pkt_len)
|
|
{
|
|
/* TPA aggregation won't have either IP options or TCP options
|
|
* other than timestamp or IPv6 extension headers.
|
|
*/
|
|
u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
|
|
|
|
if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
|
|
PRS_FLAG_OVERETH_IPV6) {
|
|
hdrs_len += sizeof(struct ipv6hdr);
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
|
|
} else {
|
|
hdrs_len += sizeof(struct iphdr);
|
|
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
|
|
}
|
|
|
|
/* Check if there was a TCP timestamp, if there is it's will
|
|
* always be 12 bytes length: nop nop kind length echo val.
|
|
*
|
|
* Otherwise FW would close the aggregation.
|
|
*/
|
|
if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
|
|
hdrs_len += TPA_TSTAMP_OPT_LEN;
|
|
|
|
skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
|
|
|
|
/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
|
|
* to skb_shinfo(skb)->gso_segs
|
|
*/
|
|
NAPI_GRO_CB(skb)->count = DIV_ROUND_UP(pkt_len - hdrs_len,
|
|
skb_shinfo(skb)->gso_size);
|
|
}
|
|
|
|
static int bnx2x_alloc_rx_sge(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, u16 index)
|
|
{
|
|
struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
|
|
struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
|
|
struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
|
|
dma_addr_t mapping;
|
|
|
|
if (unlikely(page == NULL)) {
|
|
BNX2X_ERR("Can't alloc sge\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mapping = dma_map_page(&bp->pdev->dev, page, 0,
|
|
SGE_PAGES, DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
|
|
__free_pages(page, PAGES_PER_SGE_SHIFT);
|
|
BNX2X_ERR("Can't map sge\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
sw_buf->page = page;
|
|
dma_unmap_addr_set(sw_buf, mapping, mapping);
|
|
|
|
sge->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
sge->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
struct bnx2x_agg_info *tpa_info,
|
|
u16 pages,
|
|
struct sk_buff *skb,
|
|
struct eth_end_agg_rx_cqe *cqe,
|
|
u16 cqe_idx)
|
|
{
|
|
struct sw_rx_page *rx_pg, old_rx_pg;
|
|
u32 i, frag_len, frag_size;
|
|
int err, j, frag_id = 0;
|
|
u16 len_on_bd = tpa_info->len_on_bd;
|
|
u16 full_page = 0, gro_size = 0;
|
|
|
|
frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
|
|
|
|
if (fp->mode == TPA_MODE_GRO) {
|
|
gro_size = tpa_info->gro_size;
|
|
full_page = tpa_info->full_page;
|
|
}
|
|
|
|
/* This is needed in order to enable forwarding support */
|
|
if (frag_size)
|
|
bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
|
|
le16_to_cpu(cqe->pkt_len));
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
|
|
BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
|
|
pages, cqe_idx);
|
|
BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
|
|
bnx2x_panic();
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/* Run through the SGL and compose the fragmented skb */
|
|
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
|
|
u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
|
|
|
|
/* FW gives the indices of the SGE as if the ring is an array
|
|
(meaning that "next" element will consume 2 indices) */
|
|
if (fp->mode == TPA_MODE_GRO)
|
|
frag_len = min_t(u32, frag_size, (u32)full_page);
|
|
else /* LRO */
|
|
frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
|
|
|
|
rx_pg = &fp->rx_page_ring[sge_idx];
|
|
old_rx_pg = *rx_pg;
|
|
|
|
/* If we fail to allocate a substitute page, we simply stop
|
|
where we are and drop the whole packet */
|
|
err = bnx2x_alloc_rx_sge(bp, fp, sge_idx);
|
|
if (unlikely(err)) {
|
|
bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
|
|
return err;
|
|
}
|
|
|
|
/* Unmap the page as we r going to pass it to the stack */
|
|
dma_unmap_page(&bp->pdev->dev,
|
|
dma_unmap_addr(&old_rx_pg, mapping),
|
|
SGE_PAGES, DMA_FROM_DEVICE);
|
|
/* Add one frag and update the appropriate fields in the skb */
|
|
if (fp->mode == TPA_MODE_LRO)
|
|
skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
|
|
else { /* GRO */
|
|
int rem;
|
|
int offset = 0;
|
|
for (rem = frag_len; rem > 0; rem -= gro_size) {
|
|
int len = rem > gro_size ? gro_size : rem;
|
|
skb_fill_page_desc(skb, frag_id++,
|
|
old_rx_pg.page, offset, len);
|
|
if (offset)
|
|
get_page(old_rx_pg.page);
|
|
offset += len;
|
|
}
|
|
}
|
|
|
|
skb->data_len += frag_len;
|
|
skb->truesize += SGE_PAGES;
|
|
skb->len += frag_len;
|
|
|
|
frag_size -= frag_len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
|
|
{
|
|
if (fp->rx_frag_size)
|
|
put_page(virt_to_head_page(data));
|
|
else
|
|
kfree(data);
|
|
}
|
|
|
|
static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp)
|
|
{
|
|
if (fp->rx_frag_size)
|
|
return netdev_alloc_frag(fp->rx_frag_size);
|
|
|
|
return kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
|
|
}
|
|
|
|
#ifdef CONFIG_INET
|
|
static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
|
|
{
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct iphdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
|
|
iph->saddr, iph->daddr, 0);
|
|
}
|
|
|
|
static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
|
|
{
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
struct tcphdr *th;
|
|
|
|
skb_set_transport_header(skb, sizeof(struct ipv6hdr));
|
|
th = tcp_hdr(skb);
|
|
|
|
th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
|
|
&iph->saddr, &iph->daddr, 0);
|
|
}
|
|
#endif
|
|
|
|
static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
if (skb_shinfo(skb)->gso_size) {
|
|
skb_set_network_header(skb, 0);
|
|
switch (be16_to_cpu(skb->protocol)) {
|
|
case ETH_P_IP:
|
|
bnx2x_gro_ip_csum(bp, skb);
|
|
break;
|
|
case ETH_P_IPV6:
|
|
bnx2x_gro_ipv6_csum(bp, skb);
|
|
break;
|
|
default:
|
|
BNX2X_ERR("FW GRO supports only IPv4/IPv6, not 0x%04x\n",
|
|
be16_to_cpu(skb->protocol));
|
|
}
|
|
tcp_gro_complete(skb);
|
|
}
|
|
#endif
|
|
napi_gro_receive(&fp->napi, skb);
|
|
}
|
|
|
|
static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
|
|
struct bnx2x_agg_info *tpa_info,
|
|
u16 pages,
|
|
struct eth_end_agg_rx_cqe *cqe,
|
|
u16 cqe_idx)
|
|
{
|
|
struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
|
|
u8 pad = tpa_info->placement_offset;
|
|
u16 len = tpa_info->len_on_bd;
|
|
struct sk_buff *skb = NULL;
|
|
u8 *new_data, *data = rx_buf->data;
|
|
u8 old_tpa_state = tpa_info->tpa_state;
|
|
|
|
tpa_info->tpa_state = BNX2X_TPA_STOP;
|
|
|
|
/* If we there was an error during the handling of the TPA_START -
|
|
* drop this aggregation.
|
|
*/
|
|
if (old_tpa_state == BNX2X_TPA_ERROR)
|
|
goto drop;
|
|
|
|
/* Try to allocate the new data */
|
|
new_data = bnx2x_frag_alloc(fp);
|
|
/* Unmap skb in the pool anyway, as we are going to change
|
|
pool entry status to BNX2X_TPA_STOP even if new skb allocation
|
|
fails. */
|
|
dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
|
|
fp->rx_buf_size, DMA_FROM_DEVICE);
|
|
if (likely(new_data))
|
|
skb = build_skb(data, fp->rx_frag_size);
|
|
|
|
if (likely(skb)) {
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (pad + len > fp->rx_buf_size) {
|
|
BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
|
|
pad, len, fp->rx_buf_size);
|
|
bnx2x_panic();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
skb_reserve(skb, pad + NET_SKB_PAD);
|
|
skb_put(skb, len);
|
|
skb->rxhash = tpa_info->rxhash;
|
|
skb->l4_rxhash = tpa_info->l4_rxhash;
|
|
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
|
|
skb, cqe, cqe_idx)) {
|
|
if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
|
|
__vlan_hwaccel_put_tag(skb, tpa_info->vlan_tag);
|
|
bnx2x_gro_receive(bp, fp, skb);
|
|
} else {
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"Failed to allocate new pages - dropping packet!\n");
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
|
|
/* put new data in bin */
|
|
rx_buf->data = new_data;
|
|
|
|
return;
|
|
}
|
|
bnx2x_frag_free(fp, new_data);
|
|
drop:
|
|
/* drop the packet and keep the buffer in the bin */
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"Failed to allocate or map a new skb - dropping packet!\n");
|
|
bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
|
|
}
|
|
|
|
static int bnx2x_alloc_rx_data(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, u16 index)
|
|
{
|
|
u8 *data;
|
|
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
|
|
struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
|
|
dma_addr_t mapping;
|
|
|
|
data = bnx2x_frag_alloc(fp);
|
|
if (unlikely(data == NULL))
|
|
return -ENOMEM;
|
|
|
|
mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
|
|
fp->rx_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
|
|
bnx2x_frag_free(fp, data);
|
|
BNX2X_ERR("Can't map rx data\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rx_buf->data = data;
|
|
dma_unmap_addr_set(rx_buf, mapping, mapping);
|
|
|
|
rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
|
|
struct bnx2x_fastpath *fp,
|
|
struct bnx2x_eth_q_stats *qstats)
|
|
{
|
|
/* Do nothing if no L4 csum validation was done.
|
|
* We do not check whether IP csum was validated. For IPv4 we assume
|
|
* that if the card got as far as validating the L4 csum, it also
|
|
* validated the IP csum. IPv6 has no IP csum.
|
|
*/
|
|
if (cqe->fast_path_cqe.status_flags &
|
|
ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
|
|
return;
|
|
|
|
/* If L4 validation was done, check if an error was found. */
|
|
|
|
if (cqe->fast_path_cqe.type_error_flags &
|
|
(ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
|
|
ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
|
|
qstats->hw_csum_err++;
|
|
else
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
|
|
u16 hw_comp_cons, sw_comp_cons, sw_comp_prod;
|
|
int rx_pkt = 0;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return 0;
|
|
#endif
|
|
|
|
/* CQ "next element" is of the size of the regular element,
|
|
that's why it's ok here */
|
|
hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb);
|
|
if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
|
|
hw_comp_cons++;
|
|
|
|
bd_cons = fp->rx_bd_cons;
|
|
bd_prod = fp->rx_bd_prod;
|
|
bd_prod_fw = bd_prod;
|
|
sw_comp_cons = fp->rx_comp_cons;
|
|
sw_comp_prod = fp->rx_comp_prod;
|
|
|
|
/* Memory barrier necessary as speculative reads of the rx
|
|
* buffer can be ahead of the index in the status block
|
|
*/
|
|
rmb();
|
|
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"queue[%d]: hw_comp_cons %u sw_comp_cons %u\n",
|
|
fp->index, hw_comp_cons, sw_comp_cons);
|
|
|
|
while (sw_comp_cons != hw_comp_cons) {
|
|
struct sw_rx_bd *rx_buf = NULL;
|
|
struct sk_buff *skb;
|
|
union eth_rx_cqe *cqe;
|
|
struct eth_fast_path_rx_cqe *cqe_fp;
|
|
u8 cqe_fp_flags;
|
|
enum eth_rx_cqe_type cqe_fp_type;
|
|
u16 len, pad, queue;
|
|
u8 *data;
|
|
bool l4_rxhash;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return 0;
|
|
#endif
|
|
|
|
comp_ring_cons = RCQ_BD(sw_comp_cons);
|
|
bd_prod = RX_BD(bd_prod);
|
|
bd_cons = RX_BD(bd_cons);
|
|
|
|
cqe = &fp->rx_comp_ring[comp_ring_cons];
|
|
cqe_fp = &cqe->fast_path_cqe;
|
|
cqe_fp_flags = cqe_fp->type_error_flags;
|
|
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
|
|
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"CQE type %x err %x status %x queue %x vlan %x len %u\n",
|
|
CQE_TYPE(cqe_fp_flags),
|
|
cqe_fp_flags, cqe_fp->status_flags,
|
|
le32_to_cpu(cqe_fp->rss_hash_result),
|
|
le16_to_cpu(cqe_fp->vlan_tag),
|
|
le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
|
|
|
|
/* is this a slowpath msg? */
|
|
if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
|
|
bnx2x_sp_event(fp, cqe);
|
|
goto next_cqe;
|
|
}
|
|
|
|
rx_buf = &fp->rx_buf_ring[bd_cons];
|
|
data = rx_buf->data;
|
|
|
|
if (!CQE_TYPE_FAST(cqe_fp_type)) {
|
|
struct bnx2x_agg_info *tpa_info;
|
|
u16 frag_size, pages;
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
/* sanity check */
|
|
if (fp->disable_tpa &&
|
|
(CQE_TYPE_START(cqe_fp_type) ||
|
|
CQE_TYPE_STOP(cqe_fp_type)))
|
|
BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
|
|
CQE_TYPE(cqe_fp_type));
|
|
#endif
|
|
|
|
if (CQE_TYPE_START(cqe_fp_type)) {
|
|
u16 queue = cqe_fp->queue_index;
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"calling tpa_start on queue %d\n",
|
|
queue);
|
|
|
|
bnx2x_tpa_start(fp, queue,
|
|
bd_cons, bd_prod,
|
|
cqe_fp);
|
|
|
|
goto next_rx;
|
|
|
|
}
|
|
queue = cqe->end_agg_cqe.queue_index;
|
|
tpa_info = &fp->tpa_info[queue];
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"calling tpa_stop on queue %d\n",
|
|
queue);
|
|
|
|
frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
|
|
tpa_info->len_on_bd;
|
|
|
|
if (fp->mode == TPA_MODE_GRO)
|
|
pages = (frag_size + tpa_info->full_page - 1) /
|
|
tpa_info->full_page;
|
|
else
|
|
pages = SGE_PAGE_ALIGN(frag_size) >>
|
|
SGE_PAGE_SHIFT;
|
|
|
|
bnx2x_tpa_stop(bp, fp, tpa_info, pages,
|
|
&cqe->end_agg_cqe, comp_ring_cons);
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (bp->panic)
|
|
return 0;
|
|
#endif
|
|
|
|
bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
|
|
goto next_cqe;
|
|
}
|
|
/* non TPA */
|
|
len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
|
|
pad = cqe_fp->placement_offset;
|
|
dma_sync_single_for_cpu(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
pad + RX_COPY_THRESH,
|
|
DMA_FROM_DEVICE);
|
|
pad += NET_SKB_PAD;
|
|
prefetch(data + pad); /* speedup eth_type_trans() */
|
|
/* is this an error packet? */
|
|
if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
|
|
DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
|
|
"ERROR flags %x rx packet %u\n",
|
|
cqe_fp_flags, sw_comp_cons);
|
|
bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
|
|
goto reuse_rx;
|
|
}
|
|
|
|
/* Since we don't have a jumbo ring
|
|
* copy small packets if mtu > 1500
|
|
*/
|
|
if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
|
|
(len <= RX_COPY_THRESH)) {
|
|
skb = netdev_alloc_skb_ip_align(bp->dev, len);
|
|
if (skb == NULL) {
|
|
DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
|
|
"ERROR packet dropped because of alloc failure\n");
|
|
bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
|
|
goto reuse_rx;
|
|
}
|
|
memcpy(skb->data, data + pad, len);
|
|
bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
|
|
} else {
|
|
if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) {
|
|
dma_unmap_single(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
fp->rx_buf_size,
|
|
DMA_FROM_DEVICE);
|
|
skb = build_skb(data, fp->rx_frag_size);
|
|
if (unlikely(!skb)) {
|
|
bnx2x_frag_free(fp, data);
|
|
bnx2x_fp_qstats(bp, fp)->
|
|
rx_skb_alloc_failed++;
|
|
goto next_rx;
|
|
}
|
|
skb_reserve(skb, pad);
|
|
} else {
|
|
DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
|
|
"ERROR packet dropped because of alloc failure\n");
|
|
bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
|
|
reuse_rx:
|
|
bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
|
|
goto next_rx;
|
|
}
|
|
}
|
|
|
|
skb_put(skb, len);
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
|
|
/* Set Toeplitz hash for a none-LRO skb */
|
|
skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp, &l4_rxhash);
|
|
skb->l4_rxhash = l4_rxhash;
|
|
|
|
skb_checksum_none_assert(skb);
|
|
|
|
if (bp->dev->features & NETIF_F_RXCSUM)
|
|
bnx2x_csum_validate(skb, cqe, fp,
|
|
bnx2x_fp_qstats(bp, fp));
|
|
|
|
skb_record_rx_queue(skb, fp->rx_queue);
|
|
|
|
if (le16_to_cpu(cqe_fp->pars_flags.flags) &
|
|
PARSING_FLAGS_VLAN)
|
|
__vlan_hwaccel_put_tag(skb,
|
|
le16_to_cpu(cqe_fp->vlan_tag));
|
|
napi_gro_receive(&fp->napi, skb);
|
|
|
|
|
|
next_rx:
|
|
rx_buf->data = NULL;
|
|
|
|
bd_cons = NEXT_RX_IDX(bd_cons);
|
|
bd_prod = NEXT_RX_IDX(bd_prod);
|
|
bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
|
|
rx_pkt++;
|
|
next_cqe:
|
|
sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
|
|
sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
|
|
|
|
if (rx_pkt == budget)
|
|
break;
|
|
} /* while */
|
|
|
|
fp->rx_bd_cons = bd_cons;
|
|
fp->rx_bd_prod = bd_prod_fw;
|
|
fp->rx_comp_cons = sw_comp_cons;
|
|
fp->rx_comp_prod = sw_comp_prod;
|
|
|
|
/* Update producers */
|
|
bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
|
|
fp->rx_sge_prod);
|
|
|
|
fp->rx_pkt += rx_pkt;
|
|
fp->rx_calls++;
|
|
|
|
return rx_pkt;
|
|
}
|
|
|
|
static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
|
|
{
|
|
struct bnx2x_fastpath *fp = fp_cookie;
|
|
struct bnx2x *bp = fp->bp;
|
|
u8 cos;
|
|
|
|
DP(NETIF_MSG_INTR,
|
|
"got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
|
|
fp->index, fp->fw_sb_id, fp->igu_sb_id);
|
|
bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return IRQ_HANDLED;
|
|
#endif
|
|
|
|
/* Handle Rx and Tx according to MSI-X vector */
|
|
prefetch(fp->rx_cons_sb);
|
|
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
|
|
|
|
prefetch(&fp->sb_running_index[SM_RX_ID]);
|
|
napi_schedule(&bnx2x_fp(bp, fp->index, napi));
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* HW Lock for shared dual port PHYs */
|
|
void bnx2x_acquire_phy_lock(struct bnx2x *bp)
|
|
{
|
|
mutex_lock(&bp->port.phy_mutex);
|
|
|
|
bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
|
|
}
|
|
|
|
void bnx2x_release_phy_lock(struct bnx2x *bp)
|
|
{
|
|
bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
|
|
|
|
mutex_unlock(&bp->port.phy_mutex);
|
|
}
|
|
|
|
/* calculates MF speed according to current linespeed and MF configuration */
|
|
u16 bnx2x_get_mf_speed(struct bnx2x *bp)
|
|
{
|
|
u16 line_speed = bp->link_vars.line_speed;
|
|
if (IS_MF(bp)) {
|
|
u16 maxCfg = bnx2x_extract_max_cfg(bp,
|
|
bp->mf_config[BP_VN(bp)]);
|
|
|
|
/* Calculate the current MAX line speed limit for the MF
|
|
* devices
|
|
*/
|
|
if (IS_MF_SI(bp))
|
|
line_speed = (line_speed * maxCfg) / 100;
|
|
else { /* SD mode */
|
|
u16 vn_max_rate = maxCfg * 100;
|
|
|
|
if (vn_max_rate < line_speed)
|
|
line_speed = vn_max_rate;
|
|
}
|
|
}
|
|
|
|
return line_speed;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_fill_report_data - fill link report data to report
|
|
*
|
|
* @bp: driver handle
|
|
* @data: link state to update
|
|
*
|
|
* It uses a none-atomic bit operations because is called under the mutex.
|
|
*/
|
|
static void bnx2x_fill_report_data(struct bnx2x *bp,
|
|
struct bnx2x_link_report_data *data)
|
|
{
|
|
u16 line_speed = bnx2x_get_mf_speed(bp);
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
/* Fill the report data: efective line speed */
|
|
data->line_speed = line_speed;
|
|
|
|
/* Link is down */
|
|
if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
|
|
__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
|
|
&data->link_report_flags);
|
|
|
|
/* Full DUPLEX */
|
|
if (bp->link_vars.duplex == DUPLEX_FULL)
|
|
__set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
|
|
|
|
/* Rx Flow Control is ON */
|
|
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
|
|
__set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
|
|
|
|
/* Tx Flow Control is ON */
|
|
if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
|
|
__set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_link_report - report link status to OS.
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* Calls the __bnx2x_link_report() under the same locking scheme
|
|
* as a link/PHY state managing code to ensure a consistent link
|
|
* reporting.
|
|
*/
|
|
|
|
void bnx2x_link_report(struct bnx2x *bp)
|
|
{
|
|
bnx2x_acquire_phy_lock(bp);
|
|
__bnx2x_link_report(bp);
|
|
bnx2x_release_phy_lock(bp);
|
|
}
|
|
|
|
/**
|
|
* __bnx2x_link_report - report link status to OS.
|
|
*
|
|
* @bp: driver handle
|
|
*
|
|
* None atomic inmlementation.
|
|
* Should be called under the phy_lock.
|
|
*/
|
|
void __bnx2x_link_report(struct bnx2x *bp)
|
|
{
|
|
struct bnx2x_link_report_data cur_data;
|
|
|
|
/* reread mf_cfg */
|
|
if (IS_PF(bp) && !CHIP_IS_E1(bp))
|
|
bnx2x_read_mf_cfg(bp);
|
|
|
|
/* Read the current link report info */
|
|
bnx2x_fill_report_data(bp, &cur_data);
|
|
|
|
/* Don't report link down or exactly the same link status twice */
|
|
if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
|
|
(test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
|
|
&bp->last_reported_link.link_report_flags) &&
|
|
test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
|
|
&cur_data.link_report_flags)))
|
|
return;
|
|
|
|
bp->link_cnt++;
|
|
|
|
/* We are going to report a new link parameters now -
|
|
* remember the current data for the next time.
|
|
*/
|
|
memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
|
|
|
|
if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
|
|
&cur_data.link_report_flags)) {
|
|
netif_carrier_off(bp->dev);
|
|
netdev_err(bp->dev, "NIC Link is Down\n");
|
|
return;
|
|
} else {
|
|
const char *duplex;
|
|
const char *flow;
|
|
|
|
netif_carrier_on(bp->dev);
|
|
|
|
if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
|
|
&cur_data.link_report_flags))
|
|
duplex = "full";
|
|
else
|
|
duplex = "half";
|
|
|
|
/* Handle the FC at the end so that only these flags would be
|
|
* possibly set. This way we may easily check if there is no FC
|
|
* enabled.
|
|
*/
|
|
if (cur_data.link_report_flags) {
|
|
if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
|
|
&cur_data.link_report_flags)) {
|
|
if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
|
|
&cur_data.link_report_flags))
|
|
flow = "ON - receive & transmit";
|
|
else
|
|
flow = "ON - receive";
|
|
} else {
|
|
flow = "ON - transmit";
|
|
}
|
|
} else {
|
|
flow = "none";
|
|
}
|
|
netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
|
|
cur_data.line_speed, duplex, flow);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
|
|
struct eth_rx_sge *sge;
|
|
|
|
sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
|
|
sge->addr_hi =
|
|
cpu_to_le32(U64_HI(fp->rx_sge_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
|
|
|
|
sge->addr_lo =
|
|
cpu_to_le32(U64_LO(fp->rx_sge_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_tpa_pool(struct bnx2x *bp,
|
|
struct bnx2x_fastpath *fp, int last)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < last; i++) {
|
|
struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
|
|
struct sw_rx_bd *first_buf = &tpa_info->first_buf;
|
|
u8 *data = first_buf->data;
|
|
|
|
if (data == NULL) {
|
|
DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
|
|
continue;
|
|
}
|
|
if (tpa_info->tpa_state == BNX2X_TPA_START)
|
|
dma_unmap_single(&bp->pdev->dev,
|
|
dma_unmap_addr(first_buf, mapping),
|
|
fp->rx_buf_size, DMA_FROM_DEVICE);
|
|
bnx2x_frag_free(fp, data);
|
|
first_buf->data = NULL;
|
|
}
|
|
}
|
|
|
|
void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
|
|
{
|
|
int j;
|
|
|
|
for_each_rx_queue_cnic(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
fp->rx_bd_cons = 0;
|
|
|
|
/* Activate BD ring */
|
|
/* Warning!
|
|
* this will generate an interrupt (to the TSTORM)
|
|
* must only be done after chip is initialized
|
|
*/
|
|
bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
|
|
fp->rx_sge_prod);
|
|
}
|
|
}
|
|
|
|
void bnx2x_init_rx_rings(struct bnx2x *bp)
|
|
{
|
|
int func = BP_FUNC(bp);
|
|
u16 ring_prod;
|
|
int i, j;
|
|
|
|
/* Allocate TPA resources */
|
|
for_each_eth_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
DP(NETIF_MSG_IFUP,
|
|
"mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
|
|
|
|
if (!fp->disable_tpa) {
|
|
/* Fill the per-aggregtion pool */
|
|
for (i = 0; i < MAX_AGG_QS(bp); i++) {
|
|
struct bnx2x_agg_info *tpa_info =
|
|
&fp->tpa_info[i];
|
|
struct sw_rx_bd *first_buf =
|
|
&tpa_info->first_buf;
|
|
|
|
first_buf->data = bnx2x_frag_alloc(fp);
|
|
if (!first_buf->data) {
|
|
BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
|
|
j);
|
|
bnx2x_free_tpa_pool(bp, fp, i);
|
|
fp->disable_tpa = 1;
|
|
break;
|
|
}
|
|
dma_unmap_addr_set(first_buf, mapping, 0);
|
|
tpa_info->tpa_state = BNX2X_TPA_STOP;
|
|
}
|
|
|
|
/* "next page" elements initialization */
|
|
bnx2x_set_next_page_sgl(fp);
|
|
|
|
/* set SGEs bit mask */
|
|
bnx2x_init_sge_ring_bit_mask(fp);
|
|
|
|
/* Allocate SGEs and initialize the ring elements */
|
|
for (i = 0, ring_prod = 0;
|
|
i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
|
|
|
|
if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) {
|
|
BNX2X_ERR("was only able to allocate %d rx sges\n",
|
|
i);
|
|
BNX2X_ERR("disabling TPA for queue[%d]\n",
|
|
j);
|
|
/* Cleanup already allocated elements */
|
|
bnx2x_free_rx_sge_range(bp, fp,
|
|
ring_prod);
|
|
bnx2x_free_tpa_pool(bp, fp,
|
|
MAX_AGG_QS(bp));
|
|
fp->disable_tpa = 1;
|
|
ring_prod = 0;
|
|
break;
|
|
}
|
|
ring_prod = NEXT_SGE_IDX(ring_prod);
|
|
}
|
|
|
|
fp->rx_sge_prod = ring_prod;
|
|
}
|
|
}
|
|
|
|
for_each_eth_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
fp->rx_bd_cons = 0;
|
|
|
|
/* Activate BD ring */
|
|
/* Warning!
|
|
* this will generate an interrupt (to the TSTORM)
|
|
* must only be done after chip is initialized
|
|
*/
|
|
bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
|
|
fp->rx_sge_prod);
|
|
|
|
if (j != 0)
|
|
continue;
|
|
|
|
if (CHIP_IS_E1(bp)) {
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
|
|
U64_LO(fp->rx_comp_mapping));
|
|
REG_WR(bp, BAR_USTRORM_INTMEM +
|
|
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
|
|
U64_HI(fp->rx_comp_mapping));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
|
|
{
|
|
u8 cos;
|
|
struct bnx2x *bp = fp->bp;
|
|
|
|
for_each_cos_in_tx_queue(fp, cos) {
|
|
struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
|
|
unsigned pkts_compl = 0, bytes_compl = 0;
|
|
|
|
u16 sw_prod = txdata->tx_pkt_prod;
|
|
u16 sw_cons = txdata->tx_pkt_cons;
|
|
|
|
while (sw_cons != sw_prod) {
|
|
bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
|
|
&pkts_compl, &bytes_compl);
|
|
sw_cons++;
|
|
}
|
|
|
|
netdev_tx_reset_queue(
|
|
netdev_get_tx_queue(bp->dev,
|
|
txdata->txq_index));
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_tx_queue_cnic(bp, i) {
|
|
bnx2x_free_tx_skbs_queue(&bp->fp[i]);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_tx_skbs(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_eth_queue(bp, i) {
|
|
bnx2x_free_tx_skbs_queue(&bp->fp[i]);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
int i;
|
|
|
|
/* ring wasn't allocated */
|
|
if (fp->rx_buf_ring == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < NUM_RX_BD; i++) {
|
|
struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
|
|
u8 *data = rx_buf->data;
|
|
|
|
if (data == NULL)
|
|
continue;
|
|
dma_unmap_single(&bp->pdev->dev,
|
|
dma_unmap_addr(rx_buf, mapping),
|
|
fp->rx_buf_size, DMA_FROM_DEVICE);
|
|
|
|
rx_buf->data = NULL;
|
|
bnx2x_frag_free(fp, data);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
|
|
{
|
|
int j;
|
|
|
|
for_each_rx_queue_cnic(bp, j) {
|
|
bnx2x_free_rx_bds(&bp->fp[j]);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_free_rx_skbs(struct bnx2x *bp)
|
|
{
|
|
int j;
|
|
|
|
for_each_eth_queue(bp, j) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[j];
|
|
|
|
bnx2x_free_rx_bds(fp);
|
|
|
|
if (!fp->disable_tpa)
|
|
bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
|
|
}
|
|
}
|
|
|
|
void bnx2x_free_skbs_cnic(struct bnx2x *bp)
|
|
{
|
|
bnx2x_free_tx_skbs_cnic(bp);
|
|
bnx2x_free_rx_skbs_cnic(bp);
|
|
}
|
|
|
|
void bnx2x_free_skbs(struct bnx2x *bp)
|
|
{
|
|
bnx2x_free_tx_skbs(bp);
|
|
bnx2x_free_rx_skbs(bp);
|
|
}
|
|
|
|
void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
|
|
{
|
|
/* load old values */
|
|
u32 mf_cfg = bp->mf_config[BP_VN(bp)];
|
|
|
|
if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
|
|
/* leave all but MAX value */
|
|
mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
|
|
|
|
/* set new MAX value */
|
|
mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
|
|
& FUNC_MF_CFG_MAX_BW_MASK;
|
|
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
|
|
*
|
|
* @bp: driver handle
|
|
* @nvecs: number of vectors to be released
|
|
*/
|
|
static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
|
|
{
|
|
int i, offset = 0;
|
|
|
|
if (nvecs == offset)
|
|
return;
|
|
|
|
/* VFs don't have a default SB */
|
|
if (IS_PF(bp)) {
|
|
free_irq(bp->msix_table[offset].vector, bp->dev);
|
|
DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
|
|
bp->msix_table[offset].vector);
|
|
offset++;
|
|
}
|
|
|
|
if (CNIC_SUPPORT(bp)) {
|
|
if (nvecs == offset)
|
|
return;
|
|
offset++;
|
|
}
|
|
|
|
for_each_eth_queue(bp, i) {
|
|
if (nvecs == offset)
|
|
return;
|
|
DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
|
|
i, bp->msix_table[offset].vector);
|
|
|
|
free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
|
|
}
|
|
}
|
|
|
|
void bnx2x_free_irq(struct bnx2x *bp)
|
|
{
|
|
if (bp->flags & USING_MSIX_FLAG &&
|
|
!(bp->flags & USING_SINGLE_MSIX_FLAG)) {
|
|
int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
|
|
|
|
/* vfs don't have a default status block */
|
|
if (IS_PF(bp))
|
|
nvecs++;
|
|
|
|
bnx2x_free_msix_irqs(bp, nvecs);
|
|
} else {
|
|
free_irq(bp->dev->irq, bp->dev);
|
|
}
|
|
}
|
|
|
|
int bnx2x_enable_msix(struct bnx2x *bp)
|
|
{
|
|
int msix_vec = 0, i, rc;
|
|
|
|
/* VFs don't have a default status block */
|
|
if (IS_PF(bp)) {
|
|
bp->msix_table[msix_vec].entry = msix_vec;
|
|
BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
|
|
bp->msix_table[0].entry);
|
|
msix_vec++;
|
|
}
|
|
|
|
/* Cnic requires an msix vector for itself */
|
|
if (CNIC_SUPPORT(bp)) {
|
|
bp->msix_table[msix_vec].entry = msix_vec;
|
|
BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
|
|
msix_vec, bp->msix_table[msix_vec].entry);
|
|
msix_vec++;
|
|
}
|
|
|
|
/* We need separate vectors for ETH queues only (not FCoE) */
|
|
for_each_eth_queue(bp, i) {
|
|
bp->msix_table[msix_vec].entry = msix_vec;
|
|
BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
|
|
msix_vec, msix_vec, i);
|
|
msix_vec++;
|
|
}
|
|
|
|
DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
|
|
msix_vec);
|
|
|
|
rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], msix_vec);
|
|
|
|
/*
|
|
* reconfigure number of tx/rx queues according to available
|
|
* MSI-X vectors
|
|
*/
|
|
if (rc >= BNX2X_MIN_MSIX_VEC_CNT(bp)) {
|
|
/* how less vectors we will have? */
|
|
int diff = msix_vec - rc;
|
|
|
|
BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
|
|
|
|
rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
|
|
|
|
if (rc) {
|
|
BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
|
|
goto no_msix;
|
|
}
|
|
/*
|
|
* decrease number of queues by number of unallocated entries
|
|
*/
|
|
bp->num_ethernet_queues -= diff;
|
|
bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
|
|
|
|
BNX2X_DEV_INFO("New queue configuration set: %d\n",
|
|
bp->num_queues);
|
|
} else if (rc > 0) {
|
|
/* Get by with single vector */
|
|
rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1);
|
|
if (rc) {
|
|
BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
|
|
rc);
|
|
goto no_msix;
|
|
}
|
|
|
|
BNX2X_DEV_INFO("Using single MSI-X vector\n");
|
|
bp->flags |= USING_SINGLE_MSIX_FLAG;
|
|
|
|
BNX2X_DEV_INFO("set number of queues to 1\n");
|
|
bp->num_ethernet_queues = 1;
|
|
bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
|
|
} else if (rc < 0) {
|
|
BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
|
|
goto no_msix;
|
|
}
|
|
|
|
bp->flags |= USING_MSIX_FLAG;
|
|
|
|
return 0;
|
|
|
|
no_msix:
|
|
/* fall to INTx if not enough memory */
|
|
if (rc == -ENOMEM)
|
|
bp->flags |= DISABLE_MSI_FLAG;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int bnx2x_req_msix_irqs(struct bnx2x *bp)
|
|
{
|
|
int i, rc, offset = 0;
|
|
|
|
/* no default status block for vf */
|
|
if (IS_PF(bp)) {
|
|
rc = request_irq(bp->msix_table[offset++].vector,
|
|
bnx2x_msix_sp_int, 0,
|
|
bp->dev->name, bp->dev);
|
|
if (rc) {
|
|
BNX2X_ERR("request sp irq failed\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (CNIC_SUPPORT(bp))
|
|
offset++;
|
|
|
|
for_each_eth_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
|
|
bp->dev->name, i);
|
|
|
|
rc = request_irq(bp->msix_table[offset].vector,
|
|
bnx2x_msix_fp_int, 0, fp->name, fp);
|
|
if (rc) {
|
|
BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
|
|
bp->msix_table[offset].vector, rc);
|
|
bnx2x_free_msix_irqs(bp, offset);
|
|
return -EBUSY;
|
|
}
|
|
|
|
offset++;
|
|
}
|
|
|
|
i = BNX2X_NUM_ETH_QUEUES(bp);
|
|
if (IS_PF(bp)) {
|
|
offset = 1 + CNIC_SUPPORT(bp);
|
|
netdev_info(bp->dev,
|
|
"using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
|
|
bp->msix_table[0].vector,
|
|
0, bp->msix_table[offset].vector,
|
|
i - 1, bp->msix_table[offset + i - 1].vector);
|
|
} else {
|
|
offset = CNIC_SUPPORT(bp);
|
|
netdev_info(bp->dev,
|
|
"using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
|
|
0, bp->msix_table[offset].vector,
|
|
i - 1, bp->msix_table[offset + i - 1].vector);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_enable_msi(struct bnx2x *bp)
|
|
{
|
|
int rc;
|
|
|
|
rc = pci_enable_msi(bp->pdev);
|
|
if (rc) {
|
|
BNX2X_DEV_INFO("MSI is not attainable\n");
|
|
return -1;
|
|
}
|
|
bp->flags |= USING_MSI_FLAG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2x_req_irq(struct bnx2x *bp)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int irq;
|
|
|
|
if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
|
|
flags = 0;
|
|
else
|
|
flags = IRQF_SHARED;
|
|
|
|
if (bp->flags & USING_MSIX_FLAG)
|
|
irq = bp->msix_table[0].vector;
|
|
else
|
|
irq = bp->pdev->irq;
|
|
|
|
return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
|
|
}
|
|
|
|
static int bnx2x_setup_irqs(struct bnx2x *bp)
|
|
{
|
|
int rc = 0;
|
|
if (bp->flags & USING_MSIX_FLAG &&
|
|
!(bp->flags & USING_SINGLE_MSIX_FLAG)) {
|
|
rc = bnx2x_req_msix_irqs(bp);
|
|
if (rc)
|
|
return rc;
|
|
} else {
|
|
rc = bnx2x_req_irq(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
|
|
return rc;
|
|
}
|
|
if (bp->flags & USING_MSI_FLAG) {
|
|
bp->dev->irq = bp->pdev->irq;
|
|
netdev_info(bp->dev, "using MSI IRQ %d\n",
|
|
bp->dev->irq);
|
|
}
|
|
if (bp->flags & USING_MSIX_FLAG) {
|
|
bp->dev->irq = bp->msix_table[0].vector;
|
|
netdev_info(bp->dev, "using MSIX IRQ %d\n",
|
|
bp->dev->irq);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_rx_queue_cnic(bp, i)
|
|
napi_enable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
static void bnx2x_napi_enable(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_eth_queue(bp, i)
|
|
napi_enable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_rx_queue_cnic(bp, i)
|
|
napi_disable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
static void bnx2x_napi_disable(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_eth_queue(bp, i)
|
|
napi_disable(&bnx2x_fp(bp, i, napi));
|
|
}
|
|
|
|
void bnx2x_netif_start(struct bnx2x *bp)
|
|
{
|
|
if (netif_running(bp->dev)) {
|
|
bnx2x_napi_enable(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_napi_enable_cnic(bp);
|
|
bnx2x_int_enable(bp);
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
}
|
|
}
|
|
|
|
void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
|
|
{
|
|
bnx2x_int_disable_sync(bp, disable_hw);
|
|
bnx2x_napi_disable(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_napi_disable_cnic(bp);
|
|
}
|
|
|
|
u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
|
|
struct ethhdr *hdr = (struct ethhdr *)skb->data;
|
|
u16 ether_type = ntohs(hdr->h_proto);
|
|
|
|
/* Skip VLAN tag if present */
|
|
if (ether_type == ETH_P_8021Q) {
|
|
struct vlan_ethhdr *vhdr =
|
|
(struct vlan_ethhdr *)skb->data;
|
|
|
|
ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
|
|
}
|
|
|
|
/* If ethertype is FCoE or FIP - use FCoE ring */
|
|
if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
|
|
return bnx2x_fcoe_tx(bp, txq_index);
|
|
}
|
|
|
|
/* select a non-FCoE queue */
|
|
return __skb_tx_hash(dev, skb, BNX2X_NUM_ETH_QUEUES(bp));
|
|
}
|
|
|
|
void bnx2x_set_num_queues(struct bnx2x *bp)
|
|
{
|
|
/* RSS queues */
|
|
bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
|
|
|
|
/* override in STORAGE SD modes */
|
|
if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
|
|
bp->num_ethernet_queues = 1;
|
|
|
|
/* Add special queues */
|
|
bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
|
|
bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
|
|
|
|
BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
|
|
*
|
|
* @bp: Driver handle
|
|
*
|
|
* We currently support for at most 16 Tx queues for each CoS thus we will
|
|
* allocate a multiple of 16 for ETH L2 rings according to the value of the
|
|
* bp->max_cos.
|
|
*
|
|
* If there is an FCoE L2 queue the appropriate Tx queue will have the next
|
|
* index after all ETH L2 indices.
|
|
*
|
|
* If the actual number of Tx queues (for each CoS) is less than 16 then there
|
|
* will be the holes at the end of each group of 16 ETh L2 indices (0..15,
|
|
* 16..31,...) with indicies that are not coupled with any real Tx queue.
|
|
*
|
|
* The proper configuration of skb->queue_mapping is handled by
|
|
* bnx2x_select_queue() and __skb_tx_hash().
|
|
*
|
|
* bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
|
|
* will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
|
|
*/
|
|
static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
|
|
{
|
|
int rc, tx, rx;
|
|
|
|
tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
|
|
rx = BNX2X_NUM_ETH_QUEUES(bp);
|
|
|
|
/* account for fcoe queue */
|
|
if (include_cnic && !NO_FCOE(bp)) {
|
|
rx++;
|
|
tx++;
|
|
}
|
|
|
|
rc = netif_set_real_num_tx_queues(bp->dev, tx);
|
|
if (rc) {
|
|
BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
|
|
return rc;
|
|
}
|
|
rc = netif_set_real_num_rx_queues(bp->dev, rx);
|
|
if (rc) {
|
|
BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
|
|
tx, rx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for_each_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
u32 mtu;
|
|
|
|
/* Always use a mini-jumbo MTU for the FCoE L2 ring */
|
|
if (IS_FCOE_IDX(i))
|
|
/*
|
|
* Although there are no IP frames expected to arrive to
|
|
* this ring we still want to add an
|
|
* IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
|
|
* overrun attack.
|
|
*/
|
|
mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
|
|
else
|
|
mtu = bp->dev->mtu;
|
|
fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
|
|
IP_HEADER_ALIGNMENT_PADDING +
|
|
ETH_OVREHEAD +
|
|
mtu +
|
|
BNX2X_FW_RX_ALIGN_END;
|
|
/* Note : rx_buf_size doesnt take into account NET_SKB_PAD */
|
|
if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
|
|
fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
|
|
else
|
|
fp->rx_frag_size = 0;
|
|
}
|
|
}
|
|
|
|
static int bnx2x_init_rss_pf(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
|
|
|
|
/* Prepare the initial contents fo the indirection table if RSS is
|
|
* enabled
|
|
*/
|
|
for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
|
|
bp->rss_conf_obj.ind_table[i] =
|
|
bp->fp->cl_id +
|
|
ethtool_rxfh_indir_default(i, num_eth_queues);
|
|
|
|
/*
|
|
* For 57710 and 57711 SEARCHER configuration (rss_keys) is
|
|
* per-port, so if explicit configuration is needed , do it only
|
|
* for a PMF.
|
|
*
|
|
* For 57712 and newer on the other hand it's a per-function
|
|
* configuration.
|
|
*/
|
|
return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
|
|
}
|
|
|
|
int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
|
|
bool config_hash)
|
|
{
|
|
struct bnx2x_config_rss_params params = {NULL};
|
|
|
|
/* Although RSS is meaningless when there is a single HW queue we
|
|
* still need it enabled in order to have HW Rx hash generated.
|
|
*
|
|
* if (!is_eth_multi(bp))
|
|
* bp->multi_mode = ETH_RSS_MODE_DISABLED;
|
|
*/
|
|
|
|
params.rss_obj = rss_obj;
|
|
|
|
__set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
|
|
|
|
__set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags);
|
|
|
|
/* RSS configuration */
|
|
__set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags);
|
|
__set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags);
|
|
__set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags);
|
|
__set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags);
|
|
if (rss_obj->udp_rss_v4)
|
|
__set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags);
|
|
if (rss_obj->udp_rss_v6)
|
|
__set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags);
|
|
|
|
/* Hash bits */
|
|
params.rss_result_mask = MULTI_MASK;
|
|
|
|
memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
|
|
|
|
if (config_hash) {
|
|
/* RSS keys */
|
|
prandom_bytes(params.rss_key, sizeof(params.rss_key));
|
|
__set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags);
|
|
}
|
|
|
|
return bnx2x_config_rss(bp, ¶ms);
|
|
}
|
|
|
|
static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
struct bnx2x_func_state_params func_params = {NULL};
|
|
|
|
/* Prepare parameters for function state transitions */
|
|
__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
|
|
|
|
func_params.f_obj = &bp->func_obj;
|
|
func_params.cmd = BNX2X_F_CMD_HW_INIT;
|
|
|
|
func_params.params.hw_init.load_phase = load_code;
|
|
|
|
return bnx2x_func_state_change(bp, &func_params);
|
|
}
|
|
|
|
/*
|
|
* Cleans the object that have internal lists without sending
|
|
* ramrods. Should be run when interrutps are disabled.
|
|
*/
|
|
static void bnx2x_squeeze_objects(struct bnx2x *bp)
|
|
{
|
|
int rc;
|
|
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
|
|
struct bnx2x_mcast_ramrod_params rparam = {NULL};
|
|
struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
|
|
|
|
/***************** Cleanup MACs' object first *************************/
|
|
|
|
/* Wait for completion of requested */
|
|
__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
|
|
/* Perform a dry cleanup */
|
|
__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
|
|
|
|
/* Clean ETH primary MAC */
|
|
__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
|
|
rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
|
|
&ramrod_flags);
|
|
if (rc != 0)
|
|
BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
|
|
|
|
/* Cleanup UC list */
|
|
vlan_mac_flags = 0;
|
|
__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
|
|
rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
|
|
&ramrod_flags);
|
|
if (rc != 0)
|
|
BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
|
|
|
|
/***************** Now clean mcast object *****************************/
|
|
rparam.mcast_obj = &bp->mcast_obj;
|
|
__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
|
|
|
|
/* Add a DEL command... */
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
|
|
if (rc < 0)
|
|
BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
|
|
rc);
|
|
|
|
/* ...and wait until all pending commands are cleared */
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
|
|
while (rc != 0) {
|
|
if (rc < 0) {
|
|
BNX2X_ERR("Failed to clean multi-cast object: %d\n",
|
|
rc);
|
|
return;
|
|
}
|
|
|
|
rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
|
|
}
|
|
}
|
|
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
#define LOAD_ERROR_EXIT(bp, label) \
|
|
do { \
|
|
(bp)->state = BNX2X_STATE_ERROR; \
|
|
goto label; \
|
|
} while (0)
|
|
|
|
#define LOAD_ERROR_EXIT_CNIC(bp, label) \
|
|
do { \
|
|
bp->cnic_loaded = false; \
|
|
goto label; \
|
|
} while (0)
|
|
#else /*BNX2X_STOP_ON_ERROR*/
|
|
#define LOAD_ERROR_EXIT(bp, label) \
|
|
do { \
|
|
(bp)->state = BNX2X_STATE_ERROR; \
|
|
(bp)->panic = 1; \
|
|
return -EBUSY; \
|
|
} while (0)
|
|
#define LOAD_ERROR_EXIT_CNIC(bp, label) \
|
|
do { \
|
|
bp->cnic_loaded = false; \
|
|
(bp)->panic = 1; \
|
|
return -EBUSY; \
|
|
} while (0)
|
|
#endif /*BNX2X_STOP_ON_ERROR*/
|
|
|
|
static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
|
|
{
|
|
BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
|
|
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
|
|
return;
|
|
}
|
|
|
|
static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
|
|
{
|
|
int num_groups, vf_headroom = 0;
|
|
int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
|
|
|
|
/* number of queues for statistics is number of eth queues + FCoE */
|
|
u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
|
|
|
|
/* Total number of FW statistics requests =
|
|
* 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
|
|
* and fcoe l2 queue) stats + num of queues (which includes another 1
|
|
* for fcoe l2 queue if applicable)
|
|
*/
|
|
bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
|
|
|
|
/* vf stats appear in the request list, but their data is allocated by
|
|
* the VFs themselves. We don't include them in the bp->fw_stats_num as
|
|
* it is used to determine where to place the vf stats queries in the
|
|
* request struct
|
|
*/
|
|
if (IS_SRIOV(bp))
|
|
vf_headroom = bnx2x_vf_headroom(bp);
|
|
|
|
/* Request is built from stats_query_header and an array of
|
|
* stats_query_cmd_group each of which contains
|
|
* STATS_QUERY_CMD_COUNT rules. The real number or requests is
|
|
* configured in the stats_query_header.
|
|
*/
|
|
num_groups =
|
|
(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
|
|
(((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
|
|
1 : 0));
|
|
|
|
DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
|
|
bp->fw_stats_num, vf_headroom, num_groups);
|
|
bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
|
|
num_groups * sizeof(struct stats_query_cmd_group);
|
|
|
|
/* Data for statistics requests + stats_counter
|
|
* stats_counter holds per-STORM counters that are incremented
|
|
* when STORM has finished with the current request.
|
|
* memory for FCoE offloaded statistics are counted anyway,
|
|
* even if they will not be sent.
|
|
* VF stats are not accounted for here as the data of VF stats is stored
|
|
* in memory allocated by the VF, not here.
|
|
*/
|
|
bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
|
|
sizeof(struct per_pf_stats) +
|
|
sizeof(struct fcoe_statistics_params) +
|
|
sizeof(struct per_queue_stats) * num_queue_stats +
|
|
sizeof(struct stats_counter);
|
|
|
|
BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
|
|
bp->fw_stats_data_sz + bp->fw_stats_req_sz);
|
|
|
|
/* Set shortcuts */
|
|
bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
|
|
bp->fw_stats_req_mapping = bp->fw_stats_mapping;
|
|
bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
|
|
((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
|
|
bp->fw_stats_data_mapping = bp->fw_stats_mapping +
|
|
bp->fw_stats_req_sz;
|
|
|
|
DP(BNX2X_MSG_SP, "statistics request base address set to %x %x",
|
|
U64_HI(bp->fw_stats_req_mapping),
|
|
U64_LO(bp->fw_stats_req_mapping));
|
|
DP(BNX2X_MSG_SP, "statistics data base address set to %x %x",
|
|
U64_HI(bp->fw_stats_data_mapping),
|
|
U64_LO(bp->fw_stats_data_mapping));
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnx2x_free_fw_stats_mem(bp);
|
|
BNX2X_ERR("Can't allocate FW stats memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* send load request to mcp and analyze response */
|
|
static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
|
|
{
|
|
/* init fw_seq */
|
|
bp->fw_seq =
|
|
(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
|
|
DRV_MSG_SEQ_NUMBER_MASK);
|
|
BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
|
|
|
|
/* Get current FW pulse sequence */
|
|
bp->fw_drv_pulse_wr_seq =
|
|
(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
|
|
DRV_PULSE_SEQ_MASK);
|
|
BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
|
|
|
|
/* load request */
|
|
(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
|
|
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
|
|
|
|
/* if mcp fails to respond we must abort */
|
|
if (!(*load_code)) {
|
|
BNX2X_ERR("MCP response failure, aborting\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* If mcp refused (e.g. other port is in diagnostic mode) we
|
|
* must abort
|
|
*/
|
|
if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
|
|
BNX2X_ERR("MCP refused load request, aborting\n");
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* check whether another PF has already loaded FW to chip. In
|
|
* virtualized environments a pf from another VM may have already
|
|
* initialized the device including loading FW
|
|
*/
|
|
int bnx2x_nic_load_analyze_req(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
/* is another pf loaded on this engine? */
|
|
if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
|
|
load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
|
|
/* build my FW version dword */
|
|
u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
|
|
(BCM_5710_FW_MINOR_VERSION << 8) +
|
|
(BCM_5710_FW_REVISION_VERSION << 16) +
|
|
(BCM_5710_FW_ENGINEERING_VERSION << 24);
|
|
|
|
/* read loaded FW from chip */
|
|
u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
|
|
|
|
DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
|
|
loaded_fw, my_fw);
|
|
|
|
/* abort nic load if version mismatch */
|
|
if (my_fw != loaded_fw) {
|
|
BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. aborting\n",
|
|
loaded_fw, my_fw);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* returns the "mcp load_code" according to global load_count array */
|
|
static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
|
|
{
|
|
int path = BP_PATH(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
|
|
path, load_count[path][0], load_count[path][1],
|
|
load_count[path][2]);
|
|
load_count[path][0]++;
|
|
load_count[path][1 + port]++;
|
|
DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
|
|
path, load_count[path][0], load_count[path][1],
|
|
load_count[path][2]);
|
|
if (load_count[path][0] == 1)
|
|
return FW_MSG_CODE_DRV_LOAD_COMMON;
|
|
else if (load_count[path][1 + port] == 1)
|
|
return FW_MSG_CODE_DRV_LOAD_PORT;
|
|
else
|
|
return FW_MSG_CODE_DRV_LOAD_FUNCTION;
|
|
}
|
|
|
|
/* mark PMF if applicable */
|
|
static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
|
|
{
|
|
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
|
|
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
|
|
(load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
|
|
bp->port.pmf = 1;
|
|
/* We need the barrier to ensure the ordering between the
|
|
* writing to bp->port.pmf here and reading it from the
|
|
* bnx2x_periodic_task().
|
|
*/
|
|
smp_mb();
|
|
} else {
|
|
bp->port.pmf = 0;
|
|
}
|
|
|
|
DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
|
|
}
|
|
|
|
static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
|
|
{
|
|
if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
|
|
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
|
|
(bp->common.shmem2_base)) {
|
|
if (SHMEM2_HAS(bp, dcc_support))
|
|
SHMEM2_WR(bp, dcc_support,
|
|
(SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
|
|
SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
|
|
if (SHMEM2_HAS(bp, afex_driver_support))
|
|
SHMEM2_WR(bp, afex_driver_support,
|
|
SHMEM_AFEX_SUPPORTED_VERSION_ONE);
|
|
}
|
|
|
|
/* Set AFEX default VLAN tag to an invalid value */
|
|
bp->afex_def_vlan_tag = -1;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_bz_fp - zero content of the fastpath structure.
|
|
*
|
|
* @bp: driver handle
|
|
* @index: fastpath index to be zeroed
|
|
*
|
|
* Makes sure the contents of the bp->fp[index].napi is kept
|
|
* intact.
|
|
*/
|
|
static void bnx2x_bz_fp(struct bnx2x *bp, int index)
|
|
{
|
|
struct bnx2x_fastpath *fp = &bp->fp[index];
|
|
|
|
int cos;
|
|
struct napi_struct orig_napi = fp->napi;
|
|
struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
|
|
/* bzero bnx2x_fastpath contents */
|
|
if (fp->tpa_info)
|
|
memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
|
|
sizeof(struct bnx2x_agg_info));
|
|
memset(fp, 0, sizeof(*fp));
|
|
|
|
/* Restore the NAPI object as it has been already initialized */
|
|
fp->napi = orig_napi;
|
|
fp->tpa_info = orig_tpa_info;
|
|
fp->bp = bp;
|
|
fp->index = index;
|
|
if (IS_ETH_FP(fp))
|
|
fp->max_cos = bp->max_cos;
|
|
else
|
|
/* Special queues support only one CoS */
|
|
fp->max_cos = 1;
|
|
|
|
/* Init txdata pointers */
|
|
if (IS_FCOE_FP(fp))
|
|
fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
|
|
if (IS_ETH_FP(fp))
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
|
|
BNX2X_NUM_ETH_QUEUES(bp) + index];
|
|
|
|
/*
|
|
* set the tpa flag for each queue. The tpa flag determines the queue
|
|
* minimal size so it must be set prior to queue memory allocation
|
|
*/
|
|
fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
|
|
(bp->flags & GRO_ENABLE_FLAG &&
|
|
bnx2x_mtu_allows_gro(bp->dev->mtu)));
|
|
if (bp->flags & TPA_ENABLE_FLAG)
|
|
fp->mode = TPA_MODE_LRO;
|
|
else if (bp->flags & GRO_ENABLE_FLAG)
|
|
fp->mode = TPA_MODE_GRO;
|
|
|
|
/* We don't want TPA on an FCoE L2 ring */
|
|
if (IS_FCOE_FP(fp))
|
|
fp->disable_tpa = 1;
|
|
}
|
|
|
|
int bnx2x_load_cnic(struct bnx2x *bp)
|
|
{
|
|
int i, rc, port = BP_PORT(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
|
|
|
|
mutex_init(&bp->cnic_mutex);
|
|
|
|
if (IS_PF(bp)) {
|
|
rc = bnx2x_alloc_mem_cnic(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to allocate bp memory for cnic\n");
|
|
LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
|
|
}
|
|
}
|
|
|
|
rc = bnx2x_alloc_fp_mem_cnic(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to allocate memory for cnic fps\n");
|
|
LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
|
|
}
|
|
|
|
/* Update the number of queues with the cnic queues */
|
|
rc = bnx2x_set_real_num_queues(bp, 1);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to set real_num_queues including cnic\n");
|
|
LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
|
|
}
|
|
|
|
/* Add all CNIC NAPI objects */
|
|
bnx2x_add_all_napi_cnic(bp);
|
|
DP(NETIF_MSG_IFUP, "cnic napi added\n");
|
|
bnx2x_napi_enable_cnic(bp);
|
|
|
|
rc = bnx2x_init_hw_func_cnic(bp);
|
|
if (rc)
|
|
LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
|
|
|
|
bnx2x_nic_init_cnic(bp);
|
|
|
|
if (IS_PF(bp)) {
|
|
/* Enable Timer scan */
|
|
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
|
|
|
|
/* setup cnic queues */
|
|
for_each_cnic_queue(bp, i) {
|
|
rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue setup failed\n");
|
|
LOAD_ERROR_EXIT(bp, load_error_cnic2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialize Rx filter. */
|
|
netif_addr_lock_bh(bp->dev);
|
|
bnx2x_set_rx_mode(bp->dev);
|
|
netif_addr_unlock_bh(bp->dev);
|
|
|
|
/* re-read iscsi info */
|
|
bnx2x_get_iscsi_info(bp);
|
|
bnx2x_setup_cnic_irq_info(bp);
|
|
bnx2x_setup_cnic_info(bp);
|
|
bp->cnic_loaded = true;
|
|
if (bp->state == BNX2X_STATE_OPEN)
|
|
bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
|
|
|
|
|
|
DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
|
|
|
|
return 0;
|
|
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
load_error_cnic2:
|
|
/* Disable Timer scan */
|
|
REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
|
|
|
|
load_error_cnic1:
|
|
bnx2x_napi_disable_cnic(bp);
|
|
/* Update the number of queues without the cnic queues */
|
|
rc = bnx2x_set_real_num_queues(bp, 0);
|
|
if (rc)
|
|
BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
|
|
load_error_cnic0:
|
|
BNX2X_ERR("CNIC-related load failed\n");
|
|
bnx2x_free_fp_mem_cnic(bp);
|
|
bnx2x_free_mem_cnic(bp);
|
|
return rc;
|
|
#endif /* ! BNX2X_STOP_ON_ERROR */
|
|
}
|
|
|
|
/* must be called with rtnl_lock */
|
|
int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
int i, rc = 0, load_code = 0;
|
|
|
|
DP(NETIF_MSG_IFUP, "Starting NIC load\n");
|
|
DP(NETIF_MSG_IFUP,
|
|
"CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic)) {
|
|
BNX2X_ERR("Can't load NIC when there is panic\n");
|
|
return -EPERM;
|
|
}
|
|
#endif
|
|
|
|
bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
|
|
|
|
memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
|
|
__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
|
|
&bp->last_reported_link.link_report_flags);
|
|
|
|
if (IS_PF(bp))
|
|
/* must be called before memory allocation and HW init */
|
|
bnx2x_ilt_set_info(bp);
|
|
|
|
/*
|
|
* Zero fastpath structures preserving invariants like napi, which are
|
|
* allocated only once, fp index, max_cos, bp pointer.
|
|
* Also set fp->disable_tpa and txdata_ptr.
|
|
*/
|
|
DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
|
|
for_each_queue(bp, i)
|
|
bnx2x_bz_fp(bp, i);
|
|
memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
|
|
bp->num_cnic_queues) *
|
|
sizeof(struct bnx2x_fp_txdata));
|
|
|
|
bp->fcoe_init = false;
|
|
|
|
/* Set the receive queues buffer size */
|
|
bnx2x_set_rx_buf_size(bp);
|
|
|
|
if (IS_PF(bp)) {
|
|
rc = bnx2x_alloc_mem(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to allocate bp memory\n");
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Allocated memory for FW statistics */
|
|
if (bnx2x_alloc_fw_stats_mem(bp))
|
|
LOAD_ERROR_EXIT(bp, load_error0);
|
|
|
|
/* need to be done after alloc mem, since it's self adjusting to amount
|
|
* of memory available for RSS queues
|
|
*/
|
|
rc = bnx2x_alloc_fp_mem(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to allocate memory for fps\n");
|
|
LOAD_ERROR_EXIT(bp, load_error0);
|
|
}
|
|
|
|
/* request pf to initialize status blocks */
|
|
if (IS_VF(bp)) {
|
|
rc = bnx2x_vfpf_init(bp);
|
|
if (rc)
|
|
LOAD_ERROR_EXIT(bp, load_error0);
|
|
}
|
|
|
|
/* As long as bnx2x_alloc_mem() may possibly update
|
|
* bp->num_queues, bnx2x_set_real_num_queues() should always
|
|
* come after it. At this stage cnic queues are not counted.
|
|
*/
|
|
rc = bnx2x_set_real_num_queues(bp, 0);
|
|
if (rc) {
|
|
BNX2X_ERR("Unable to set real_num_queues\n");
|
|
LOAD_ERROR_EXIT(bp, load_error0);
|
|
}
|
|
|
|
/* configure multi cos mappings in kernel.
|
|
* this configuration may be overriden by a multi class queue discipline
|
|
* or by a dcbx negotiation result.
|
|
*/
|
|
bnx2x_setup_tc(bp->dev, bp->max_cos);
|
|
|
|
/* Add all NAPI objects */
|
|
bnx2x_add_all_napi(bp);
|
|
DP(NETIF_MSG_IFUP, "napi added\n");
|
|
bnx2x_napi_enable(bp);
|
|
|
|
if (IS_PF(bp)) {
|
|
/* set pf load just before approaching the MCP */
|
|
bnx2x_set_pf_load(bp);
|
|
|
|
/* if mcp exists send load request and analyze response */
|
|
if (!BP_NOMCP(bp)) {
|
|
/* attempt to load pf */
|
|
rc = bnx2x_nic_load_request(bp, &load_code);
|
|
if (rc)
|
|
LOAD_ERROR_EXIT(bp, load_error1);
|
|
|
|
/* what did mcp say? */
|
|
rc = bnx2x_nic_load_analyze_req(bp, load_code);
|
|
if (rc) {
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
|
|
LOAD_ERROR_EXIT(bp, load_error2);
|
|
}
|
|
} else {
|
|
load_code = bnx2x_nic_load_no_mcp(bp, port);
|
|
}
|
|
|
|
/* mark pmf if applicable */
|
|
bnx2x_nic_load_pmf(bp, load_code);
|
|
|
|
/* Init Function state controlling object */
|
|
bnx2x__init_func_obj(bp);
|
|
|
|
/* Initialize HW */
|
|
rc = bnx2x_init_hw(bp, load_code);
|
|
if (rc) {
|
|
BNX2X_ERR("HW init failed, aborting\n");
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
|
|
LOAD_ERROR_EXIT(bp, load_error2);
|
|
}
|
|
}
|
|
|
|
/* Connect to IRQs */
|
|
rc = bnx2x_setup_irqs(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("setup irqs failed\n");
|
|
if (IS_PF(bp))
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
|
|
LOAD_ERROR_EXIT(bp, load_error2);
|
|
}
|
|
|
|
/* Setup NIC internals and enable interrupts */
|
|
bnx2x_nic_init(bp, load_code);
|
|
|
|
/* Init per-function objects */
|
|
if (IS_PF(bp)) {
|
|
bnx2x_init_bp_objs(bp);
|
|
bnx2x_iov_nic_init(bp);
|
|
|
|
/* Set AFEX default VLAN tag to an invalid value */
|
|
bp->afex_def_vlan_tag = -1;
|
|
bnx2x_nic_load_afex_dcc(bp, load_code);
|
|
bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
|
|
rc = bnx2x_func_start(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Function start failed!\n");
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
|
|
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
|
|
/* Send LOAD_DONE command to MCP */
|
|
if (!BP_NOMCP(bp)) {
|
|
load_code = bnx2x_fw_command(bp,
|
|
DRV_MSG_CODE_LOAD_DONE, 0);
|
|
if (!load_code) {
|
|
BNX2X_ERR("MCP response failure, aborting\n");
|
|
rc = -EBUSY;
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
}
|
|
|
|
/* setup the leading queue */
|
|
rc = bnx2x_setup_leading(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Setup leading failed!\n");
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
|
|
/* set up the rest of the queues */
|
|
for_each_nondefault_eth_queue(bp, i) {
|
|
rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue setup failed\n");
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
}
|
|
|
|
/* setup rss */
|
|
rc = bnx2x_init_rss_pf(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("PF RSS init failed\n");
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
|
|
} else { /* vf */
|
|
for_each_eth_queue(bp, i) {
|
|
rc = bnx2x_vfpf_setup_q(bp, i);
|
|
if (rc) {
|
|
BNX2X_ERR("Queue setup failed\n");
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now when Clients are configured we are ready to work */
|
|
bp->state = BNX2X_STATE_OPEN;
|
|
|
|
/* Configure a ucast MAC */
|
|
if (IS_PF(bp))
|
|
rc = bnx2x_set_eth_mac(bp, true);
|
|
else /* vf */
|
|
rc = bnx2x_vfpf_set_mac(bp);
|
|
if (rc) {
|
|
BNX2X_ERR("Setting Ethernet MAC failed\n");
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
|
|
if (IS_PF(bp) && bp->pending_max) {
|
|
bnx2x_update_max_mf_config(bp, bp->pending_max);
|
|
bp->pending_max = 0;
|
|
}
|
|
|
|
if (bp->port.pmf) {
|
|
rc = bnx2x_initial_phy_init(bp, load_mode);
|
|
if (rc)
|
|
LOAD_ERROR_EXIT(bp, load_error3);
|
|
}
|
|
bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
|
|
|
|
/* Start fast path */
|
|
|
|
/* Initialize Rx filter. */
|
|
netif_addr_lock_bh(bp->dev);
|
|
bnx2x_set_rx_mode(bp->dev);
|
|
netif_addr_unlock_bh(bp->dev);
|
|
|
|
/* Start the Tx */
|
|
switch (load_mode) {
|
|
case LOAD_NORMAL:
|
|
/* Tx queue should be only reenabled */
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
break;
|
|
|
|
case LOAD_OPEN:
|
|
netif_tx_start_all_queues(bp->dev);
|
|
smp_mb__after_clear_bit();
|
|
break;
|
|
|
|
case LOAD_DIAG:
|
|
case LOAD_LOOPBACK_EXT:
|
|
bp->state = BNX2X_STATE_DIAG;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (bp->port.pmf)
|
|
bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
|
|
else
|
|
bnx2x__link_status_update(bp);
|
|
|
|
/* start the timer */
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
|
|
if (CNIC_ENABLED(bp))
|
|
bnx2x_load_cnic(bp);
|
|
|
|
if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
|
|
/* mark driver is loaded in shmem2 */
|
|
u32 val;
|
|
val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
|
|
SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
|
|
val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
|
|
DRV_FLAGS_CAPABILITIES_LOADED_L2);
|
|
}
|
|
|
|
/* Wait for all pending SP commands to complete */
|
|
if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
|
|
BNX2X_ERR("Timeout waiting for SP elements to complete\n");
|
|
bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
|
|
if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
|
|
bnx2x_dcbx_init(bp, false);
|
|
|
|
DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
|
|
|
|
return 0;
|
|
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
load_error3:
|
|
if (IS_PF(bp)) {
|
|
bnx2x_int_disable_sync(bp, 1);
|
|
|
|
/* Clean queueable objects */
|
|
bnx2x_squeeze_objects(bp);
|
|
}
|
|
|
|
/* Free SKBs, SGEs, TPA pool and driver internals */
|
|
bnx2x_free_skbs(bp);
|
|
for_each_rx_queue(bp, i)
|
|
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
|
|
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp);
|
|
load_error2:
|
|
if (IS_PF(bp) && !BP_NOMCP(bp)) {
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
|
|
bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
|
|
}
|
|
|
|
bp->port.pmf = 0;
|
|
load_error1:
|
|
bnx2x_napi_disable(bp);
|
|
|
|
/* clear pf_load status, as it was already set */
|
|
if (IS_PF(bp))
|
|
bnx2x_clear_pf_load(bp);
|
|
load_error0:
|
|
bnx2x_free_fp_mem(bp);
|
|
bnx2x_free_fw_stats_mem(bp);
|
|
bnx2x_free_mem(bp);
|
|
|
|
return rc;
|
|
#endif /* ! BNX2X_STOP_ON_ERROR */
|
|
}
|
|
|
|
static int bnx2x_drain_tx_queues(struct bnx2x *bp)
|
|
{
|
|
u8 rc = 0, cos, i;
|
|
|
|
/* Wait until tx fastpath tasks complete */
|
|
for_each_tx_queue(bp, i) {
|
|
struct bnx2x_fastpath *fp = &bp->fp[i];
|
|
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* must be called with rtnl_lock */
|
|
int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
|
|
{
|
|
int i;
|
|
bool global = false;
|
|
|
|
DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
|
|
|
|
/* mark driver is unloaded in shmem2 */
|
|
if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
|
|
u32 val;
|
|
val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
|
|
SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
|
|
val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
|
|
}
|
|
|
|
if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
|
|
(bp->state == BNX2X_STATE_CLOSED ||
|
|
bp->state == BNX2X_STATE_ERROR)) {
|
|
/* We can get here if the driver has been unloaded
|
|
* during parity error recovery and is either waiting for a
|
|
* leader to complete or for other functions to unload and
|
|
* then ifdown has been issued. In this case we want to
|
|
* unload and let other functions to complete a recovery
|
|
* process.
|
|
*/
|
|
bp->recovery_state = BNX2X_RECOVERY_DONE;
|
|
bp->is_leader = 0;
|
|
bnx2x_release_leader_lock(bp);
|
|
smp_mb();
|
|
|
|
DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
|
|
BNX2X_ERR("Can't unload in closed or error state\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Nothing to do during unload if previous bnx2x_nic_load()
|
|
* have not completed succesfully - all resourses are released.
|
|
*
|
|
* we can get here only after unsuccessful ndo_* callback, during which
|
|
* dev->IFF_UP flag is still on.
|
|
*/
|
|
if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
|
|
return 0;
|
|
|
|
/* It's important to set the bp->state to the value different from
|
|
* BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
|
|
* may restart the Tx from the NAPI context (see bnx2x_tx_int()).
|
|
*/
|
|
bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
|
|
smp_mb();
|
|
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
|
|
|
|
/* Stop Tx */
|
|
bnx2x_tx_disable(bp);
|
|
netdev_reset_tc(bp->dev);
|
|
|
|
bp->rx_mode = BNX2X_RX_MODE_NONE;
|
|
|
|
del_timer_sync(&bp->timer);
|
|
|
|
if (IS_PF(bp)) {
|
|
/* Set ALWAYS_ALIVE bit in shmem */
|
|
bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
|
|
bnx2x_drv_pulse(bp);
|
|
bnx2x_stats_handle(bp, STATS_EVENT_STOP);
|
|
bnx2x_save_statistics(bp);
|
|
}
|
|
|
|
/* wait till consumers catch up with producers in all queues */
|
|
bnx2x_drain_tx_queues(bp);
|
|
|
|
/* if VF indicate to PF this function is going down (PF will delete sp
|
|
* elements and clear initializations
|
|
*/
|
|
if (IS_VF(bp))
|
|
bnx2x_vfpf_close_vf(bp);
|
|
else if (unload_mode != UNLOAD_RECOVERY)
|
|
/* if this is a normal/close unload need to clean up chip*/
|
|
bnx2x_chip_cleanup(bp, unload_mode, keep_link);
|
|
else {
|
|
/* Send the UNLOAD_REQUEST to the MCP */
|
|
bnx2x_send_unload_req(bp, unload_mode);
|
|
|
|
/*
|
|
* Prevent transactions to host from the functions on the
|
|
* engine that doesn't reset global blocks in case of global
|
|
* attention once gloabl blocks are reset and gates are opened
|
|
* (the engine which leader will perform the recovery
|
|
* last).
|
|
*/
|
|
if (!CHIP_IS_E1x(bp))
|
|
bnx2x_pf_disable(bp);
|
|
|
|
/* Disable HW interrupts, NAPI */
|
|
bnx2x_netif_stop(bp, 1);
|
|
/* Delete all NAPI objects */
|
|
bnx2x_del_all_napi(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_del_all_napi_cnic(bp);
|
|
/* Release IRQs */
|
|
bnx2x_free_irq(bp);
|
|
|
|
/* Report UNLOAD_DONE to MCP */
|
|
bnx2x_send_unload_done(bp, false);
|
|
}
|
|
|
|
/*
|
|
* At this stage no more interrupts will arrive so we may safly clean
|
|
* the queueable objects here in case they failed to get cleaned so far.
|
|
*/
|
|
if (IS_PF(bp))
|
|
bnx2x_squeeze_objects(bp);
|
|
|
|
/* There should be no more pending SP commands at this stage */
|
|
bp->sp_state = 0;
|
|
|
|
bp->port.pmf = 0;
|
|
|
|
/* Free SKBs, SGEs, TPA pool and driver internals */
|
|
bnx2x_free_skbs(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_free_skbs_cnic(bp);
|
|
for_each_rx_queue(bp, i)
|
|
bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
|
|
|
|
bnx2x_free_fp_mem(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_free_fp_mem_cnic(bp);
|
|
|
|
if (IS_PF(bp)) {
|
|
bnx2x_free_mem(bp);
|
|
if (CNIC_LOADED(bp))
|
|
bnx2x_free_mem_cnic(bp);
|
|
}
|
|
bp->state = BNX2X_STATE_CLOSED;
|
|
bp->cnic_loaded = false;
|
|
|
|
/* Check if there are pending parity attentions. If there are - set
|
|
* RECOVERY_IN_PROGRESS.
|
|
*/
|
|
if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
|
|
bnx2x_set_reset_in_progress(bp);
|
|
|
|
/* Set RESET_IS_GLOBAL if needed */
|
|
if (global)
|
|
bnx2x_set_reset_global(bp);
|
|
}
|
|
|
|
|
|
/* The last driver must disable a "close the gate" if there is no
|
|
* parity attention or "process kill" pending.
|
|
*/
|
|
if (IS_PF(bp) &&
|
|
!bnx2x_clear_pf_load(bp) &&
|
|
bnx2x_reset_is_done(bp, BP_PATH(bp)))
|
|
bnx2x_disable_close_the_gate(bp);
|
|
|
|
DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
/* If there is no power capability, silently succeed */
|
|
if (!bp->pm_cap) {
|
|
BNX2X_DEV_INFO("No power capability. Breaking.\n");
|
|
return 0;
|
|
}
|
|
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
switch (state) {
|
|
case PCI_D0:
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
|
|
PCI_PM_CTRL_PME_STATUS));
|
|
|
|
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
|
|
/* delay required during transition out of D3hot */
|
|
msleep(20);
|
|
break;
|
|
|
|
case PCI_D3hot:
|
|
/* If there are other clients above don't
|
|
shut down the power */
|
|
if (atomic_read(&bp->pdev->enable_cnt) != 1)
|
|
return 0;
|
|
/* Don't shut down the power for emulation and FPGA */
|
|
if (CHIP_REV_IS_SLOW(bp))
|
|
return 0;
|
|
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= 3;
|
|
|
|
if (bp->wol)
|
|
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
|
|
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
pmcsr);
|
|
|
|
/* No more memory access after this point until
|
|
* device is brought back to D0.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* net_device service functions
|
|
*/
|
|
int bnx2x_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
int work_done = 0;
|
|
u8 cos;
|
|
struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
|
|
napi);
|
|
struct bnx2x *bp = fp->bp;
|
|
|
|
while (1) {
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic)) {
|
|
napi_complete(napi);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
for_each_cos_in_tx_queue(fp, cos)
|
|
if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
|
|
bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
|
|
|
|
if (bnx2x_has_rx_work(fp)) {
|
|
work_done += bnx2x_rx_int(fp, budget - work_done);
|
|
|
|
/* must not complete if we consumed full budget */
|
|
if (work_done >= budget)
|
|
break;
|
|
}
|
|
|
|
/* Fall out from the NAPI loop if needed */
|
|
if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
|
|
|
|
/* No need to update SB for FCoE L2 ring as long as
|
|
* it's connected to the default SB and the SB
|
|
* has been updated when NAPI was scheduled.
|
|
*/
|
|
if (IS_FCOE_FP(fp)) {
|
|
napi_complete(napi);
|
|
break;
|
|
}
|
|
bnx2x_update_fpsb_idx(fp);
|
|
/* bnx2x_has_rx_work() reads the status block,
|
|
* thus we need to ensure that status block indices
|
|
* have been actually read (bnx2x_update_fpsb_idx)
|
|
* prior to this check (bnx2x_has_rx_work) so that
|
|
* we won't write the "newer" value of the status block
|
|
* to IGU (if there was a DMA right after
|
|
* bnx2x_has_rx_work and if there is no rmb, the memory
|
|
* reading (bnx2x_update_fpsb_idx) may be postponed
|
|
* to right before bnx2x_ack_sb). In this case there
|
|
* will never be another interrupt until there is
|
|
* another update of the status block, while there
|
|
* is still unhandled work.
|
|
*/
|
|
rmb();
|
|
|
|
if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
|
|
napi_complete(napi);
|
|
/* Re-enable interrupts */
|
|
DP(NETIF_MSG_RX_STATUS,
|
|
"Update index to %d\n", fp->fp_hc_idx);
|
|
bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
|
|
le16_to_cpu(fp->fp_hc_idx),
|
|
IGU_INT_ENABLE, 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
/* we split the first BD into headers and data BDs
|
|
* to ease the pain of our fellow microcode engineers
|
|
* we use one mapping for both BDs
|
|
*/
|
|
static noinline u16 bnx2x_tx_split(struct bnx2x *bp,
|
|
struct bnx2x_fp_txdata *txdata,
|
|
struct sw_tx_bd *tx_buf,
|
|
struct eth_tx_start_bd **tx_bd, u16 hlen,
|
|
u16 bd_prod, int nbd)
|
|
{
|
|
struct eth_tx_start_bd *h_tx_bd = *tx_bd;
|
|
struct eth_tx_bd *d_tx_bd;
|
|
dma_addr_t mapping;
|
|
int old_len = le16_to_cpu(h_tx_bd->nbytes);
|
|
|
|
/* first fix first BD */
|
|
h_tx_bd->nbd = cpu_to_le16(nbd);
|
|
h_tx_bd->nbytes = cpu_to_le16(hlen);
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x) nbd %d\n",
|
|
h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo, h_tx_bd->nbd);
|
|
|
|
/* now get a new data BD
|
|
* (after the pbd) and fill it */
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
|
|
|
|
mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
|
|
le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
|
|
|
|
d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
|
|
|
|
/* this marks the BD as one that has no individual mapping */
|
|
tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"TSO split data size is %d (%x:%x)\n",
|
|
d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
|
|
|
|
/* update tx_bd */
|
|
*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
|
|
|
|
return bd_prod;
|
|
}
|
|
|
|
#define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
|
|
#define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
|
|
static inline __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
|
|
{
|
|
__sum16 tsum = (__force __sum16) csum;
|
|
|
|
if (fix > 0)
|
|
tsum = ~csum_fold(csum_sub((__force __wsum) csum,
|
|
csum_partial(t_header - fix, fix, 0)));
|
|
|
|
else if (fix < 0)
|
|
tsum = ~csum_fold(csum_add((__force __wsum) csum,
|
|
csum_partial(t_header, -fix, 0)));
|
|
|
|
return bswab16(csum);
|
|
}
|
|
|
|
static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
|
|
{
|
|
u32 rc;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
rc = XMIT_PLAIN;
|
|
|
|
else {
|
|
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) {
|
|
rc = XMIT_CSUM_V6;
|
|
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
|
|
rc |= XMIT_CSUM_TCP;
|
|
|
|
} else {
|
|
rc = XMIT_CSUM_V4;
|
|
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
|
|
rc |= XMIT_CSUM_TCP;
|
|
}
|
|
}
|
|
|
|
if (skb_is_gso_v6(skb))
|
|
rc |= XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6;
|
|
else if (skb_is_gso(skb))
|
|
rc |= XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
|
|
/* check if packet requires linearization (packet is too fragmented)
|
|
no need to check fragmentation if page size > 8K (there will be no
|
|
violation to FW restrictions) */
|
|
static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
|
|
u32 xmit_type)
|
|
{
|
|
int to_copy = 0;
|
|
int hlen = 0;
|
|
int first_bd_sz = 0;
|
|
|
|
/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
|
|
if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
|
|
|
|
if (xmit_type & XMIT_GSO) {
|
|
unsigned short lso_mss = skb_shinfo(skb)->gso_size;
|
|
/* Check if LSO packet needs to be copied:
|
|
3 = 1 (for headers BD) + 2 (for PBD and last BD) */
|
|
int wnd_size = MAX_FETCH_BD - 3;
|
|
/* Number of windows to check */
|
|
int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
|
|
int wnd_idx = 0;
|
|
int frag_idx = 0;
|
|
u32 wnd_sum = 0;
|
|
|
|
/* Headers length */
|
|
hlen = (int)(skb_transport_header(skb) - skb->data) +
|
|
tcp_hdrlen(skb);
|
|
|
|
/* Amount of data (w/o headers) on linear part of SKB*/
|
|
first_bd_sz = skb_headlen(skb) - hlen;
|
|
|
|
wnd_sum = first_bd_sz;
|
|
|
|
/* Calculate the first sum - it's special */
|
|
for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
|
|
wnd_sum +=
|
|
skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
|
|
|
|
/* If there was data on linear skb data - check it */
|
|
if (first_bd_sz > 0) {
|
|
if (unlikely(wnd_sum < lso_mss)) {
|
|
to_copy = 1;
|
|
goto exit_lbl;
|
|
}
|
|
|
|
wnd_sum -= first_bd_sz;
|
|
}
|
|
|
|
/* Others are easier: run through the frag list and
|
|
check all windows */
|
|
for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
|
|
wnd_sum +=
|
|
skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
|
|
|
|
if (unlikely(wnd_sum < lso_mss)) {
|
|
to_copy = 1;
|
|
break;
|
|
}
|
|
wnd_sum -=
|
|
skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
|
|
}
|
|
} else {
|
|
/* in non-LSO too fragmented packet should always
|
|
be linearized */
|
|
to_copy = 1;
|
|
}
|
|
}
|
|
|
|
exit_lbl:
|
|
if (unlikely(to_copy))
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
|
|
(xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
|
|
skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
|
|
|
|
return to_copy;
|
|
}
|
|
#endif
|
|
|
|
static inline void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
|
|
u32 xmit_type)
|
|
{
|
|
*parsing_data |= (skb_shinfo(skb)->gso_size <<
|
|
ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
|
|
ETH_TX_PARSE_BD_E2_LSO_MSS;
|
|
if ((xmit_type & XMIT_GSO_V6) &&
|
|
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
|
|
*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_pbd_gso - update PBD in GSO case.
|
|
*
|
|
* @skb: packet skb
|
|
* @pbd: parse BD
|
|
* @xmit_type: xmit flags
|
|
*/
|
|
static inline void bnx2x_set_pbd_gso(struct sk_buff *skb,
|
|
struct eth_tx_parse_bd_e1x *pbd,
|
|
u32 xmit_type)
|
|
{
|
|
pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
|
|
pbd->tcp_flags = pbd_tcp_flags(skb);
|
|
|
|
if (xmit_type & XMIT_GSO_V4) {
|
|
pbd->ip_id = bswab16(ip_hdr(skb)->id);
|
|
pbd->tcp_pseudo_csum =
|
|
bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
|
|
ip_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0));
|
|
|
|
} else
|
|
pbd->tcp_pseudo_csum =
|
|
bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
|
|
&ipv6_hdr(skb)->daddr,
|
|
0, IPPROTO_TCP, 0));
|
|
|
|
pbd->global_data |=
|
|
cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
|
|
*
|
|
* @bp: driver handle
|
|
* @skb: packet skb
|
|
* @parsing_data: data to be updated
|
|
* @xmit_type: xmit flags
|
|
*
|
|
* 57712 related
|
|
*/
|
|
static inline u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
|
|
u32 *parsing_data, u32 xmit_type)
|
|
{
|
|
*parsing_data |=
|
|
((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
|
|
ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W_SHIFT) &
|
|
ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W;
|
|
|
|
if (xmit_type & XMIT_CSUM_TCP) {
|
|
*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
|
|
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
|
|
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
|
|
|
|
return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
|
|
}
|
|
/* We support checksum offload for TCP and UDP only.
|
|
* No need to pass the UDP header length - it's a constant.
|
|
*/
|
|
return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
|
|
}
|
|
|
|
static inline void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
|
|
struct eth_tx_start_bd *tx_start_bd, u32 xmit_type)
|
|
{
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
|
|
|
|
if (xmit_type & XMIT_CSUM_V4)
|
|
tx_start_bd->bd_flags.as_bitfield |=
|
|
ETH_TX_BD_FLAGS_IP_CSUM;
|
|
else
|
|
tx_start_bd->bd_flags.as_bitfield |=
|
|
ETH_TX_BD_FLAGS_IPV6;
|
|
|
|
if (!(xmit_type & XMIT_CSUM_TCP))
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_set_pbd_csum - update PBD with checksum and return header length
|
|
*
|
|
* @bp: driver handle
|
|
* @skb: packet skb
|
|
* @pbd: parse BD to be updated
|
|
* @xmit_type: xmit flags
|
|
*/
|
|
static inline u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
|
|
struct eth_tx_parse_bd_e1x *pbd,
|
|
u32 xmit_type)
|
|
{
|
|
u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
|
|
|
|
/* for now NS flag is not used in Linux */
|
|
pbd->global_data =
|
|
cpu_to_le16(hlen |
|
|
((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
|
|
ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
|
|
|
|
pbd->ip_hlen_w = (skb_transport_header(skb) -
|
|
skb_network_header(skb)) >> 1;
|
|
|
|
hlen += pbd->ip_hlen_w;
|
|
|
|
/* We support checksum offload for TCP and UDP only */
|
|
if (xmit_type & XMIT_CSUM_TCP)
|
|
hlen += tcp_hdrlen(skb) / 2;
|
|
else
|
|
hlen += sizeof(struct udphdr) / 2;
|
|
|
|
pbd->total_hlen_w = cpu_to_le16(hlen);
|
|
hlen = hlen*2;
|
|
|
|
if (xmit_type & XMIT_CSUM_TCP) {
|
|
pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
|
|
|
|
} else {
|
|
s8 fix = SKB_CS_OFF(skb); /* signed! */
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"hlen %d fix %d csum before fix %x\n",
|
|
le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
|
|
|
|
/* HW bug: fixup the CSUM */
|
|
pbd->tcp_pseudo_csum =
|
|
bnx2x_csum_fix(skb_transport_header(skb),
|
|
SKB_CS(skb), fix);
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
|
|
pbd->tcp_pseudo_csum);
|
|
}
|
|
|
|
return hlen;
|
|
}
|
|
|
|
/* called with netif_tx_lock
|
|
* bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
|
|
* netif_wake_queue()
|
|
*/
|
|
netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
struct netdev_queue *txq;
|
|
struct bnx2x_fp_txdata *txdata;
|
|
struct sw_tx_bd *tx_buf;
|
|
struct eth_tx_start_bd *tx_start_bd, *first_bd;
|
|
struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
|
|
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
|
|
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
|
|
u32 pbd_e2_parsing_data = 0;
|
|
u16 pkt_prod, bd_prod;
|
|
int nbd, txq_index;
|
|
dma_addr_t mapping;
|
|
u32 xmit_type = bnx2x_xmit_type(bp, skb);
|
|
int i;
|
|
u8 hlen = 0;
|
|
__le16 pkt_size = 0;
|
|
struct ethhdr *eth;
|
|
u8 mac_type = UNICAST_ADDRESS;
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (unlikely(bp->panic))
|
|
return NETDEV_TX_BUSY;
|
|
#endif
|
|
|
|
txq_index = skb_get_queue_mapping(skb);
|
|
txq = netdev_get_tx_queue(dev, txq_index);
|
|
|
|
BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
|
|
|
|
txdata = &bp->bnx2x_txq[txq_index];
|
|
|
|
/* enable this debug print to view the transmission queue being used
|
|
DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
|
|
txq_index, fp_index, txdata_index); */
|
|
|
|
/* enable this debug print to view the tranmission details
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
|
|
txdata->cid, fp_index, txdata_index, txdata, fp); */
|
|
|
|
if (unlikely(bnx2x_tx_avail(bp, txdata) <
|
|
skb_shinfo(skb)->nr_frags +
|
|
BDS_PER_TX_PKT +
|
|
NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
|
|
/* Handle special storage cases separately */
|
|
if (txdata->tx_ring_size == 0) {
|
|
struct bnx2x_eth_q_stats *q_stats =
|
|
bnx2x_fp_qstats(bp, txdata->parent_fp);
|
|
q_stats->driver_filtered_tx_pkt++;
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
|
|
netif_tx_stop_queue(txq);
|
|
BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
|
|
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
|
|
txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
|
|
ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
|
|
skb->len);
|
|
|
|
eth = (struct ethhdr *)skb->data;
|
|
|
|
/* set flag according to packet type (UNICAST_ADDRESS is default)*/
|
|
if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
|
|
if (is_broadcast_ether_addr(eth->h_dest))
|
|
mac_type = BROADCAST_ADDRESS;
|
|
else
|
|
mac_type = MULTICAST_ADDRESS;
|
|
}
|
|
|
|
#if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
|
|
/* First, check if we need to linearize the skb (due to FW
|
|
restrictions). No need to check fragmentation if page size > 8K
|
|
(there will be no violation to FW restrictions) */
|
|
if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
|
|
/* Statistics of linearization */
|
|
bp->lin_cnt++;
|
|
if (skb_linearize(skb) != 0) {
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"SKB linearization failed - silently dropping this SKB\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
}
|
|
#endif
|
|
/* Map skb linear data for DMA */
|
|
mapping = dma_map_single(&bp->pdev->dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"SKB mapping failed - silently dropping this SKB\n");
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
/*
|
|
Please read carefully. First we use one BD which we mark as start,
|
|
then we have a parsing info BD (used for TSO or xsum),
|
|
and only then we have the rest of the TSO BDs.
|
|
(don't forget to mark the last one as last,
|
|
and to unmap only AFTER you write to the BD ...)
|
|
And above all, all pdb sizes are in words - NOT DWORDS!
|
|
*/
|
|
|
|
/* get current pkt produced now - advance it just before sending packet
|
|
* since mapping of pages may fail and cause packet to be dropped
|
|
*/
|
|
pkt_prod = txdata->tx_pkt_prod;
|
|
bd_prod = TX_BD(txdata->tx_bd_prod);
|
|
|
|
/* get a tx_buf and first BD
|
|
* tx_start_bd may be changed during SPLIT,
|
|
* but first_bd will always stay first
|
|
*/
|
|
tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
|
|
tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
|
|
first_bd = tx_start_bd;
|
|
|
|
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
|
|
SET_FLAG(tx_start_bd->general_data,
|
|
ETH_TX_START_BD_PARSE_NBDS,
|
|
0);
|
|
|
|
/* header nbd */
|
|
SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1);
|
|
|
|
/* remember the first BD of the packet */
|
|
tx_buf->first_bd = txdata->tx_bd_prod;
|
|
tx_buf->skb = skb;
|
|
tx_buf->flags = 0;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"sending pkt %u @%p next_idx %u bd %u @%p\n",
|
|
pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
|
|
|
|
if (vlan_tx_tag_present(skb)) {
|
|
tx_start_bd->vlan_or_ethertype =
|
|
cpu_to_le16(vlan_tx_tag_get(skb));
|
|
tx_start_bd->bd_flags.as_bitfield |=
|
|
(X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
|
|
} else {
|
|
/* when transmitting in a vf, start bd must hold the ethertype
|
|
* for fw to enforce it
|
|
*/
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
if (IS_VF(bp)) {
|
|
#endif
|
|
tx_start_bd->vlan_or_ethertype =
|
|
cpu_to_le16(ntohs(eth->h_proto));
|
|
#ifndef BNX2X_STOP_ON_ERROR
|
|
} else {
|
|
/* used by FW for packet accounting */
|
|
tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* turn on parsing and get a BD */
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
|
|
if (xmit_type & XMIT_CSUM)
|
|
bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
|
|
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
|
|
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
|
|
/* Set PBD in checksum offload case */
|
|
if (xmit_type & XMIT_CSUM)
|
|
hlen = bnx2x_set_pbd_csum_e2(bp, skb,
|
|
&pbd_e2_parsing_data,
|
|
xmit_type);
|
|
|
|
if (IS_MF_SI(bp) || IS_VF(bp)) {
|
|
/* fill in the MAC addresses in the PBD - for local
|
|
* switching
|
|
*/
|
|
bnx2x_set_fw_mac_addr(&pbd_e2->src_mac_addr_hi,
|
|
&pbd_e2->src_mac_addr_mid,
|
|
&pbd_e2->src_mac_addr_lo,
|
|
eth->h_source);
|
|
bnx2x_set_fw_mac_addr(&pbd_e2->dst_mac_addr_hi,
|
|
&pbd_e2->dst_mac_addr_mid,
|
|
&pbd_e2->dst_mac_addr_lo,
|
|
eth->h_dest);
|
|
}
|
|
|
|
SET_FLAG(pbd_e2_parsing_data,
|
|
ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
|
|
} else {
|
|
u16 global_data = 0;
|
|
pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
|
|
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
|
|
/* Set PBD in checksum offload case */
|
|
if (xmit_type & XMIT_CSUM)
|
|
hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
|
|
|
|
SET_FLAG(global_data,
|
|
ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
|
|
pbd_e1x->global_data |= cpu_to_le16(global_data);
|
|
}
|
|
|
|
/* Setup the data pointer of the first BD of the packet */
|
|
tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
|
|
tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
|
|
pkt_size = tx_start_bd->nbytes;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"first bd @%p addr (%x:%x) nbd %d nbytes %d flags %x vlan %x\n",
|
|
tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
|
|
le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes),
|
|
tx_start_bd->bd_flags.as_bitfield,
|
|
le16_to_cpu(tx_start_bd->vlan_or_ethertype));
|
|
|
|
if (xmit_type & XMIT_GSO) {
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"TSO packet len %d hlen %d total len %d tso size %d\n",
|
|
skb->len, hlen, skb_headlen(skb),
|
|
skb_shinfo(skb)->gso_size);
|
|
|
|
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
|
|
|
|
if (unlikely(skb_headlen(skb) > hlen))
|
|
bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
|
|
&tx_start_bd, hlen,
|
|
bd_prod, ++nbd);
|
|
if (!CHIP_IS_E1x(bp))
|
|
bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data,
|
|
xmit_type);
|
|
else
|
|
bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
|
|
}
|
|
|
|
/* Set the PBD's parsing_data field if not zero
|
|
* (for the chips newer than 57711).
|
|
*/
|
|
if (pbd_e2_parsing_data)
|
|
pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
|
|
|
|
tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
|
|
|
|
/* Handle fragmented skb */
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
|
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"Unable to map page - dropping packet...\n");
|
|
|
|
/* we need unmap all buffers already mapped
|
|
* for this SKB;
|
|
* first_bd->nbd need to be properly updated
|
|
* before call to bnx2x_free_tx_pkt
|
|
*/
|
|
first_bd->nbd = cpu_to_le16(nbd);
|
|
bnx2x_free_tx_pkt(bp, txdata,
|
|
TX_BD(txdata->tx_pkt_prod),
|
|
&pkts_compl, &bytes_compl);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
|
|
if (total_pkt_bd == NULL)
|
|
total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
|
|
|
|
tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
|
|
tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
|
|
tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
|
|
le16_add_cpu(&pkt_size, skb_frag_size(frag));
|
|
nbd++;
|
|
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"frag %d bd @%p addr (%x:%x) nbytes %d\n",
|
|
i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
|
|
le16_to_cpu(tx_data_bd->nbytes));
|
|
}
|
|
|
|
DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
|
|
|
|
/* update with actual num BDs */
|
|
first_bd->nbd = cpu_to_le16(nbd);
|
|
|
|
bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
|
|
|
|
/* now send a tx doorbell, counting the next BD
|
|
* if the packet contains or ends with it
|
|
*/
|
|
if (TX_BD_POFF(bd_prod) < nbd)
|
|
nbd++;
|
|
|
|
/* total_pkt_bytes should be set on the first data BD if
|
|
* it's not an LSO packet and there is more than one
|
|
* data BD. In this case pkt_size is limited by an MTU value.
|
|
* However we prefer to set it for an LSO packet (while we don't
|
|
* have to) in order to save some CPU cycles in a none-LSO
|
|
* case, when we much more care about them.
|
|
*/
|
|
if (total_pkt_bd != NULL)
|
|
total_pkt_bd->total_pkt_bytes = pkt_size;
|
|
|
|
if (pbd_e1x)
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
|
|
pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
|
|
pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
|
|
pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
|
|
le16_to_cpu(pbd_e1x->total_hlen_w));
|
|
if (pbd_e2)
|
|
DP(NETIF_MSG_TX_QUEUED,
|
|
"PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
|
|
pbd_e2, pbd_e2->dst_mac_addr_hi, pbd_e2->dst_mac_addr_mid,
|
|
pbd_e2->dst_mac_addr_lo, pbd_e2->src_mac_addr_hi,
|
|
pbd_e2->src_mac_addr_mid, pbd_e2->src_mac_addr_lo,
|
|
pbd_e2->parsing_data);
|
|
DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
|
|
|
|
netdev_tx_sent_queue(txq, skb->len);
|
|
|
|
skb_tx_timestamp(skb);
|
|
|
|
txdata->tx_pkt_prod++;
|
|
/*
|
|
* Make sure that the BD data is updated before updating the producer
|
|
* since FW might read the BD right after the producer is updated.
|
|
* This is only applicable for weak-ordered memory model archs such
|
|
* as IA-64. The following barrier is also mandatory since FW will
|
|
* assumes packets must have BDs.
|
|
*/
|
|
wmb();
|
|
|
|
txdata->tx_db.data.prod += nbd;
|
|
barrier();
|
|
|
|
DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
|
|
|
|
mmiowb();
|
|
|
|
txdata->tx_bd_prod += nbd;
|
|
|
|
if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
|
|
netif_tx_stop_queue(txq);
|
|
|
|
/* paired memory barrier is in bnx2x_tx_int(), we have to keep
|
|
* ordering of set_bit() in netif_tx_stop_queue() and read of
|
|
* fp->bd_tx_cons */
|
|
smp_mb();
|
|
|
|
bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
|
|
if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
|
|
netif_tx_wake_queue(txq);
|
|
}
|
|
txdata->tx_pkt++;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/**
|
|
* bnx2x_setup_tc - routine to configure net_device for multi tc
|
|
*
|
|
* @netdev: net device to configure
|
|
* @tc: number of traffic classes to enable
|
|
*
|
|
* callback connected to the ndo_setup_tc function pointer
|
|
*/
|
|
int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
|
|
{
|
|
int cos, prio, count, offset;
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
/* setup tc must be called under rtnl lock */
|
|
ASSERT_RTNL();
|
|
|
|
/* no traffic classes requested. aborting */
|
|
if (!num_tc) {
|
|
netdev_reset_tc(dev);
|
|
return 0;
|
|
}
|
|
|
|
/* requested to support too many traffic classes */
|
|
if (num_tc > bp->max_cos) {
|
|
BNX2X_ERR("support for too many traffic classes requested: %d. max supported is %d\n",
|
|
num_tc, bp->max_cos);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* declare amount of supported traffic classes */
|
|
if (netdev_set_num_tc(dev, num_tc)) {
|
|
BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* configure priority to traffic class mapping */
|
|
for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
|
|
netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]);
|
|
DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
|
|
"mapping priority %d to tc %d\n",
|
|
prio, bp->prio_to_cos[prio]);
|
|
}
|
|
|
|
|
|
/* Use this configuration to diffrentiate tc0 from other COSes
|
|
This can be used for ets or pfc, and save the effort of setting
|
|
up a multio class queue disc or negotiating DCBX with a switch
|
|
netdev_set_prio_tc_map(dev, 0, 0);
|
|
DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
|
|
for (prio = 1; prio < 16; prio++) {
|
|
netdev_set_prio_tc_map(dev, prio, 1);
|
|
DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
|
|
} */
|
|
|
|
/* configure traffic class to transmission queue mapping */
|
|
for (cos = 0; cos < bp->max_cos; cos++) {
|
|
count = BNX2X_NUM_ETH_QUEUES(bp);
|
|
offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
|
|
netdev_set_tc_queue(dev, cos, count, offset);
|
|
DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
|
|
"mapping tc %d to offset %d count %d\n",
|
|
cos, offset, count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* called with rtnl_lock */
|
|
int bnx2x_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
int rc = 0;
|
|
|
|
if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) {
|
|
BNX2X_ERR("Requested MAC address is not valid\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) &&
|
|
!is_zero_ether_addr(addr->sa_data)) {
|
|
BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (netif_running(dev)) {
|
|
rc = bnx2x_set_eth_mac(bp, false);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
|
|
if (netif_running(dev))
|
|
rc = bnx2x_set_eth_mac(bp, true);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
|
|
{
|
|
union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
|
|
struct bnx2x_fastpath *fp = &bp->fp[fp_index];
|
|
u8 cos;
|
|
|
|
/* Common */
|
|
|
|
if (IS_FCOE_IDX(fp_index)) {
|
|
memset(sb, 0, sizeof(union host_hc_status_block));
|
|
fp->status_blk_mapping = 0;
|
|
} else {
|
|
/* status blocks */
|
|
if (!CHIP_IS_E1x(bp))
|
|
BNX2X_PCI_FREE(sb->e2_sb,
|
|
bnx2x_fp(bp, fp_index,
|
|
status_blk_mapping),
|
|
sizeof(struct host_hc_status_block_e2));
|
|
else
|
|
BNX2X_PCI_FREE(sb->e1x_sb,
|
|
bnx2x_fp(bp, fp_index,
|
|
status_blk_mapping),
|
|
sizeof(struct host_hc_status_block_e1x));
|
|
}
|
|
|
|
/* Rx */
|
|
if (!skip_rx_queue(bp, fp_index)) {
|
|
bnx2x_free_rx_bds(fp);
|
|
|
|
/* fastpath rx rings: rx_buf rx_desc rx_comp */
|
|
BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
|
|
BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
|
|
bnx2x_fp(bp, fp_index, rx_desc_mapping),
|
|
sizeof(struct eth_rx_bd) * NUM_RX_BD);
|
|
|
|
BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
|
|
bnx2x_fp(bp, fp_index, rx_comp_mapping),
|
|
sizeof(struct eth_fast_path_rx_cqe) *
|
|
NUM_RCQ_BD);
|
|
|
|
/* SGE ring */
|
|
BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
|
|
BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
|
|
bnx2x_fp(bp, fp_index, rx_sge_mapping),
|
|
BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
|
|
}
|
|
|
|
/* Tx */
|
|
if (!skip_tx_queue(bp, fp_index)) {
|
|
/* fastpath tx rings: tx_buf tx_desc */
|
|
for_each_cos_in_tx_queue(fp, cos) {
|
|
struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
|
|
|
|
DP(NETIF_MSG_IFDOWN,
|
|
"freeing tx memory of fp %d cos %d cid %d\n",
|
|
fp_index, cos, txdata->cid);
|
|
|
|
BNX2X_FREE(txdata->tx_buf_ring);
|
|
BNX2X_PCI_FREE(txdata->tx_desc_ring,
|
|
txdata->tx_desc_mapping,
|
|
sizeof(union eth_tx_bd_types) * NUM_TX_BD);
|
|
}
|
|
}
|
|
/* end of fastpath */
|
|
}
|
|
|
|
void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
for_each_cnic_queue(bp, i)
|
|
bnx2x_free_fp_mem_at(bp, i);
|
|
}
|
|
|
|
void bnx2x_free_fp_mem(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
for_each_eth_queue(bp, i)
|
|
bnx2x_free_fp_mem_at(bp, i);
|
|
}
|
|
|
|
static void set_sb_shortcuts(struct bnx2x *bp, int index)
|
|
{
|
|
union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
|
|
if (!CHIP_IS_E1x(bp)) {
|
|
bnx2x_fp(bp, index, sb_index_values) =
|
|
(__le16 *)status_blk.e2_sb->sb.index_values;
|
|
bnx2x_fp(bp, index, sb_running_index) =
|
|
(__le16 *)status_blk.e2_sb->sb.running_index;
|
|
} else {
|
|
bnx2x_fp(bp, index, sb_index_values) =
|
|
(__le16 *)status_blk.e1x_sb->sb.index_values;
|
|
bnx2x_fp(bp, index, sb_running_index) =
|
|
(__le16 *)status_blk.e1x_sb->sb.running_index;
|
|
}
|
|
}
|
|
|
|
/* Returns the number of actually allocated BDs */
|
|
static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
|
|
int rx_ring_size)
|
|
{
|
|
struct bnx2x *bp = fp->bp;
|
|
u16 ring_prod, cqe_ring_prod;
|
|
int i, failure_cnt = 0;
|
|
|
|
fp->rx_comp_cons = 0;
|
|
cqe_ring_prod = ring_prod = 0;
|
|
|
|
/* This routine is called only during fo init so
|
|
* fp->eth_q_stats.rx_skb_alloc_failed = 0
|
|
*/
|
|
for (i = 0; i < rx_ring_size; i++) {
|
|
if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
|
|
failure_cnt++;
|
|
continue;
|
|
}
|
|
ring_prod = NEXT_RX_IDX(ring_prod);
|
|
cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
|
|
WARN_ON(ring_prod <= (i - failure_cnt));
|
|
}
|
|
|
|
if (failure_cnt)
|
|
BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
|
|
i - failure_cnt, fp->index);
|
|
|
|
fp->rx_bd_prod = ring_prod;
|
|
/* Limit the CQE producer by the CQE ring size */
|
|
fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
|
|
cqe_ring_prod);
|
|
fp->rx_pkt = fp->rx_calls = 0;
|
|
|
|
bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
|
|
|
|
return i - failure_cnt;
|
|
}
|
|
|
|
static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i <= NUM_RCQ_RINGS; i++) {
|
|
struct eth_rx_cqe_next_page *nextpg;
|
|
|
|
nextpg = (struct eth_rx_cqe_next_page *)
|
|
&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
|
|
nextpg->addr_hi =
|
|
cpu_to_le32(U64_HI(fp->rx_comp_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
|
|
nextpg->addr_lo =
|
|
cpu_to_le32(U64_LO(fp->rx_comp_mapping +
|
|
BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
|
|
}
|
|
}
|
|
|
|
static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
|
|
{
|
|
union host_hc_status_block *sb;
|
|
struct bnx2x_fastpath *fp = &bp->fp[index];
|
|
int ring_size = 0;
|
|
u8 cos;
|
|
int rx_ring_size = 0;
|
|
|
|
if (!bp->rx_ring_size &&
|
|
(IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
|
|
rx_ring_size = MIN_RX_SIZE_NONTPA;
|
|
bp->rx_ring_size = rx_ring_size;
|
|
} else if (!bp->rx_ring_size) {
|
|
rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
|
|
|
|
if (CHIP_IS_E3(bp)) {
|
|
u32 cfg = SHMEM_RD(bp,
|
|
dev_info.port_hw_config[BP_PORT(bp)].
|
|
default_cfg);
|
|
|
|
/* Decrease ring size for 1G functions */
|
|
if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
|
|
PORT_HW_CFG_NET_SERDES_IF_SGMII)
|
|
rx_ring_size /= 10;
|
|
}
|
|
|
|
/* allocate at least number of buffers required by FW */
|
|
rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
|
|
MIN_RX_SIZE_TPA, rx_ring_size);
|
|
|
|
bp->rx_ring_size = rx_ring_size;
|
|
} else /* if rx_ring_size specified - use it */
|
|
rx_ring_size = bp->rx_ring_size;
|
|
|
|
DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
|
|
|
|
/* Common */
|
|
sb = &bnx2x_fp(bp, index, status_blk);
|
|
|
|
if (!IS_FCOE_IDX(index)) {
|
|
/* status blocks */
|
|
if (!CHIP_IS_E1x(bp))
|
|
BNX2X_PCI_ALLOC(sb->e2_sb,
|
|
&bnx2x_fp(bp, index, status_blk_mapping),
|
|
sizeof(struct host_hc_status_block_e2));
|
|
else
|
|
BNX2X_PCI_ALLOC(sb->e1x_sb,
|
|
&bnx2x_fp(bp, index, status_blk_mapping),
|
|
sizeof(struct host_hc_status_block_e1x));
|
|
}
|
|
|
|
/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
|
|
* set shortcuts for it.
|
|
*/
|
|
if (!IS_FCOE_IDX(index))
|
|
set_sb_shortcuts(bp, index);
|
|
|
|
/* Tx */
|
|
if (!skip_tx_queue(bp, index)) {
|
|
/* fastpath tx rings: tx_buf tx_desc */
|
|
for_each_cos_in_tx_queue(fp, cos) {
|
|
struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
|
|
|
|
DP(NETIF_MSG_IFUP,
|
|
"allocating tx memory of fp %d cos %d\n",
|
|
index, cos);
|
|
|
|
BNX2X_ALLOC(txdata->tx_buf_ring,
|
|
sizeof(struct sw_tx_bd) * NUM_TX_BD);
|
|
BNX2X_PCI_ALLOC(txdata->tx_desc_ring,
|
|
&txdata->tx_desc_mapping,
|
|
sizeof(union eth_tx_bd_types) * NUM_TX_BD);
|
|
}
|
|
}
|
|
|
|
/* Rx */
|
|
if (!skip_rx_queue(bp, index)) {
|
|
/* fastpath rx rings: rx_buf rx_desc rx_comp */
|
|
BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring),
|
|
sizeof(struct sw_rx_bd) * NUM_RX_BD);
|
|
BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring),
|
|
&bnx2x_fp(bp, index, rx_desc_mapping),
|
|
sizeof(struct eth_rx_bd) * NUM_RX_BD);
|
|
|
|
BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_comp_ring),
|
|
&bnx2x_fp(bp, index, rx_comp_mapping),
|
|
sizeof(struct eth_fast_path_rx_cqe) *
|
|
NUM_RCQ_BD);
|
|
|
|
/* SGE ring */
|
|
BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring),
|
|
sizeof(struct sw_rx_page) * NUM_RX_SGE);
|
|
BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring),
|
|
&bnx2x_fp(bp, index, rx_sge_mapping),
|
|
BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
|
|
/* RX BD ring */
|
|
bnx2x_set_next_page_rx_bd(fp);
|
|
|
|
/* CQ ring */
|
|
bnx2x_set_next_page_rx_cq(fp);
|
|
|
|
/* BDs */
|
|
ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
|
|
if (ring_size < rx_ring_size)
|
|
goto alloc_mem_err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* handles low memory cases */
|
|
alloc_mem_err:
|
|
BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
|
|
index, ring_size);
|
|
/* FW will drop all packets if queue is not big enough,
|
|
* In these cases we disable the queue
|
|
* Min size is different for OOO, TPA and non-TPA queues
|
|
*/
|
|
if (ring_size < (fp->disable_tpa ?
|
|
MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
|
|
/* release memory allocated for this queue */
|
|
bnx2x_free_fp_mem_at(bp, index);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
|
|
{
|
|
if (!NO_FCOE(bp))
|
|
/* FCoE */
|
|
if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
|
|
/* we will fail load process instead of mark
|
|
* NO_FCOE_FLAG
|
|
*/
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_alloc_fp_mem(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
/* 1. Allocate FP for leading - fatal if error
|
|
* 2. Allocate RSS - fix number of queues if error
|
|
*/
|
|
|
|
/* leading */
|
|
if (bnx2x_alloc_fp_mem_at(bp, 0))
|
|
return -ENOMEM;
|
|
|
|
/* RSS */
|
|
for_each_nondefault_eth_queue(bp, i)
|
|
if (bnx2x_alloc_fp_mem_at(bp, i))
|
|
break;
|
|
|
|
/* handle memory failures */
|
|
if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
|
|
int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
|
|
|
|
WARN_ON(delta < 0);
|
|
bnx2x_shrink_eth_fp(bp, delta);
|
|
if (CNIC_SUPPORT(bp))
|
|
/* move non eth FPs next to last eth FP
|
|
* must be done in that order
|
|
* FCOE_IDX < FWD_IDX < OOO_IDX
|
|
*/
|
|
|
|
/* move FCoE fp even NO_FCOE_FLAG is on */
|
|
bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
|
|
bp->num_ethernet_queues -= delta;
|
|
bp->num_queues = bp->num_ethernet_queues +
|
|
bp->num_cnic_queues;
|
|
BNX2X_ERR("Adjusted num of queues from %d to %d\n",
|
|
bp->num_queues + delta, bp->num_queues);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bnx2x_free_mem_bp(struct bnx2x *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->fp_array_size; i++)
|
|
kfree(bp->fp[i].tpa_info);
|
|
kfree(bp->fp);
|
|
kfree(bp->sp_objs);
|
|
kfree(bp->fp_stats);
|
|
kfree(bp->bnx2x_txq);
|
|
kfree(bp->msix_table);
|
|
kfree(bp->ilt);
|
|
}
|
|
|
|
int bnx2x_alloc_mem_bp(struct bnx2x *bp)
|
|
{
|
|
struct bnx2x_fastpath *fp;
|
|
struct msix_entry *tbl;
|
|
struct bnx2x_ilt *ilt;
|
|
int msix_table_size = 0;
|
|
int fp_array_size, txq_array_size;
|
|
int i;
|
|
|
|
/*
|
|
* The biggest MSI-X table we might need is as a maximum number of fast
|
|
* path IGU SBs plus default SB (for PF only).
|
|
*/
|
|
msix_table_size = bp->igu_sb_cnt;
|
|
if (IS_PF(bp))
|
|
msix_table_size++;
|
|
BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
|
|
|
|
/* fp array: RSS plus CNIC related L2 queues */
|
|
fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
|
|
bp->fp_array_size = fp_array_size;
|
|
BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
|
|
|
|
fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
|
|
if (!fp)
|
|
goto alloc_err;
|
|
for (i = 0; i < bp->fp_array_size; i++) {
|
|
fp[i].tpa_info =
|
|
kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
|
|
sizeof(struct bnx2x_agg_info), GFP_KERNEL);
|
|
if (!(fp[i].tpa_info))
|
|
goto alloc_err;
|
|
}
|
|
|
|
bp->fp = fp;
|
|
|
|
/* allocate sp objs */
|
|
bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
|
|
GFP_KERNEL);
|
|
if (!bp->sp_objs)
|
|
goto alloc_err;
|
|
|
|
/* allocate fp_stats */
|
|
bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
|
|
GFP_KERNEL);
|
|
if (!bp->fp_stats)
|
|
goto alloc_err;
|
|
|
|
/* Allocate memory for the transmission queues array */
|
|
txq_array_size =
|
|
BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
|
|
BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
|
|
|
|
bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
|
|
GFP_KERNEL);
|
|
if (!bp->bnx2x_txq)
|
|
goto alloc_err;
|
|
|
|
/* msix table */
|
|
tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
|
|
if (!tbl)
|
|
goto alloc_err;
|
|
bp->msix_table = tbl;
|
|
|
|
/* ilt */
|
|
ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
|
|
if (!ilt)
|
|
goto alloc_err;
|
|
bp->ilt = ilt;
|
|
|
|
return 0;
|
|
alloc_err:
|
|
bnx2x_free_mem_bp(bp);
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
int bnx2x_reload_if_running(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
if (unlikely(!netif_running(dev)))
|
|
return 0;
|
|
|
|
bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
|
|
return bnx2x_nic_load(bp, LOAD_NORMAL);
|
|
}
|
|
|
|
int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
|
|
{
|
|
u32 sel_phy_idx = 0;
|
|
if (bp->link_params.num_phys <= 1)
|
|
return INT_PHY;
|
|
|
|
if (bp->link_vars.link_up) {
|
|
sel_phy_idx = EXT_PHY1;
|
|
/* In case link is SERDES, check if the EXT_PHY2 is the one */
|
|
if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
|
|
(bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
|
|
sel_phy_idx = EXT_PHY2;
|
|
} else {
|
|
|
|
switch (bnx2x_phy_selection(&bp->link_params)) {
|
|
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
|
|
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
|
|
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
|
|
sel_phy_idx = EXT_PHY1;
|
|
break;
|
|
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
|
|
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
|
|
sel_phy_idx = EXT_PHY2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sel_phy_idx;
|
|
|
|
}
|
|
int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
|
|
{
|
|
u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
|
|
/*
|
|
* The selected activated PHY is always after swapping (in case PHY
|
|
* swapping is enabled). So when swapping is enabled, we need to reverse
|
|
* the configuration
|
|
*/
|
|
|
|
if (bp->link_params.multi_phy_config &
|
|
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
|
|
if (sel_phy_idx == EXT_PHY1)
|
|
sel_phy_idx = EXT_PHY2;
|
|
else if (sel_phy_idx == EXT_PHY2)
|
|
sel_phy_idx = EXT_PHY1;
|
|
}
|
|
return LINK_CONFIG_IDX(sel_phy_idx);
|
|
}
|
|
|
|
#ifdef NETDEV_FCOE_WWNN
|
|
int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
switch (type) {
|
|
case NETDEV_FCOE_WWNN:
|
|
*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
|
|
cp->fcoe_wwn_node_name_lo);
|
|
break;
|
|
case NETDEV_FCOE_WWPN:
|
|
*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
|
|
cp->fcoe_wwn_port_name_lo);
|
|
break;
|
|
default:
|
|
BNX2X_ERR("Wrong WWN type requested - %d\n", type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* called with rtnl_lock */
|
|
int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
|
|
BNX2X_ERR("Can't perform change MTU during parity recovery\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
|
|
((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
|
|
BNX2X_ERR("Can't support requested MTU size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This does not race with packet allocation
|
|
* because the actual alloc size is
|
|
* only updated as part of load
|
|
*/
|
|
dev->mtu = new_mtu;
|
|
|
|
return bnx2x_reload_if_running(dev);
|
|
}
|
|
|
|
netdev_features_t bnx2x_fix_features(struct net_device *dev,
|
|
netdev_features_t features)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
/* TPA requires Rx CSUM offloading */
|
|
if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) {
|
|
features &= ~NETIF_F_LRO;
|
|
features &= ~NETIF_F_GRO;
|
|
}
|
|
|
|
return features;
|
|
}
|
|
|
|
int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
u32 flags = bp->flags;
|
|
bool bnx2x_reload = false;
|
|
|
|
if (features & NETIF_F_LRO)
|
|
flags |= TPA_ENABLE_FLAG;
|
|
else
|
|
flags &= ~TPA_ENABLE_FLAG;
|
|
|
|
if (features & NETIF_F_GRO)
|
|
flags |= GRO_ENABLE_FLAG;
|
|
else
|
|
flags &= ~GRO_ENABLE_FLAG;
|
|
|
|
if (features & NETIF_F_LOOPBACK) {
|
|
if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
|
|
bp->link_params.loopback_mode = LOOPBACK_BMAC;
|
|
bnx2x_reload = true;
|
|
}
|
|
} else {
|
|
if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
|
|
bp->link_params.loopback_mode = LOOPBACK_NONE;
|
|
bnx2x_reload = true;
|
|
}
|
|
}
|
|
|
|
if (flags ^ bp->flags) {
|
|
bp->flags = flags;
|
|
bnx2x_reload = true;
|
|
}
|
|
|
|
if (bnx2x_reload) {
|
|
if (bp->recovery_state == BNX2X_RECOVERY_DONE)
|
|
return bnx2x_reload_if_running(dev);
|
|
/* else: bnx2x_nic_load() will be called at end of recovery */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bnx2x_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnx2x *bp = netdev_priv(dev);
|
|
|
|
#ifdef BNX2X_STOP_ON_ERROR
|
|
if (!bp->panic)
|
|
bnx2x_panic();
|
|
#endif
|
|
|
|
smp_mb__before_clear_bit();
|
|
set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state);
|
|
smp_mb__after_clear_bit();
|
|
|
|
/* This allows the netif to be shutdown gracefully before resetting */
|
|
schedule_delayed_work(&bp->sp_rtnl_task, 0);
|
|
}
|
|
|
|
int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp;
|
|
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
|
|
return -ENODEV;
|
|
}
|
|
bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
|
|
pci_save_state(pdev);
|
|
|
|
if (!netif_running(dev)) {
|
|
rtnl_unlock();
|
|
return 0;
|
|
}
|
|
|
|
netif_device_detach(dev);
|
|
|
|
bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
|
|
|
|
bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
|
|
|
|
rtnl_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bnx2x_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2x *bp;
|
|
int rc;
|
|
|
|
if (!dev) {
|
|
dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
|
|
return -ENODEV;
|
|
}
|
|
bp = netdev_priv(dev);
|
|
|
|
if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
|
|
BNX2X_ERR("Handling parity error recovery. Try again later\n");
|
|
return -EAGAIN;
|
|
}
|
|
|
|
rtnl_lock();
|
|
|
|
pci_restore_state(pdev);
|
|
|
|
if (!netif_running(dev)) {
|
|
rtnl_unlock();
|
|
return 0;
|
|
}
|
|
|
|
bnx2x_set_power_state(bp, PCI_D0);
|
|
netif_device_attach(dev);
|
|
|
|
rc = bnx2x_nic_load(bp, LOAD_OPEN);
|
|
|
|
rtnl_unlock();
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
|
|
u32 cid)
|
|
{
|
|
/* ustorm cxt validation */
|
|
cxt->ustorm_ag_context.cdu_usage =
|
|
CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
|
|
CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
|
|
/* xcontext validation */
|
|
cxt->xstorm_ag_context.cdu_reserved =
|
|
CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
|
|
CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
|
|
}
|
|
|
|
static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
|
|
u8 fw_sb_id, u8 sb_index,
|
|
u8 ticks)
|
|
{
|
|
|
|
u32 addr = BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
|
|
REG_WR8(bp, addr, ticks);
|
|
DP(NETIF_MSG_IFUP,
|
|
"port %x fw_sb_id %d sb_index %d ticks %d\n",
|
|
port, fw_sb_id, sb_index, ticks);
|
|
}
|
|
|
|
static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
|
|
u16 fw_sb_id, u8 sb_index,
|
|
u8 disable)
|
|
{
|
|
u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
|
|
u32 addr = BAR_CSTRORM_INTMEM +
|
|
CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
|
|
u16 flags = REG_RD16(bp, addr);
|
|
/* clear and set */
|
|
flags &= ~HC_INDEX_DATA_HC_ENABLED;
|
|
flags |= enable_flag;
|
|
REG_WR16(bp, addr, flags);
|
|
DP(NETIF_MSG_IFUP,
|
|
"port %x fw_sb_id %d sb_index %d disable %d\n",
|
|
port, fw_sb_id, sb_index, disable);
|
|
}
|
|
|
|
void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
|
|
u8 sb_index, u8 disable, u16 usec)
|
|
{
|
|
int port = BP_PORT(bp);
|
|
u8 ticks = usec / BNX2X_BTR;
|
|
|
|
storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
|
|
|
|
disable = disable ? 1 : (usec ? 0 : 1);
|
|
storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
|
|
}
|