e5bfcd30f8
In order to use thermal trips defined in the thermal structure, rename the 'trips' field to 'num_trips' to have the 'trips' field containing the thermal trip points. Cc: Alexandre Bailon <abailon@baylibre.com> Cc: Kevin Hilman <khilman@baylibre.com> Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220722200007.1839356-8-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
674 lines
17 KiB
C
674 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Tegra30 SoC Thermal Sensor driver
|
|
*
|
|
* Based on downstream HWMON driver from NVIDIA.
|
|
* Copyright (C) 2011 NVIDIA Corporation
|
|
*
|
|
* Author: Dmitry Osipenko <digetx@gmail.com>
|
|
* Copyright (C) 2021 GRATE-DRIVER project
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/math.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/thermal.h>
|
|
#include <linux/types.h>
|
|
|
|
#include <soc/tegra/fuse.h>
|
|
|
|
#include "../thermal_core.h"
|
|
#include "../thermal_hwmon.h"
|
|
|
|
#define TSENSOR_SENSOR0_CONFIG0 0x0
|
|
#define TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP BIT(0)
|
|
#define TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN BIT(1)
|
|
#define TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN BIT(2)
|
|
#define TSENSOR_SENSOR0_CONFIG0_DVFS_EN BIT(3)
|
|
#define TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN BIT(4)
|
|
#define TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN BIT(5)
|
|
#define TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN BIT(6)
|
|
#define TSENSOR_SENSOR0_CONFIG0_M GENMASK(23, 8)
|
|
#define TSENSOR_SENSOR0_CONFIG0_N GENMASK(31, 24)
|
|
|
|
#define TSENSOR_SENSOR0_CONFIG1 0x8
|
|
#define TSENSOR_SENSOR0_CONFIG1_TH1 GENMASK(15, 0)
|
|
#define TSENSOR_SENSOR0_CONFIG1_TH2 GENMASK(31, 16)
|
|
|
|
#define TSENSOR_SENSOR0_CONFIG2 0xc
|
|
#define TSENSOR_SENSOR0_CONFIG2_TH3 GENMASK(15, 0)
|
|
|
|
#define TSENSOR_SENSOR0_STATUS0 0x18
|
|
#define TSENSOR_SENSOR0_STATUS0_STATE GENMASK(2, 0)
|
|
#define TSENSOR_SENSOR0_STATUS0_INTR BIT(8)
|
|
#define TSENSOR_SENSOR0_STATUS0_CURRENT_VALID BIT(9)
|
|
|
|
#define TSENSOR_SENSOR0_TS_STATUS1 0x1c
|
|
#define TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT GENMASK(31, 16)
|
|
|
|
#define TEGRA30_FUSE_TEST_PROG_VER 0x28
|
|
|
|
#define TEGRA30_FUSE_TSENSOR_CALIB 0x98
|
|
#define TEGRA30_FUSE_TSENSOR_CALIB_LOW GENMASK(15, 0)
|
|
#define TEGRA30_FUSE_TSENSOR_CALIB_HIGH GENMASK(31, 16)
|
|
|
|
#define TEGRA30_FUSE_SPARE_BIT 0x144
|
|
|
|
struct tegra_tsensor;
|
|
|
|
struct tegra_tsensor_calibration_data {
|
|
int a, b, m, n, p, r;
|
|
};
|
|
|
|
struct tegra_tsensor_channel {
|
|
void __iomem *regs;
|
|
unsigned int id;
|
|
struct tegra_tsensor *ts;
|
|
struct thermal_zone_device *tzd;
|
|
};
|
|
|
|
struct tegra_tsensor {
|
|
void __iomem *regs;
|
|
bool swap_channels;
|
|
struct clk *clk;
|
|
struct device *dev;
|
|
struct reset_control *rst;
|
|
struct tegra_tsensor_channel ch[2];
|
|
struct tegra_tsensor_calibration_data calib;
|
|
};
|
|
|
|
static int tegra_tsensor_hw_enable(const struct tegra_tsensor *ts)
|
|
{
|
|
u32 val;
|
|
int err;
|
|
|
|
err = reset_control_assert(ts->rst);
|
|
if (err) {
|
|
dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
err = clk_prepare_enable(ts->clk);
|
|
if (err) {
|
|
dev_err(ts->dev, "failed to enable clock: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
fsleep(1000);
|
|
|
|
err = reset_control_deassert(ts->rst);
|
|
if (err) {
|
|
dev_err(ts->dev, "failed to deassert hardware reset: %d\n", err);
|
|
goto disable_clk;
|
|
}
|
|
|
|
/*
|
|
* Sensors are enabled after reset by default, but not gauging
|
|
* until clock counter is programmed.
|
|
*
|
|
* M: number of reference clock pulses after which every
|
|
* temperature / voltage measurement is made
|
|
*
|
|
* N: number of reference clock counts for which the counter runs
|
|
*/
|
|
val = FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_M, 12500);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_N, 255);
|
|
|
|
/* apply the same configuration to both channels */
|
|
writel_relaxed(val, ts->regs + 0x40 + TSENSOR_SENSOR0_CONFIG0);
|
|
writel_relaxed(val, ts->regs + 0x80 + TSENSOR_SENSOR0_CONFIG0);
|
|
|
|
return 0;
|
|
|
|
disable_clk:
|
|
clk_disable_unprepare(ts->clk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int tegra_tsensor_hw_disable(const struct tegra_tsensor *ts)
|
|
{
|
|
int err;
|
|
|
|
err = reset_control_assert(ts->rst);
|
|
if (err) {
|
|
dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
clk_disable_unprepare(ts->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void devm_tegra_tsensor_hw_disable(void *data)
|
|
{
|
|
const struct tegra_tsensor *ts = data;
|
|
|
|
tegra_tsensor_hw_disable(ts);
|
|
}
|
|
|
|
static int tegra_tsensor_get_temp(void *data, int *temp)
|
|
{
|
|
const struct tegra_tsensor_channel *tsc = data;
|
|
const struct tegra_tsensor *ts = tsc->ts;
|
|
int err, c1, c2, c3, c4, counter;
|
|
u32 val;
|
|
|
|
/*
|
|
* Counter will be invalid if hardware is misprogrammed or not enough
|
|
* time passed since the time when sensor was enabled.
|
|
*/
|
|
err = readl_relaxed_poll_timeout(tsc->regs + TSENSOR_SENSOR0_STATUS0, val,
|
|
val & TSENSOR_SENSOR0_STATUS0_CURRENT_VALID,
|
|
21 * USEC_PER_MSEC,
|
|
21 * USEC_PER_MSEC * 50);
|
|
if (err) {
|
|
dev_err_once(ts->dev, "ch%u: counter invalid\n", tsc->id);
|
|
return err;
|
|
}
|
|
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_TS_STATUS1);
|
|
counter = FIELD_GET(TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT, val);
|
|
|
|
/*
|
|
* This shouldn't happen with a valid counter status, nevertheless
|
|
* lets verify the value since it's in a separate (from status)
|
|
* register.
|
|
*/
|
|
if (counter == 0xffff) {
|
|
dev_err_once(ts->dev, "ch%u: counter overflow\n", tsc->id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* temperature = a * counter + b
|
|
* temperature = m * (temperature ^ 2) + n * temperature + p
|
|
*/
|
|
c1 = DIV_ROUND_CLOSEST(ts->calib.a * counter + ts->calib.b, 1000000);
|
|
c1 = c1 ?: 1;
|
|
c2 = DIV_ROUND_CLOSEST(ts->calib.p, c1);
|
|
c3 = c1 * ts->calib.m;
|
|
c4 = ts->calib.n;
|
|
|
|
*temp = DIV_ROUND_CLOSEST(c1 * (c2 + c3 + c4), 1000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_tsensor_temp_to_counter(const struct tegra_tsensor *ts, int temp)
|
|
{
|
|
int c1, c2;
|
|
|
|
c1 = DIV_ROUND_CLOSEST(ts->calib.p - temp * 1000, ts->calib.m);
|
|
c2 = -ts->calib.r - int_sqrt(ts->calib.r * ts->calib.r - c1);
|
|
|
|
return DIV_ROUND_CLOSEST(c2 * 1000000 - ts->calib.b, ts->calib.a);
|
|
}
|
|
|
|
static int tegra_tsensor_set_trips(void *data, int low, int high)
|
|
{
|
|
const struct tegra_tsensor_channel *tsc = data;
|
|
const struct tegra_tsensor *ts = tsc->ts;
|
|
u32 val;
|
|
|
|
/*
|
|
* TSENSOR doesn't trigger interrupt on the "low" temperature breach,
|
|
* hence bail out if high temperature is unspecified.
|
|
*/
|
|
if (high == INT_MAX)
|
|
return 0;
|
|
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
|
|
val &= ~TSENSOR_SENSOR0_CONFIG1_TH1;
|
|
|
|
high = tegra_tsensor_temp_to_counter(ts, high);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH1, high);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct thermal_zone_of_device_ops ops = {
|
|
.get_temp = tegra_tsensor_get_temp,
|
|
.set_trips = tegra_tsensor_set_trips,
|
|
};
|
|
|
|
static bool
|
|
tegra_tsensor_handle_channel_interrupt(const struct tegra_tsensor *ts,
|
|
unsigned int id)
|
|
{
|
|
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
|
|
u32 val;
|
|
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_STATUS0);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_STATUS0);
|
|
|
|
if (FIELD_GET(TSENSOR_SENSOR0_STATUS0_STATE, val) == 5)
|
|
dev_err_ratelimited(ts->dev, "ch%u: counter overflowed\n", id);
|
|
|
|
if (!FIELD_GET(TSENSOR_SENSOR0_STATUS0_INTR, val))
|
|
return false;
|
|
|
|
thermal_zone_device_update(tsc->tzd, THERMAL_EVENT_UNSPECIFIED);
|
|
|
|
return true;
|
|
}
|
|
|
|
static irqreturn_t tegra_tsensor_isr(int irq, void *data)
|
|
{
|
|
const struct tegra_tsensor *ts = data;
|
|
bool handled = false;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ts->ch); i++)
|
|
handled |= tegra_tsensor_handle_channel_interrupt(ts, i);
|
|
|
|
return handled ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static int tegra_tsensor_disable_hw_channel(const struct tegra_tsensor *ts,
|
|
unsigned int id)
|
|
{
|
|
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
|
|
struct thermal_zone_device *tzd = tsc->tzd;
|
|
u32 val;
|
|
int err;
|
|
|
|
if (!tzd)
|
|
goto stop_channel;
|
|
|
|
err = thermal_zone_device_disable(tzd);
|
|
if (err) {
|
|
dev_err(ts->dev, "ch%u: failed to disable zone: %d\n", id, err);
|
|
return err;
|
|
}
|
|
|
|
stop_channel:
|
|
/* stop channel gracefully */
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP, 1);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_tsensor_get_hw_channel_trips(struct thermal_zone_device *tzd,
|
|
int *hot_trip, int *crit_trip)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* 90C is the maximal critical temperature of all Tegra30 SoC variants,
|
|
* use it for the default trip if unspecified in a device-tree.
|
|
*/
|
|
*hot_trip = 85000;
|
|
*crit_trip = 90000;
|
|
|
|
for (i = 0; i < tzd->num_trips; i++) {
|
|
enum thermal_trip_type type;
|
|
int trip_temp;
|
|
|
|
tzd->ops->get_trip_temp(tzd, i, &trip_temp);
|
|
tzd->ops->get_trip_type(tzd, i, &type);
|
|
|
|
if (type == THERMAL_TRIP_HOT)
|
|
*hot_trip = trip_temp;
|
|
|
|
if (type == THERMAL_TRIP_CRITICAL)
|
|
*crit_trip = trip_temp;
|
|
}
|
|
|
|
/* clamp hardware trips to the calibration limits */
|
|
*hot_trip = clamp(*hot_trip, 25000, 90000);
|
|
|
|
/*
|
|
* Kernel will perform a normal system shut down if it will
|
|
* see that critical temperature is breached, hence set the
|
|
* hardware limit by 5C higher in order to allow system to
|
|
* shut down gracefully before sending signal to the Power
|
|
* Management controller.
|
|
*/
|
|
*crit_trip = clamp(*crit_trip + 5000, 25000, 90000);
|
|
}
|
|
|
|
static int tegra_tsensor_enable_hw_channel(const struct tegra_tsensor *ts,
|
|
unsigned int id)
|
|
{
|
|
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
|
|
struct thermal_zone_device *tzd = tsc->tzd;
|
|
int err, hot_trip = 0, crit_trip = 0;
|
|
u32 val;
|
|
|
|
if (!tzd) {
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
tegra_tsensor_get_hw_channel_trips(tzd, &hot_trip, &crit_trip);
|
|
|
|
/* prevent potential racing with tegra_tsensor_set_trips() */
|
|
mutex_lock(&tzd->lock);
|
|
|
|
dev_info_once(ts->dev, "ch%u: PMC emergency shutdown trip set to %dC\n",
|
|
id, DIV_ROUND_CLOSEST(crit_trip, 1000));
|
|
|
|
hot_trip = tegra_tsensor_temp_to_counter(ts, hot_trip);
|
|
crit_trip = tegra_tsensor_temp_to_counter(ts, crit_trip);
|
|
|
|
/* program LEVEL2 counter threshold */
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
|
|
val &= ~TSENSOR_SENSOR0_CONFIG1_TH2;
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH2, hot_trip);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);
|
|
|
|
/* program LEVEL3 counter threshold */
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG2);
|
|
val &= ~TSENSOR_SENSOR0_CONFIG2_TH3;
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG2_TH3, crit_trip);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG2);
|
|
|
|
/*
|
|
* Enable sensor, emergency shutdown, interrupts for level 1/2/3
|
|
* breaches and counter overflow condition.
|
|
*
|
|
* Disable DIV2 throttle for now since we need to figure out how
|
|
* to integrate it properly with the thermal framework.
|
|
*
|
|
* Thermal levels supported by hardware:
|
|
*
|
|
* Level 0 = cold
|
|
* Level 1 = passive cooling (cpufreq DVFS)
|
|
* Level 2 = passive cooling assisted by hardware (DIV2)
|
|
* Level 3 = emergency shutdown assisted by hardware (PMC)
|
|
*/
|
|
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_DVFS_EN, 1);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN, 0);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN, 1);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN, 1);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN, 1);
|
|
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN, 1);
|
|
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
|
|
|
|
mutex_unlock(&tzd->lock);
|
|
|
|
err = thermal_zone_device_enable(tzd);
|
|
if (err) {
|
|
dev_err(ts->dev, "ch%u: failed to enable zone: %d\n", id, err);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool tegra_tsensor_fuse_read_spare(unsigned int spare)
|
|
{
|
|
u32 val = 0;
|
|
|
|
tegra_fuse_readl(TEGRA30_FUSE_SPARE_BIT + spare * 4, &val);
|
|
|
|
return !!val;
|
|
}
|
|
|
|
static int tegra_tsensor_nvmem_setup(struct tegra_tsensor *ts)
|
|
{
|
|
u32 i, ate_ver = 0, cal = 0, t1_25C = 0, t2_90C = 0;
|
|
int err, c1_25C, c2_90C;
|
|
|
|
err = tegra_fuse_readl(TEGRA30_FUSE_TEST_PROG_VER, &ate_ver);
|
|
if (err) {
|
|
dev_err_probe(ts->dev, err, "failed to get ATE version\n");
|
|
return err;
|
|
}
|
|
|
|
if (ate_ver < 8) {
|
|
dev_info(ts->dev, "unsupported ATE version: %u\n", ate_ver);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* We have two TSENSOR channels in a two different spots on SoC.
|
|
* Second channel provides more accurate data on older SoC versions,
|
|
* use it as a primary channel.
|
|
*/
|
|
if (ate_ver <= 21) {
|
|
dev_info_once(ts->dev,
|
|
"older ATE version detected, channels remapped\n");
|
|
ts->swap_channels = true;
|
|
}
|
|
|
|
err = tegra_fuse_readl(TEGRA30_FUSE_TSENSOR_CALIB, &cal);
|
|
if (err) {
|
|
dev_err(ts->dev, "failed to get calibration data: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
/* get calibrated counter values for 25C/90C thresholds */
|
|
c1_25C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_LOW, cal);
|
|
c2_90C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_HIGH, cal);
|
|
|
|
/* and calibrated temperatures corresponding to the counter values */
|
|
for (i = 0; i < 7; i++) {
|
|
t1_25C |= tegra_tsensor_fuse_read_spare(14 + i) << i;
|
|
t1_25C |= tegra_tsensor_fuse_read_spare(21 + i) << i;
|
|
|
|
t2_90C |= tegra_tsensor_fuse_read_spare(0 + i) << i;
|
|
t2_90C |= tegra_tsensor_fuse_read_spare(7 + i) << i;
|
|
}
|
|
|
|
if (c2_90C - c1_25C <= t2_90C - t1_25C) {
|
|
dev_err(ts->dev, "invalid calibration data: %d %d %u %u\n",
|
|
c2_90C, c1_25C, t2_90C, t1_25C);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* all calibration coefficients are premultiplied by 1000000 */
|
|
|
|
ts->calib.a = DIV_ROUND_CLOSEST((t2_90C - t1_25C) * 1000000,
|
|
(c2_90C - c1_25C));
|
|
|
|
ts->calib.b = t1_25C * 1000000 - ts->calib.a * c1_25C;
|
|
|
|
if (tegra_sku_info.revision == TEGRA_REVISION_A01) {
|
|
ts->calib.m = -2775;
|
|
ts->calib.n = 1338811;
|
|
ts->calib.p = -7300000;
|
|
} else {
|
|
ts->calib.m = -3512;
|
|
ts->calib.n = 1528943;
|
|
ts->calib.p = -11100000;
|
|
}
|
|
|
|
/* except the coefficient of a reduced quadratic equation */
|
|
ts->calib.r = DIV_ROUND_CLOSEST(ts->calib.n, ts->calib.m * 2);
|
|
|
|
dev_info_once(ts->dev,
|
|
"calibration: %d %d %u %u ATE ver: %u SoC rev: %u\n",
|
|
c2_90C, c1_25C, t2_90C, t1_25C, ate_ver,
|
|
tegra_sku_info.revision);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_tsensor_register_channel(struct tegra_tsensor *ts,
|
|
unsigned int id)
|
|
{
|
|
struct tegra_tsensor_channel *tsc = &ts->ch[id];
|
|
unsigned int hw_id = ts->swap_channels ? !id : id;
|
|
|
|
tsc->ts = ts;
|
|
tsc->id = id;
|
|
tsc->regs = ts->regs + 0x40 * (hw_id + 1);
|
|
|
|
tsc->tzd = devm_thermal_zone_of_sensor_register(ts->dev, id, tsc, &ops);
|
|
if (IS_ERR(tsc->tzd)) {
|
|
if (PTR_ERR(tsc->tzd) != -ENODEV)
|
|
return dev_err_probe(ts->dev, PTR_ERR(tsc->tzd),
|
|
"failed to register thermal zone\n");
|
|
|
|
/*
|
|
* It's okay if sensor isn't assigned to any thermal zone
|
|
* in a device-tree.
|
|
*/
|
|
tsc->tzd = NULL;
|
|
return 0;
|
|
}
|
|
|
|
if (devm_thermal_add_hwmon_sysfs(tsc->tzd))
|
|
dev_warn(ts->dev, "failed to add hwmon sysfs attributes\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_tsensor_probe(struct platform_device *pdev)
|
|
{
|
|
struct tegra_tsensor *ts;
|
|
unsigned int i;
|
|
int err, irq;
|
|
|
|
ts = devm_kzalloc(&pdev->dev, sizeof(*ts), GFP_KERNEL);
|
|
if (!ts)
|
|
return -ENOMEM;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
ts->dev = &pdev->dev;
|
|
platform_set_drvdata(pdev, ts);
|
|
|
|
ts->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(ts->regs))
|
|
return PTR_ERR(ts->regs);
|
|
|
|
ts->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(ts->clk))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(ts->clk),
|
|
"failed to get clock\n");
|
|
|
|
ts->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
|
|
if (IS_ERR(ts->rst))
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(ts->rst),
|
|
"failed to get reset control\n");
|
|
|
|
err = tegra_tsensor_nvmem_setup(ts);
|
|
if (err)
|
|
return err;
|
|
|
|
err = tegra_tsensor_hw_enable(ts);
|
|
if (err)
|
|
return err;
|
|
|
|
err = devm_add_action_or_reset(&pdev->dev,
|
|
devm_tegra_tsensor_hw_disable,
|
|
ts);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
|
|
err = tegra_tsensor_register_channel(ts, i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = devm_request_threaded_irq(&pdev->dev, irq, NULL,
|
|
tegra_tsensor_isr, IRQF_ONESHOT,
|
|
"tegra_tsensor", ts);
|
|
if (err)
|
|
return dev_err_probe(&pdev->dev, err,
|
|
"failed to request interrupt\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
|
|
err = tegra_tsensor_enable_hw_channel(ts, i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused tegra_tsensor_suspend(struct device *dev)
|
|
{
|
|
struct tegra_tsensor *ts = dev_get_drvdata(dev);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
|
|
err = tegra_tsensor_disable_hw_channel(ts, i);
|
|
if (err)
|
|
goto enable_channel;
|
|
}
|
|
|
|
err = tegra_tsensor_hw_disable(ts);
|
|
if (err)
|
|
goto enable_channel;
|
|
|
|
return 0;
|
|
|
|
enable_channel:
|
|
while (i--)
|
|
tegra_tsensor_enable_hw_channel(ts, i);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused tegra_tsensor_resume(struct device *dev)
|
|
{
|
|
struct tegra_tsensor *ts = dev_get_drvdata(dev);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
err = tegra_tsensor_hw_enable(ts);
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
|
|
err = tegra_tsensor_enable_hw_channel(ts, i);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops tegra_tsensor_pm_ops = {
|
|
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_tsensor_suspend,
|
|
tegra_tsensor_resume)
|
|
};
|
|
|
|
static const struct of_device_id tegra_tsensor_of_match[] = {
|
|
{ .compatible = "nvidia,tegra30-tsensor", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, tegra_tsensor_of_match);
|
|
|
|
static struct platform_driver tegra_tsensor_driver = {
|
|
.probe = tegra_tsensor_probe,
|
|
.driver = {
|
|
.name = "tegra30-tsensor",
|
|
.of_match_table = tegra_tsensor_of_match,
|
|
.pm = &tegra_tsensor_pm_ops,
|
|
},
|
|
};
|
|
module_platform_driver(tegra_tsensor_driver);
|
|
|
|
MODULE_DESCRIPTION("NVIDIA Tegra30 Thermal Sensor driver");
|
|
MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
|
|
MODULE_LICENSE("GPL");
|