21c38a3bd4
This closely resembles helpers added for the global cgroup_rstat_lock in commit fc29e04ae1ad ("cgroup/rstat: add cgroup_rstat_lock helpers and tracepoints"). This is for the per CPU lock cgroup_rstat_cpu_lock. Based on production workloads, we observe the fast-path "update" function cgroup_rstat_updated() is invoked around 3 million times per sec, while the "flush" function cgroup_rstat_flush_locked(), walking each possible CPU, can see periodic spikes of 700 invocations/sec. For this reason, the tracepoints are split into normal and fastpath versions for this per-CPU lock. Making it feasible for production to continuously monitor the non-fastpath tracepoint to detect lock contention issues. The reason for monitoring is that lock disables IRQs which can disturb e.g. softirq processing on the local CPUs involved. When the global cgroup_rstat_lock stops disabling IRQs (e.g converted to a mutex), this per CPU lock becomes the next bottleneck that can introduce latency variations. A practical bpftrace script for monitoring contention latency: bpftrace -e ' tracepoint:cgroup:cgroup_rstat_cpu_lock_contended { @start[tid]=nsecs; @cnt[probe]=count()} tracepoint:cgroup:cgroup_rstat_cpu_locked { if (args->contended) { @wait_ns=hist(nsecs-@start[tid]); delete(@start[tid]);} @cnt[probe]=count()} interval:s:1 {time("%H:%M:%S "); print(@wait_ns); print(@cnt); clear(@cnt);}' Signed-off-by: Jesper Dangaard Brouer <hawk@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org>
659 lines
18 KiB
C
659 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include "cgroup-internal.h"
|
|
|
|
#include <linux/sched/cputime.h>
|
|
|
|
#include <linux/bpf.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
|
|
#include <trace/events/cgroup.h>
|
|
|
|
static DEFINE_SPINLOCK(cgroup_rstat_lock);
|
|
static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
|
|
|
|
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
|
|
|
|
static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu)
|
|
{
|
|
return per_cpu_ptr(cgrp->rstat_cpu, cpu);
|
|
}
|
|
|
|
/*
|
|
* Helper functions for rstat per CPU lock (cgroup_rstat_cpu_lock).
|
|
*
|
|
* This makes it easier to diagnose locking issues and contention in
|
|
* production environments. The parameter @fast_path determine the
|
|
* tracepoints being added, allowing us to diagnose "flush" related
|
|
* operations without handling high-frequency fast-path "update" events.
|
|
*/
|
|
static __always_inline
|
|
unsigned long _cgroup_rstat_cpu_lock(raw_spinlock_t *cpu_lock, int cpu,
|
|
struct cgroup *cgrp, const bool fast_path)
|
|
{
|
|
unsigned long flags;
|
|
bool contended;
|
|
|
|
/*
|
|
* The _irqsave() is needed because cgroup_rstat_lock is
|
|
* spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring
|
|
* this lock with the _irq() suffix only disables interrupts on
|
|
* a non-PREEMPT_RT kernel. The raw_spinlock_t below disables
|
|
* interrupts on both configurations. The _irqsave() ensures
|
|
* that interrupts are always disabled and later restored.
|
|
*/
|
|
contended = !raw_spin_trylock_irqsave(cpu_lock, flags);
|
|
if (contended) {
|
|
if (fast_path)
|
|
trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended);
|
|
else
|
|
trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended);
|
|
|
|
raw_spin_lock_irqsave(cpu_lock, flags);
|
|
}
|
|
|
|
if (fast_path)
|
|
trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended);
|
|
else
|
|
trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended);
|
|
|
|
return flags;
|
|
}
|
|
|
|
static __always_inline
|
|
void _cgroup_rstat_cpu_unlock(raw_spinlock_t *cpu_lock, int cpu,
|
|
struct cgroup *cgrp, unsigned long flags,
|
|
const bool fast_path)
|
|
{
|
|
if (fast_path)
|
|
trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false);
|
|
else
|
|
trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false);
|
|
|
|
raw_spin_unlock_irqrestore(cpu_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_updated - keep track of updated rstat_cpu
|
|
* @cgrp: target cgroup
|
|
* @cpu: cpu on which rstat_cpu was updated
|
|
*
|
|
* @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching
|
|
* rstat_cpu->updated_children list. See the comment on top of
|
|
* cgroup_rstat_cpu definition for details.
|
|
*/
|
|
__bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu)
|
|
{
|
|
raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Speculative already-on-list test. This may race leading to
|
|
* temporary inaccuracies, which is fine.
|
|
*
|
|
* Because @parent's updated_children is terminated with @parent
|
|
* instead of NULL, we can tell whether @cgrp is on the list by
|
|
* testing the next pointer for NULL.
|
|
*/
|
|
if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next))
|
|
return;
|
|
|
|
flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, cgrp, true);
|
|
|
|
/* put @cgrp and all ancestors on the corresponding updated lists */
|
|
while (true) {
|
|
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
struct cgroup_rstat_cpu *prstatc;
|
|
|
|
/*
|
|
* Both additions and removals are bottom-up. If a cgroup
|
|
* is already in the tree, all ancestors are.
|
|
*/
|
|
if (rstatc->updated_next)
|
|
break;
|
|
|
|
/* Root has no parent to link it to, but mark it busy */
|
|
if (!parent) {
|
|
rstatc->updated_next = cgrp;
|
|
break;
|
|
}
|
|
|
|
prstatc = cgroup_rstat_cpu(parent, cpu);
|
|
rstatc->updated_next = prstatc->updated_children;
|
|
prstatc->updated_children = cgrp;
|
|
|
|
cgrp = parent;
|
|
}
|
|
|
|
_cgroup_rstat_cpu_unlock(cpu_lock, cpu, cgrp, flags, true);
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_push_children - push children cgroups into the given list
|
|
* @head: current head of the list (= subtree root)
|
|
* @child: first child of the root
|
|
* @cpu: target cpu
|
|
* Return: A new singly linked list of cgroups to be flush
|
|
*
|
|
* Iteratively traverse down the cgroup_rstat_cpu updated tree level by
|
|
* level and push all the parents first before their next level children
|
|
* into a singly linked list built from the tail backward like "pushing"
|
|
* cgroups into a stack. The root is pushed by the caller.
|
|
*/
|
|
static struct cgroup *cgroup_rstat_push_children(struct cgroup *head,
|
|
struct cgroup *child, int cpu)
|
|
{
|
|
struct cgroup *chead = child; /* Head of child cgroup level */
|
|
struct cgroup *ghead = NULL; /* Head of grandchild cgroup level */
|
|
struct cgroup *parent, *grandchild;
|
|
struct cgroup_rstat_cpu *crstatc;
|
|
|
|
child->rstat_flush_next = NULL;
|
|
|
|
next_level:
|
|
while (chead) {
|
|
child = chead;
|
|
chead = child->rstat_flush_next;
|
|
parent = cgroup_parent(child);
|
|
|
|
/* updated_next is parent cgroup terminated */
|
|
while (child != parent) {
|
|
child->rstat_flush_next = head;
|
|
head = child;
|
|
crstatc = cgroup_rstat_cpu(child, cpu);
|
|
grandchild = crstatc->updated_children;
|
|
if (grandchild != child) {
|
|
/* Push the grand child to the next level */
|
|
crstatc->updated_children = child;
|
|
grandchild->rstat_flush_next = ghead;
|
|
ghead = grandchild;
|
|
}
|
|
child = crstatc->updated_next;
|
|
crstatc->updated_next = NULL;
|
|
}
|
|
}
|
|
|
|
if (ghead) {
|
|
chead = ghead;
|
|
ghead = NULL;
|
|
goto next_level;
|
|
}
|
|
return head;
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_updated_list - return a list of updated cgroups to be flushed
|
|
* @root: root of the cgroup subtree to traverse
|
|
* @cpu: target cpu
|
|
* Return: A singly linked list of cgroups to be flushed
|
|
*
|
|
* Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
|
|
* each returned cgroup is unlinked from the updated tree.
|
|
*
|
|
* The only ordering guarantee is that, for a parent and a child pair
|
|
* covered by a given traversal, the child is before its parent in
|
|
* the list.
|
|
*
|
|
* Note that updated_children is self terminated and points to a list of
|
|
* child cgroups if not empty. Whereas updated_next is like a sibling link
|
|
* within the children list and terminated by the parent cgroup. An exception
|
|
* here is the cgroup root whose updated_next can be self terminated.
|
|
*/
|
|
static struct cgroup *cgroup_rstat_updated_list(struct cgroup *root, int cpu)
|
|
{
|
|
raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu);
|
|
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(root, cpu);
|
|
struct cgroup *head = NULL, *parent, *child;
|
|
unsigned long flags;
|
|
|
|
flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, root, false);
|
|
|
|
/* Return NULL if this subtree is not on-list */
|
|
if (!rstatc->updated_next)
|
|
goto unlock_ret;
|
|
|
|
/*
|
|
* Unlink @root from its parent. As the updated_children list is
|
|
* singly linked, we have to walk it to find the removal point.
|
|
*/
|
|
parent = cgroup_parent(root);
|
|
if (parent) {
|
|
struct cgroup_rstat_cpu *prstatc;
|
|
struct cgroup **nextp;
|
|
|
|
prstatc = cgroup_rstat_cpu(parent, cpu);
|
|
nextp = &prstatc->updated_children;
|
|
while (*nextp != root) {
|
|
struct cgroup_rstat_cpu *nrstatc;
|
|
|
|
nrstatc = cgroup_rstat_cpu(*nextp, cpu);
|
|
WARN_ON_ONCE(*nextp == parent);
|
|
nextp = &nrstatc->updated_next;
|
|
}
|
|
*nextp = rstatc->updated_next;
|
|
}
|
|
|
|
rstatc->updated_next = NULL;
|
|
|
|
/* Push @root to the list first before pushing the children */
|
|
head = root;
|
|
root->rstat_flush_next = NULL;
|
|
child = rstatc->updated_children;
|
|
rstatc->updated_children = root;
|
|
if (child != root)
|
|
head = cgroup_rstat_push_children(head, child, cpu);
|
|
unlock_ret:
|
|
_cgroup_rstat_cpu_unlock(cpu_lock, cpu, root, flags, false);
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
* A hook for bpf stat collectors to attach to and flush their stats.
|
|
* Together with providing bpf kfuncs for cgroup_rstat_updated() and
|
|
* cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
|
|
* collect cgroup stats can integrate with rstat for efficient flushing.
|
|
*
|
|
* A static noinline declaration here could cause the compiler to optimize away
|
|
* the function. A global noinline declaration will keep the definition, but may
|
|
* optimize away the callsite. Therefore, __weak is needed to ensure that the
|
|
* call is still emitted, by telling the compiler that we don't know what the
|
|
* function might eventually be.
|
|
*/
|
|
|
|
__bpf_hook_start();
|
|
|
|
__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
|
|
struct cgroup *parent, int cpu)
|
|
{
|
|
}
|
|
|
|
__bpf_hook_end();
|
|
|
|
/*
|
|
* Helper functions for locking cgroup_rstat_lock.
|
|
*
|
|
* This makes it easier to diagnose locking issues and contention in
|
|
* production environments. The parameter @cpu_in_loop indicate lock
|
|
* was released and re-taken when collection data from the CPUs. The
|
|
* value -1 is used when obtaining the main lock else this is the CPU
|
|
* number processed last.
|
|
*/
|
|
static inline void __cgroup_rstat_lock(struct cgroup *cgrp, int cpu_in_loop)
|
|
__acquires(&cgroup_rstat_lock)
|
|
{
|
|
bool contended;
|
|
|
|
contended = !spin_trylock_irq(&cgroup_rstat_lock);
|
|
if (contended) {
|
|
trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
|
|
spin_lock_irq(&cgroup_rstat_lock);
|
|
}
|
|
trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
|
|
}
|
|
|
|
static inline void __cgroup_rstat_unlock(struct cgroup *cgrp, int cpu_in_loop)
|
|
__releases(&cgroup_rstat_lock)
|
|
{
|
|
trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
|
|
spin_unlock_irq(&cgroup_rstat_lock);
|
|
}
|
|
|
|
/* see cgroup_rstat_flush() */
|
|
static void cgroup_rstat_flush_locked(struct cgroup *cgrp)
|
|
__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
|
|
{
|
|
int cpu;
|
|
|
|
lockdep_assert_held(&cgroup_rstat_lock);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct cgroup *pos = cgroup_rstat_updated_list(cgrp, cpu);
|
|
|
|
for (; pos; pos = pos->rstat_flush_next) {
|
|
struct cgroup_subsys_state *css;
|
|
|
|
cgroup_base_stat_flush(pos, cpu);
|
|
bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(css, &pos->rstat_css_list,
|
|
rstat_css_node)
|
|
css->ss->css_rstat_flush(css, cpu);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* play nice and yield if necessary */
|
|
if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) {
|
|
__cgroup_rstat_unlock(cgrp, cpu);
|
|
if (!cond_resched())
|
|
cpu_relax();
|
|
__cgroup_rstat_lock(cgrp, cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_flush - flush stats in @cgrp's subtree
|
|
* @cgrp: target cgroup
|
|
*
|
|
* Collect all per-cpu stats in @cgrp's subtree into the global counters
|
|
* and propagate them upwards. After this function returns, all cgroups in
|
|
* the subtree have up-to-date ->stat.
|
|
*
|
|
* This also gets all cgroups in the subtree including @cgrp off the
|
|
* ->updated_children lists.
|
|
*
|
|
* This function may block.
|
|
*/
|
|
__bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp)
|
|
{
|
|
might_sleep();
|
|
|
|
__cgroup_rstat_lock(cgrp, -1);
|
|
cgroup_rstat_flush_locked(cgrp);
|
|
__cgroup_rstat_unlock(cgrp, -1);
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold
|
|
* @cgrp: target cgroup
|
|
*
|
|
* Flush stats in @cgrp's subtree and prevent further flushes. Must be
|
|
* paired with cgroup_rstat_flush_release().
|
|
*
|
|
* This function may block.
|
|
*/
|
|
void cgroup_rstat_flush_hold(struct cgroup *cgrp)
|
|
__acquires(&cgroup_rstat_lock)
|
|
{
|
|
might_sleep();
|
|
__cgroup_rstat_lock(cgrp, -1);
|
|
cgroup_rstat_flush_locked(cgrp);
|
|
}
|
|
|
|
/**
|
|
* cgroup_rstat_flush_release - release cgroup_rstat_flush_hold()
|
|
* @cgrp: cgroup used by tracepoint
|
|
*/
|
|
void cgroup_rstat_flush_release(struct cgroup *cgrp)
|
|
__releases(&cgroup_rstat_lock)
|
|
{
|
|
__cgroup_rstat_unlock(cgrp, -1);
|
|
}
|
|
|
|
int cgroup_rstat_init(struct cgroup *cgrp)
|
|
{
|
|
int cpu;
|
|
|
|
/* the root cgrp has rstat_cpu preallocated */
|
|
if (!cgrp->rstat_cpu) {
|
|
cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu);
|
|
if (!cgrp->rstat_cpu)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* ->updated_children list is self terminated */
|
|
for_each_possible_cpu(cpu) {
|
|
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
|
|
|
|
rstatc->updated_children = cgrp;
|
|
u64_stats_init(&rstatc->bsync);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cgroup_rstat_exit(struct cgroup *cgrp)
|
|
{
|
|
int cpu;
|
|
|
|
cgroup_rstat_flush(cgrp);
|
|
|
|
/* sanity check */
|
|
for_each_possible_cpu(cpu) {
|
|
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
|
|
|
|
if (WARN_ON_ONCE(rstatc->updated_children != cgrp) ||
|
|
WARN_ON_ONCE(rstatc->updated_next))
|
|
return;
|
|
}
|
|
|
|
free_percpu(cgrp->rstat_cpu);
|
|
cgrp->rstat_cpu = NULL;
|
|
}
|
|
|
|
void __init cgroup_rstat_boot(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu));
|
|
}
|
|
|
|
/*
|
|
* Functions for cgroup basic resource statistics implemented on top of
|
|
* rstat.
|
|
*/
|
|
static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
|
|
struct cgroup_base_stat *src_bstat)
|
|
{
|
|
dst_bstat->cputime.utime += src_bstat->cputime.utime;
|
|
dst_bstat->cputime.stime += src_bstat->cputime.stime;
|
|
dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
|
|
#ifdef CONFIG_SCHED_CORE
|
|
dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
|
|
#endif
|
|
}
|
|
|
|
static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
|
|
struct cgroup_base_stat *src_bstat)
|
|
{
|
|
dst_bstat->cputime.utime -= src_bstat->cputime.utime;
|
|
dst_bstat->cputime.stime -= src_bstat->cputime.stime;
|
|
dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
|
|
#ifdef CONFIG_SCHED_CORE
|
|
dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
|
|
#endif
|
|
}
|
|
|
|
static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
|
|
{
|
|
struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu);
|
|
struct cgroup *parent = cgroup_parent(cgrp);
|
|
struct cgroup_rstat_cpu *prstatc;
|
|
struct cgroup_base_stat delta;
|
|
unsigned seq;
|
|
|
|
/* Root-level stats are sourced from system-wide CPU stats */
|
|
if (!parent)
|
|
return;
|
|
|
|
/* fetch the current per-cpu values */
|
|
do {
|
|
seq = __u64_stats_fetch_begin(&rstatc->bsync);
|
|
delta = rstatc->bstat;
|
|
} while (__u64_stats_fetch_retry(&rstatc->bsync, seq));
|
|
|
|
/* propagate per-cpu delta to cgroup and per-cpu global statistics */
|
|
cgroup_base_stat_sub(&delta, &rstatc->last_bstat);
|
|
cgroup_base_stat_add(&cgrp->bstat, &delta);
|
|
cgroup_base_stat_add(&rstatc->last_bstat, &delta);
|
|
cgroup_base_stat_add(&rstatc->subtree_bstat, &delta);
|
|
|
|
/* propagate cgroup and per-cpu global delta to parent (unless that's root) */
|
|
if (cgroup_parent(parent)) {
|
|
delta = cgrp->bstat;
|
|
cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
|
|
cgroup_base_stat_add(&parent->bstat, &delta);
|
|
cgroup_base_stat_add(&cgrp->last_bstat, &delta);
|
|
|
|
delta = rstatc->subtree_bstat;
|
|
prstatc = cgroup_rstat_cpu(parent, cpu);
|
|
cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat);
|
|
cgroup_base_stat_add(&prstatc->subtree_bstat, &delta);
|
|
cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta);
|
|
}
|
|
}
|
|
|
|
static struct cgroup_rstat_cpu *
|
|
cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
|
|
{
|
|
struct cgroup_rstat_cpu *rstatc;
|
|
|
|
rstatc = get_cpu_ptr(cgrp->rstat_cpu);
|
|
*flags = u64_stats_update_begin_irqsave(&rstatc->bsync);
|
|
return rstatc;
|
|
}
|
|
|
|
static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
|
|
struct cgroup_rstat_cpu *rstatc,
|
|
unsigned long flags)
|
|
{
|
|
u64_stats_update_end_irqrestore(&rstatc->bsync, flags);
|
|
cgroup_rstat_updated(cgrp, smp_processor_id());
|
|
put_cpu_ptr(rstatc);
|
|
}
|
|
|
|
void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
|
|
{
|
|
struct cgroup_rstat_cpu *rstatc;
|
|
unsigned long flags;
|
|
|
|
rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
|
|
rstatc->bstat.cputime.sum_exec_runtime += delta_exec;
|
|
cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
|
|
}
|
|
|
|
void __cgroup_account_cputime_field(struct cgroup *cgrp,
|
|
enum cpu_usage_stat index, u64 delta_exec)
|
|
{
|
|
struct cgroup_rstat_cpu *rstatc;
|
|
unsigned long flags;
|
|
|
|
rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
|
|
|
|
switch (index) {
|
|
case CPUTIME_USER:
|
|
case CPUTIME_NICE:
|
|
rstatc->bstat.cputime.utime += delta_exec;
|
|
break;
|
|
case CPUTIME_SYSTEM:
|
|
case CPUTIME_IRQ:
|
|
case CPUTIME_SOFTIRQ:
|
|
rstatc->bstat.cputime.stime += delta_exec;
|
|
break;
|
|
#ifdef CONFIG_SCHED_CORE
|
|
case CPUTIME_FORCEIDLE:
|
|
rstatc->bstat.forceidle_sum += delta_exec;
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags);
|
|
}
|
|
|
|
/*
|
|
* compute the cputime for the root cgroup by getting the per cpu data
|
|
* at a global level, then categorizing the fields in a manner consistent
|
|
* with how it is done by __cgroup_account_cputime_field for each bit of
|
|
* cpu time attributed to a cgroup.
|
|
*/
|
|
static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
|
|
{
|
|
struct task_cputime *cputime = &bstat->cputime;
|
|
int i;
|
|
|
|
memset(bstat, 0, sizeof(*bstat));
|
|
for_each_possible_cpu(i) {
|
|
struct kernel_cpustat kcpustat;
|
|
u64 *cpustat = kcpustat.cpustat;
|
|
u64 user = 0;
|
|
u64 sys = 0;
|
|
|
|
kcpustat_cpu_fetch(&kcpustat, i);
|
|
|
|
user += cpustat[CPUTIME_USER];
|
|
user += cpustat[CPUTIME_NICE];
|
|
cputime->utime += user;
|
|
|
|
sys += cpustat[CPUTIME_SYSTEM];
|
|
sys += cpustat[CPUTIME_IRQ];
|
|
sys += cpustat[CPUTIME_SOFTIRQ];
|
|
cputime->stime += sys;
|
|
|
|
cputime->sum_exec_runtime += user;
|
|
cputime->sum_exec_runtime += sys;
|
|
cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL];
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void cgroup_base_stat_cputime_show(struct seq_file *seq)
|
|
{
|
|
struct cgroup *cgrp = seq_css(seq)->cgroup;
|
|
u64 usage, utime, stime;
|
|
struct cgroup_base_stat bstat;
|
|
#ifdef CONFIG_SCHED_CORE
|
|
u64 forceidle_time;
|
|
#endif
|
|
|
|
if (cgroup_parent(cgrp)) {
|
|
cgroup_rstat_flush_hold(cgrp);
|
|
usage = cgrp->bstat.cputime.sum_exec_runtime;
|
|
cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
|
|
&utime, &stime);
|
|
#ifdef CONFIG_SCHED_CORE
|
|
forceidle_time = cgrp->bstat.forceidle_sum;
|
|
#endif
|
|
cgroup_rstat_flush_release(cgrp);
|
|
} else {
|
|
root_cgroup_cputime(&bstat);
|
|
usage = bstat.cputime.sum_exec_runtime;
|
|
utime = bstat.cputime.utime;
|
|
stime = bstat.cputime.stime;
|
|
#ifdef CONFIG_SCHED_CORE
|
|
forceidle_time = bstat.forceidle_sum;
|
|
#endif
|
|
}
|
|
|
|
do_div(usage, NSEC_PER_USEC);
|
|
do_div(utime, NSEC_PER_USEC);
|
|
do_div(stime, NSEC_PER_USEC);
|
|
#ifdef CONFIG_SCHED_CORE
|
|
do_div(forceidle_time, NSEC_PER_USEC);
|
|
#endif
|
|
|
|
seq_printf(seq, "usage_usec %llu\n"
|
|
"user_usec %llu\n"
|
|
"system_usec %llu\n",
|
|
usage, utime, stime);
|
|
|
|
#ifdef CONFIG_SCHED_CORE
|
|
seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
|
|
#endif
|
|
}
|
|
|
|
/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
|
|
BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
|
|
BTF_ID_FLAGS(func, cgroup_rstat_updated)
|
|
BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
|
|
BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
|
|
|
|
static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
|
|
.owner = THIS_MODULE,
|
|
.set = &bpf_rstat_kfunc_ids,
|
|
};
|
|
|
|
static int __init bpf_rstat_kfunc_init(void)
|
|
{
|
|
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
|
|
&bpf_rstat_kfunc_set);
|
|
}
|
|
late_initcall(bpf_rstat_kfunc_init);
|