cd4220d23b
Unless the user sets overcommit_memory or has plenty of swap, the latest
changes to the testcase will result in ENOMEM failures for hosts with
less than 64GB RAM. As we do not use much of the allocated memory, we
can use MAP_NORESERVE to avoid this error.
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: vkuznets@redhat.com
Cc: wanghaibin.wang@huawei.com
Cc: stable@vger.kernel.org
Fixes: 309505dd56
("KVM: selftests: Fix mapping length truncation in m{,un}map()")
Tested-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/kvm/20210701160425.33666-1-borntraeger@de.ibm.com/
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
446 lines
11 KiB
C
446 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define _GNU_SOURCE /* for program_invocation_short_name */
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <test_util.h>
|
|
#include <kvm_util.h>
|
|
#include <processor.h>
|
|
|
|
#define VCPU_ID 0
|
|
|
|
/*
|
|
* s390x needs at least 1MB alignment, and the x86_64 MOVE/DELETE tests need a
|
|
* 2MB sized and aligned region so that the initial region corresponds to
|
|
* exactly one large page.
|
|
*/
|
|
#define MEM_REGION_SIZE 0x200000
|
|
|
|
#ifdef __x86_64__
|
|
/*
|
|
* Somewhat arbitrary location and slot, intended to not overlap anything.
|
|
*/
|
|
#define MEM_REGION_GPA 0xc0000000
|
|
#define MEM_REGION_SLOT 10
|
|
|
|
static const uint64_t MMIO_VAL = 0xbeefull;
|
|
|
|
extern const uint64_t final_rip_start;
|
|
extern const uint64_t final_rip_end;
|
|
|
|
static sem_t vcpu_ready;
|
|
|
|
static inline uint64_t guest_spin_on_val(uint64_t spin_val)
|
|
{
|
|
uint64_t val;
|
|
|
|
do {
|
|
val = READ_ONCE(*((uint64_t *)MEM_REGION_GPA));
|
|
} while (val == spin_val);
|
|
|
|
GUEST_SYNC(0);
|
|
return val;
|
|
}
|
|
|
|
static void *vcpu_worker(void *data)
|
|
{
|
|
struct kvm_vm *vm = data;
|
|
struct kvm_run *run;
|
|
struct ucall uc;
|
|
uint64_t cmd;
|
|
|
|
/*
|
|
* Loop until the guest is done. Re-enter the guest on all MMIO exits,
|
|
* which will occur if the guest attempts to access a memslot after it
|
|
* has been deleted or while it is being moved .
|
|
*/
|
|
run = vcpu_state(vm, VCPU_ID);
|
|
|
|
while (1) {
|
|
vcpu_run(vm, VCPU_ID);
|
|
|
|
if (run->exit_reason == KVM_EXIT_IO) {
|
|
cmd = get_ucall(vm, VCPU_ID, &uc);
|
|
if (cmd != UCALL_SYNC)
|
|
break;
|
|
|
|
sem_post(&vcpu_ready);
|
|
continue;
|
|
}
|
|
|
|
if (run->exit_reason != KVM_EXIT_MMIO)
|
|
break;
|
|
|
|
TEST_ASSERT(!run->mmio.is_write, "Unexpected exit mmio write");
|
|
TEST_ASSERT(run->mmio.len == 8,
|
|
"Unexpected exit mmio size = %u", run->mmio.len);
|
|
|
|
TEST_ASSERT(run->mmio.phys_addr == MEM_REGION_GPA,
|
|
"Unexpected exit mmio address = 0x%llx",
|
|
run->mmio.phys_addr);
|
|
memcpy(run->mmio.data, &MMIO_VAL, 8);
|
|
}
|
|
|
|
if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT)
|
|
TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0],
|
|
__FILE__, uc.args[1], uc.args[2]);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void wait_for_vcpu(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
|
|
"clock_gettime() failed: %d\n", errno);
|
|
|
|
ts.tv_sec += 2;
|
|
TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
|
|
"sem_timedwait() failed: %d\n", errno);
|
|
|
|
/* Wait for the vCPU thread to reenter the guest. */
|
|
usleep(100000);
|
|
}
|
|
|
|
static struct kvm_vm *spawn_vm(pthread_t *vcpu_thread, void *guest_code)
|
|
{
|
|
struct kvm_vm *vm;
|
|
uint64_t *hva;
|
|
uint64_t gpa;
|
|
|
|
vm = vm_create_default(VCPU_ID, 0, guest_code);
|
|
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP,
|
|
MEM_REGION_GPA, MEM_REGION_SLOT,
|
|
MEM_REGION_SIZE / getpagesize(), 0);
|
|
|
|
/*
|
|
* Allocate and map two pages so that the GPA accessed by guest_code()
|
|
* stays valid across the memslot move.
|
|
*/
|
|
gpa = vm_phy_pages_alloc(vm, 2, MEM_REGION_GPA, MEM_REGION_SLOT);
|
|
TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n");
|
|
|
|
virt_map(vm, MEM_REGION_GPA, MEM_REGION_GPA, 2, 0);
|
|
|
|
/* Ditto for the host mapping so that both pages can be zeroed. */
|
|
hva = addr_gpa2hva(vm, MEM_REGION_GPA);
|
|
memset(hva, 0, 2 * 4096);
|
|
|
|
pthread_create(vcpu_thread, NULL, vcpu_worker, vm);
|
|
|
|
/* Ensure the guest thread is spun up. */
|
|
wait_for_vcpu();
|
|
|
|
return vm;
|
|
}
|
|
|
|
|
|
static void guest_code_move_memory_region(void)
|
|
{
|
|
uint64_t val;
|
|
|
|
GUEST_SYNC(0);
|
|
|
|
/*
|
|
* Spin until the memory region starts getting moved to a
|
|
* misaligned address.
|
|
* Every region move may or may not trigger MMIO, as the
|
|
* window where the memslot is invalid is usually quite small.
|
|
*/
|
|
val = guest_spin_on_val(0);
|
|
GUEST_ASSERT_1(val == 1 || val == MMIO_VAL, val);
|
|
|
|
/* Spin until the misaligning memory region move completes. */
|
|
val = guest_spin_on_val(MMIO_VAL);
|
|
GUEST_ASSERT_1(val == 1 || val == 0, val);
|
|
|
|
/* Spin until the memory region starts to get re-aligned. */
|
|
val = guest_spin_on_val(0);
|
|
GUEST_ASSERT_1(val == 1 || val == MMIO_VAL, val);
|
|
|
|
/* Spin until the re-aligning memory region move completes. */
|
|
val = guest_spin_on_val(MMIO_VAL);
|
|
GUEST_ASSERT_1(val == 1, val);
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void test_move_memory_region(void)
|
|
{
|
|
pthread_t vcpu_thread;
|
|
struct kvm_vm *vm;
|
|
uint64_t *hva;
|
|
|
|
vm = spawn_vm(&vcpu_thread, guest_code_move_memory_region);
|
|
|
|
hva = addr_gpa2hva(vm, MEM_REGION_GPA);
|
|
|
|
/*
|
|
* Shift the region's base GPA. The guest should not see "2" as the
|
|
* hva->gpa translation is misaligned, i.e. the guest is accessing a
|
|
* different host pfn.
|
|
*/
|
|
vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA - 4096);
|
|
WRITE_ONCE(*hva, 2);
|
|
|
|
/*
|
|
* The guest _might_ see an invalid memslot and trigger MMIO, but it's
|
|
* a tiny window. Spin and defer the sync until the memslot is
|
|
* restored and guest behavior is once again deterministic.
|
|
*/
|
|
usleep(100000);
|
|
|
|
/*
|
|
* Note, value in memory needs to be changed *before* restoring the
|
|
* memslot, else the guest could race the update and see "2".
|
|
*/
|
|
WRITE_ONCE(*hva, 1);
|
|
|
|
/* Restore the original base, the guest should see "1". */
|
|
vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA);
|
|
wait_for_vcpu();
|
|
/* Defered sync from when the memslot was misaligned (above). */
|
|
wait_for_vcpu();
|
|
|
|
pthread_join(vcpu_thread, NULL);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void guest_code_delete_memory_region(void)
|
|
{
|
|
uint64_t val;
|
|
|
|
GUEST_SYNC(0);
|
|
|
|
/* Spin until the memory region is deleted. */
|
|
val = guest_spin_on_val(0);
|
|
GUEST_ASSERT_1(val == MMIO_VAL, val);
|
|
|
|
/* Spin until the memory region is recreated. */
|
|
val = guest_spin_on_val(MMIO_VAL);
|
|
GUEST_ASSERT_1(val == 0, val);
|
|
|
|
/* Spin until the memory region is deleted. */
|
|
val = guest_spin_on_val(0);
|
|
GUEST_ASSERT_1(val == MMIO_VAL, val);
|
|
|
|
asm("1:\n\t"
|
|
".pushsection .rodata\n\t"
|
|
".global final_rip_start\n\t"
|
|
"final_rip_start: .quad 1b\n\t"
|
|
".popsection");
|
|
|
|
/* Spin indefinitely (until the code memslot is deleted). */
|
|
guest_spin_on_val(MMIO_VAL);
|
|
|
|
asm("1:\n\t"
|
|
".pushsection .rodata\n\t"
|
|
".global final_rip_end\n\t"
|
|
"final_rip_end: .quad 1b\n\t"
|
|
".popsection");
|
|
|
|
GUEST_ASSERT_1(0, 0);
|
|
}
|
|
|
|
static void test_delete_memory_region(void)
|
|
{
|
|
pthread_t vcpu_thread;
|
|
struct kvm_regs regs;
|
|
struct kvm_run *run;
|
|
struct kvm_vm *vm;
|
|
|
|
vm = spawn_vm(&vcpu_thread, guest_code_delete_memory_region);
|
|
|
|
/* Delete the memory region, the guest should not die. */
|
|
vm_mem_region_delete(vm, MEM_REGION_SLOT);
|
|
wait_for_vcpu();
|
|
|
|
/* Recreate the memory region. The guest should see "0". */
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP,
|
|
MEM_REGION_GPA, MEM_REGION_SLOT,
|
|
MEM_REGION_SIZE / getpagesize(), 0);
|
|
wait_for_vcpu();
|
|
|
|
/* Delete the region again so that there's only one memslot left. */
|
|
vm_mem_region_delete(vm, MEM_REGION_SLOT);
|
|
wait_for_vcpu();
|
|
|
|
/*
|
|
* Delete the primary memslot. This should cause an emulation error or
|
|
* shutdown due to the page tables getting nuked.
|
|
*/
|
|
vm_mem_region_delete(vm, 0);
|
|
|
|
pthread_join(vcpu_thread, NULL);
|
|
|
|
run = vcpu_state(vm, VCPU_ID);
|
|
|
|
TEST_ASSERT(run->exit_reason == KVM_EXIT_SHUTDOWN ||
|
|
run->exit_reason == KVM_EXIT_INTERNAL_ERROR,
|
|
"Unexpected exit reason = %d", run->exit_reason);
|
|
|
|
vcpu_regs_get(vm, VCPU_ID, ®s);
|
|
|
|
/*
|
|
* On AMD, after KVM_EXIT_SHUTDOWN the VMCB has been reinitialized already,
|
|
* so the instruction pointer would point to the reset vector.
|
|
*/
|
|
if (run->exit_reason == KVM_EXIT_INTERNAL_ERROR)
|
|
TEST_ASSERT(regs.rip >= final_rip_start &&
|
|
regs.rip < final_rip_end,
|
|
"Bad rip, expected 0x%lx - 0x%lx, got 0x%llx\n",
|
|
final_rip_start, final_rip_end, regs.rip);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void test_zero_memory_regions(void)
|
|
{
|
|
struct kvm_run *run;
|
|
struct kvm_vm *vm;
|
|
|
|
pr_info("Testing KVM_RUN with zero added memory regions\n");
|
|
|
|
vm = vm_create(VM_MODE_DEFAULT, 0, O_RDWR);
|
|
vm_vcpu_add(vm, VCPU_ID);
|
|
|
|
TEST_ASSERT(!ioctl(vm_get_fd(vm), KVM_SET_NR_MMU_PAGES, 64),
|
|
"KVM_SET_NR_MMU_PAGES failed, errno = %d\n", errno);
|
|
vcpu_run(vm, VCPU_ID);
|
|
|
|
run = vcpu_state(vm, VCPU_ID);
|
|
TEST_ASSERT(run->exit_reason == KVM_EXIT_INTERNAL_ERROR,
|
|
"Unexpected exit_reason = %u\n", run->exit_reason);
|
|
|
|
kvm_vm_free(vm);
|
|
}
|
|
#endif /* __x86_64__ */
|
|
|
|
static int test_memory_region_add(struct kvm_vm *vm, void *mem, uint32_t slot,
|
|
uint32_t size, uint64_t guest_addr)
|
|
{
|
|
struct kvm_userspace_memory_region region;
|
|
int ret;
|
|
|
|
region.slot = slot;
|
|
region.flags = 0;
|
|
region.guest_phys_addr = guest_addr;
|
|
region.memory_size = size;
|
|
region.userspace_addr = (uintptr_t) mem;
|
|
ret = ioctl(vm_get_fd(vm), KVM_SET_USER_MEMORY_REGION, ®ion);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Test it can be added memory slots up to KVM_CAP_NR_MEMSLOTS, then any
|
|
* tentative to add further slots should fail.
|
|
*/
|
|
static void test_add_max_memory_regions(void)
|
|
{
|
|
int ret;
|
|
struct kvm_vm *vm;
|
|
uint32_t max_mem_slots;
|
|
uint32_t slot;
|
|
void *mem, *mem_aligned, *mem_extra;
|
|
size_t alignment;
|
|
|
|
#ifdef __s390x__
|
|
/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
|
|
alignment = 0x100000;
|
|
#else
|
|
alignment = 1;
|
|
#endif
|
|
|
|
max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
|
|
TEST_ASSERT(max_mem_slots > 0,
|
|
"KVM_CAP_NR_MEMSLOTS should be greater than 0");
|
|
pr_info("Allowed number of memory slots: %i\n", max_mem_slots);
|
|
|
|
vm = vm_create(VM_MODE_DEFAULT, 0, O_RDWR);
|
|
|
|
/* Check it can be added memory slots up to the maximum allowed */
|
|
pr_info("Adding slots 0..%i, each memory region with %dK size\n",
|
|
(max_mem_slots - 1), MEM_REGION_SIZE >> 10);
|
|
|
|
mem = mmap(NULL, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
|
|
TEST_ASSERT(mem != MAP_FAILED, "Failed to mmap() host");
|
|
mem_aligned = (void *)(((size_t) mem + alignment - 1) & ~(alignment - 1));
|
|
|
|
for (slot = 0; slot < max_mem_slots; slot++) {
|
|
ret = test_memory_region_add(vm, mem_aligned +
|
|
((uint64_t)slot * MEM_REGION_SIZE),
|
|
slot, MEM_REGION_SIZE,
|
|
(uint64_t)slot * MEM_REGION_SIZE);
|
|
TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
|
|
" rc: %i errno: %i slot: %i\n",
|
|
ret, errno, slot);
|
|
}
|
|
|
|
/* Check it cannot be added memory slots beyond the limit */
|
|
mem_extra = mmap(NULL, MEM_REGION_SIZE, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
TEST_ASSERT(mem_extra != MAP_FAILED, "Failed to mmap() host");
|
|
|
|
ret = test_memory_region_add(vm, mem_extra, max_mem_slots, MEM_REGION_SIZE,
|
|
(uint64_t)max_mem_slots * MEM_REGION_SIZE);
|
|
TEST_ASSERT(ret == -1 && errno == EINVAL,
|
|
"Adding one more memory slot should fail with EINVAL");
|
|
|
|
munmap(mem, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment);
|
|
munmap(mem_extra, MEM_REGION_SIZE);
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#ifdef __x86_64__
|
|
int i, loops;
|
|
#endif
|
|
|
|
/* Tell stdout not to buffer its content */
|
|
setbuf(stdout, NULL);
|
|
|
|
#ifdef __x86_64__
|
|
/*
|
|
* FIXME: the zero-memslot test fails on aarch64 and s390x because
|
|
* KVM_RUN fails with ENOEXEC or EFAULT.
|
|
*/
|
|
test_zero_memory_regions();
|
|
#endif
|
|
|
|
test_add_max_memory_regions();
|
|
|
|
#ifdef __x86_64__
|
|
if (argc > 1)
|
|
loops = atoi(argv[1]);
|
|
else
|
|
loops = 10;
|
|
|
|
pr_info("Testing MOVE of in-use region, %d loops\n", loops);
|
|
for (i = 0; i < loops; i++)
|
|
test_move_memory_region();
|
|
|
|
pr_info("Testing DELETE of in-use region, %d loops\n", loops);
|
|
for (i = 0; i < loops; i++)
|
|
test_delete_memory_region();
|
|
#endif
|
|
|
|
return 0;
|
|
}
|