21b7582777
This helper is not very useful and very often people get confused: they use nand_release() instead of nand_cleanup(). Let's stop using nand_release() by calling mtd_device_unregister() and nand_cleanup() directly. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20200519130035.1883-25-miquel.raynal@bootlin.com
1036 lines
28 KiB
C
1036 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* NXP LPC32XX NAND SLC driver
|
|
*
|
|
* Authors:
|
|
* Kevin Wells <kevin.wells@nxp.com>
|
|
* Roland Stigge <stigge@antcom.de>
|
|
*
|
|
* Copyright © 2011 NXP Semiconductors
|
|
* Copyright © 2012 Roland Stigge
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/mtd/lpc32xx_slc.h>
|
|
|
|
#define LPC32XX_MODNAME "lpc32xx-nand"
|
|
|
|
/**********************************************************************
|
|
* SLC NAND controller register offsets
|
|
**********************************************************************/
|
|
|
|
#define SLC_DATA(x) (x + 0x000)
|
|
#define SLC_ADDR(x) (x + 0x004)
|
|
#define SLC_CMD(x) (x + 0x008)
|
|
#define SLC_STOP(x) (x + 0x00C)
|
|
#define SLC_CTRL(x) (x + 0x010)
|
|
#define SLC_CFG(x) (x + 0x014)
|
|
#define SLC_STAT(x) (x + 0x018)
|
|
#define SLC_INT_STAT(x) (x + 0x01C)
|
|
#define SLC_IEN(x) (x + 0x020)
|
|
#define SLC_ISR(x) (x + 0x024)
|
|
#define SLC_ICR(x) (x + 0x028)
|
|
#define SLC_TAC(x) (x + 0x02C)
|
|
#define SLC_TC(x) (x + 0x030)
|
|
#define SLC_ECC(x) (x + 0x034)
|
|
#define SLC_DMA_DATA(x) (x + 0x038)
|
|
|
|
/**********************************************************************
|
|
* slc_ctrl register definitions
|
|
**********************************************************************/
|
|
#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
|
|
#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
|
|
#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
|
|
|
|
/**********************************************************************
|
|
* slc_cfg register definitions
|
|
**********************************************************************/
|
|
#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
|
|
#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
|
|
#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
|
|
#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
|
|
#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
|
|
#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
|
|
|
|
/**********************************************************************
|
|
* slc_stat register definitions
|
|
**********************************************************************/
|
|
#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
|
|
#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
|
|
#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
|
|
|
|
/**********************************************************************
|
|
* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
|
|
**********************************************************************/
|
|
#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
|
|
#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
|
|
|
|
/**********************************************************************
|
|
* slc_tac register definitions
|
|
**********************************************************************/
|
|
/* Computation of clock cycles on basis of controller and device clock rates */
|
|
#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
|
|
|
|
/* Clock setting for RDY write sample wait time in 2*n clocks */
|
|
#define SLCTAC_WDR(n) (((n) & 0xF) << 28)
|
|
/* Write pulse width in clock cycles, 1 to 16 clocks */
|
|
#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
|
|
/* Write hold time of control and data signals, 1 to 16 clocks */
|
|
#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
|
|
/* Write setup time of control and data signals, 1 to 16 clocks */
|
|
#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
|
|
/* Clock setting for RDY read sample wait time in 2*n clocks */
|
|
#define SLCTAC_RDR(n) (((n) & 0xF) << 12)
|
|
/* Read pulse width in clock cycles, 1 to 16 clocks */
|
|
#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
|
|
/* Read hold time of control and data signals, 1 to 16 clocks */
|
|
#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
|
|
/* Read setup time of control and data signals, 1 to 16 clocks */
|
|
#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
|
|
|
|
/**********************************************************************
|
|
* slc_ecc register definitions
|
|
**********************************************************************/
|
|
/* ECC line party fetch macro */
|
|
#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
|
|
#define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
|
|
|
|
/*
|
|
* DMA requires storage space for the DMA local buffer and the hardware ECC
|
|
* storage area. The DMA local buffer is only used if DMA mapping fails
|
|
* during runtime.
|
|
*/
|
|
#define LPC32XX_DMA_DATA_SIZE 4096
|
|
#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
|
|
|
|
/* Number of bytes used for ECC stored in NAND per 256 bytes */
|
|
#define LPC32XX_SLC_DEV_ECC_BYTES 3
|
|
|
|
/*
|
|
* If the NAND base clock frequency can't be fetched, this frequency will be
|
|
* used instead as the base. This rate is used to setup the timing registers
|
|
* used for NAND accesses.
|
|
*/
|
|
#define LPC32XX_DEF_BUS_RATE 133250000
|
|
|
|
/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
|
|
#define LPC32XX_DMA_TIMEOUT 100
|
|
|
|
/*
|
|
* NAND ECC Layout for small page NAND devices
|
|
* Note: For large and huge page devices, the default layouts are used
|
|
*/
|
|
static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = 6;
|
|
oobregion->offset = 10;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
oobregion->length = 4;
|
|
} else {
|
|
oobregion->offset = 6;
|
|
oobregion->length = 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
|
|
.ecc = lpc32xx_ooblayout_ecc,
|
|
.free = lpc32xx_ooblayout_free,
|
|
};
|
|
|
|
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
/*
|
|
* Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
|
|
* Note: Large page devices used the default layout
|
|
*/
|
|
static struct nand_bbt_descr bbt_smallpage_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 6,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 0,
|
|
.len = 4,
|
|
.veroffs = 6,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern
|
|
};
|
|
|
|
/*
|
|
* NAND platform configuration structure
|
|
*/
|
|
struct lpc32xx_nand_cfg_slc {
|
|
uint32_t wdr_clks;
|
|
uint32_t wwidth;
|
|
uint32_t whold;
|
|
uint32_t wsetup;
|
|
uint32_t rdr_clks;
|
|
uint32_t rwidth;
|
|
uint32_t rhold;
|
|
uint32_t rsetup;
|
|
int wp_gpio;
|
|
struct mtd_partition *parts;
|
|
unsigned num_parts;
|
|
};
|
|
|
|
struct lpc32xx_nand_host {
|
|
struct nand_chip nand_chip;
|
|
struct lpc32xx_slc_platform_data *pdata;
|
|
struct clk *clk;
|
|
void __iomem *io_base;
|
|
struct lpc32xx_nand_cfg_slc *ncfg;
|
|
|
|
struct completion comp;
|
|
struct dma_chan *dma_chan;
|
|
uint32_t dma_buf_len;
|
|
struct dma_slave_config dma_slave_config;
|
|
struct scatterlist sgl;
|
|
|
|
/*
|
|
* DMA and CPU addresses of ECC work area and data buffer
|
|
*/
|
|
uint32_t *ecc_buf;
|
|
uint8_t *data_buf;
|
|
dma_addr_t io_base_dma;
|
|
};
|
|
|
|
static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
|
|
{
|
|
uint32_t clkrate, tmp;
|
|
|
|
/* Reset SLC controller */
|
|
writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
|
|
udelay(1000);
|
|
|
|
/* Basic setup */
|
|
writel(0, SLC_CFG(host->io_base));
|
|
writel(0, SLC_IEN(host->io_base));
|
|
writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
|
|
SLC_ICR(host->io_base));
|
|
|
|
/* Get base clock for SLC block */
|
|
clkrate = clk_get_rate(host->clk);
|
|
if (clkrate == 0)
|
|
clkrate = LPC32XX_DEF_BUS_RATE;
|
|
|
|
/* Compute clock setup values */
|
|
tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
|
|
SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
|
|
SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
|
|
SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
|
|
SLCTAC_RDR(host->ncfg->rdr_clks) |
|
|
SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
|
|
SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
|
|
SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
|
|
writel(tmp, SLC_TAC(host->io_base));
|
|
}
|
|
|
|
/*
|
|
* Hardware specific access to control lines
|
|
*/
|
|
static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
uint32_t tmp;
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
/* Does CE state need to be changed? */
|
|
tmp = readl(SLC_CFG(host->io_base));
|
|
if (ctrl & NAND_NCE)
|
|
tmp |= SLCCFG_CE_LOW;
|
|
else
|
|
tmp &= ~SLCCFG_CE_LOW;
|
|
writel(tmp, SLC_CFG(host->io_base));
|
|
|
|
if (cmd != NAND_CMD_NONE) {
|
|
if (ctrl & NAND_CLE)
|
|
writel(cmd, SLC_CMD(host->io_base));
|
|
else
|
|
writel(cmd, SLC_ADDR(host->io_base));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the Device Ready pin
|
|
*/
|
|
static int lpc32xx_nand_device_ready(struct nand_chip *chip)
|
|
{
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
int rdy = 0;
|
|
|
|
if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
|
|
rdy = 1;
|
|
|
|
return rdy;
|
|
}
|
|
|
|
/*
|
|
* Enable NAND write protect
|
|
*/
|
|
static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->ncfg->wp_gpio))
|
|
gpio_set_value(host->ncfg->wp_gpio, 0);
|
|
}
|
|
|
|
/*
|
|
* Disable NAND write protect
|
|
*/
|
|
static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
|
|
{
|
|
if (gpio_is_valid(host->ncfg->wp_gpio))
|
|
gpio_set_value(host->ncfg->wp_gpio, 1);
|
|
}
|
|
|
|
/*
|
|
* Prepares SLC for transfers with H/W ECC enabled
|
|
*/
|
|
static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
|
|
{
|
|
/* Hardware ECC is enabled automatically in hardware as needed */
|
|
}
|
|
|
|
/*
|
|
* Calculates the ECC for the data
|
|
*/
|
|
static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
|
|
const unsigned char *buf,
|
|
unsigned char *code)
|
|
{
|
|
/*
|
|
* ECC is calculated automatically in hardware during syndrome read
|
|
* and write operations, so it doesn't need to be calculated here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a single byte from NAND device
|
|
*/
|
|
static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
|
|
{
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
return (uint8_t)readl(SLC_DATA(host->io_base));
|
|
}
|
|
|
|
/*
|
|
* Simple device read without ECC
|
|
*/
|
|
static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
|
|
{
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
/* Direct device read with no ECC */
|
|
while (len-- > 0)
|
|
*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
|
|
}
|
|
|
|
/*
|
|
* Simple device write without ECC
|
|
*/
|
|
static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
/* Direct device write with no ECC */
|
|
while (len-- > 0)
|
|
writel((uint32_t)*buf++, SLC_DATA(host->io_base));
|
|
}
|
|
|
|
/*
|
|
* Read the OOB data from the device without ECC using FIFO method
|
|
*/
|
|
static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
|
}
|
|
|
|
/*
|
|
* Write the OOB data to the device without ECC using FIFO method
|
|
*/
|
|
static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
/*
|
|
* Fills in the ECC fields in the OOB buffer with the hardware generated ECC
|
|
*/
|
|
static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (count * 3); i += 3) {
|
|
uint32_t ce = ecc[i / 3];
|
|
ce = ~(ce << 2) & 0xFFFFFF;
|
|
spare[i + 2] = (uint8_t)(ce & 0xFF);
|
|
ce >>= 8;
|
|
spare[i + 1] = (uint8_t)(ce & 0xFF);
|
|
ce >>= 8;
|
|
spare[i] = (uint8_t)(ce & 0xFF);
|
|
}
|
|
}
|
|
|
|
static void lpc32xx_dma_complete_func(void *completion)
|
|
{
|
|
complete(completion);
|
|
}
|
|
|
|
static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
|
|
void *mem, int len, enum dma_transfer_direction dir)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
struct dma_async_tx_descriptor *desc;
|
|
int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
|
|
int res;
|
|
|
|
host->dma_slave_config.direction = dir;
|
|
host->dma_slave_config.src_addr = dma;
|
|
host->dma_slave_config.dst_addr = dma;
|
|
host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
host->dma_slave_config.src_maxburst = 4;
|
|
host->dma_slave_config.dst_maxburst = 4;
|
|
/* DMA controller does flow control: */
|
|
host->dma_slave_config.device_fc = false;
|
|
if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
|
|
dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
sg_init_one(&host->sgl, mem, len);
|
|
|
|
res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
if (res != 1) {
|
|
dev_err(mtd->dev.parent, "Failed to map sg list\n");
|
|
return -ENXIO;
|
|
}
|
|
desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
|
|
flags);
|
|
if (!desc) {
|
|
dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
|
|
goto out1;
|
|
}
|
|
|
|
init_completion(&host->comp);
|
|
desc->callback = lpc32xx_dma_complete_func;
|
|
desc->callback_param = &host->comp;
|
|
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(host->dma_chan);
|
|
|
|
wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
|
|
|
|
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
return 0;
|
|
out1:
|
|
dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
|
|
DMA_BIDIRECTIONAL);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* DMA read/write transfers with ECC support
|
|
*/
|
|
static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
|
|
int read)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
int i, status = 0;
|
|
unsigned long timeout;
|
|
int res;
|
|
enum dma_transfer_direction dir =
|
|
read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
|
|
uint8_t *dma_buf;
|
|
bool dma_mapped;
|
|
|
|
if ((void *)buf <= high_memory) {
|
|
dma_buf = buf;
|
|
dma_mapped = true;
|
|
} else {
|
|
dma_buf = host->data_buf;
|
|
dma_mapped = false;
|
|
if (!read)
|
|
memcpy(host->data_buf, buf, mtd->writesize);
|
|
}
|
|
|
|
if (read) {
|
|
writel(readl(SLC_CFG(host->io_base)) |
|
|
SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
|
|
SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
|
|
} else {
|
|
writel((readl(SLC_CFG(host->io_base)) |
|
|
SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
|
|
~SLCCFG_DMA_DIR,
|
|
SLC_CFG(host->io_base));
|
|
}
|
|
|
|
/* Clear initial ECC */
|
|
writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
|
|
|
|
/* Transfer size is data area only */
|
|
writel(mtd->writesize, SLC_TC(host->io_base));
|
|
|
|
/* Start transfer in the NAND controller */
|
|
writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
|
|
SLC_CTRL(host->io_base));
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
/* Data */
|
|
res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
|
|
dma_buf + i * chip->ecc.size,
|
|
mtd->writesize / chip->ecc.steps, dir);
|
|
if (res)
|
|
return res;
|
|
|
|
/* Always _read_ ECC */
|
|
if (i == chip->ecc.steps - 1)
|
|
break;
|
|
if (!read) /* ECC availability delayed on write */
|
|
udelay(10);
|
|
res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
|
|
&host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* According to NXP, the DMA can be finished here, but the NAND
|
|
* controller may still have buffered data. After porting to using the
|
|
* dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
|
|
* appears to be always true, according to tests. Keeping the check for
|
|
* safety reasons for now.
|
|
*/
|
|
if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
|
|
dev_warn(mtd->dev.parent, "FIFO not empty!\n");
|
|
timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
|
|
while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
|
|
time_before(jiffies, timeout))
|
|
cpu_relax();
|
|
if (!time_before(jiffies, timeout)) {
|
|
dev_err(mtd->dev.parent, "FIFO held data too long\n");
|
|
status = -EIO;
|
|
}
|
|
}
|
|
|
|
/* Read last calculated ECC value */
|
|
if (!read)
|
|
udelay(10);
|
|
host->ecc_buf[chip->ecc.steps - 1] =
|
|
readl(SLC_ECC(host->io_base));
|
|
|
|
/* Flush DMA */
|
|
dmaengine_terminate_all(host->dma_chan);
|
|
|
|
if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
|
|
readl(SLC_TC(host->io_base))) {
|
|
/* Something is left in the FIFO, something is wrong */
|
|
dev_err(mtd->dev.parent, "DMA FIFO failure\n");
|
|
status = -EIO;
|
|
}
|
|
|
|
/* Stop DMA & HW ECC */
|
|
writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
|
|
SLC_CTRL(host->io_base));
|
|
writel(readl(SLC_CFG(host->io_base)) &
|
|
~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
|
|
SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
|
|
|
|
if (!dma_mapped && read)
|
|
memcpy(buf, host->data_buf, mtd->writesize);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Read the data and OOB data from the device, use ECC correction with the
|
|
* data, disable ECC for the OOB data
|
|
*/
|
|
static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
struct mtd_oob_region oobregion = { };
|
|
int stat, i, status, error;
|
|
uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
|
|
|
|
/* Issue read command */
|
|
nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Read data and oob, calculate ECC */
|
|
status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
|
|
|
|
/* Get OOB data */
|
|
chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Convert to stored ECC format */
|
|
lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
|
|
|
|
/* Pointer to ECC data retrieved from NAND spare area */
|
|
error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
|
|
if (error)
|
|
return error;
|
|
|
|
oobecc = chip->oob_poi + oobregion.offset;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
stat = chip->ecc.correct(chip, buf, oobecc,
|
|
&tmpecc[i * chip->ecc.bytes]);
|
|
if (stat < 0)
|
|
mtd->ecc_stats.failed++;
|
|
else
|
|
mtd->ecc_stats.corrected += stat;
|
|
|
|
buf += chip->ecc.size;
|
|
oobecc += chip->ecc.bytes;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Read the data and OOB data from the device, no ECC correction with the
|
|
* data or OOB data
|
|
*/
|
|
static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Issue read command */
|
|
nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Raw reads can just use the FIFO interface */
|
|
chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
|
|
chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write the data and OOB data to the device, use ECC with the data,
|
|
* disable ECC for the OOB data
|
|
*/
|
|
static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
|
|
const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
struct mtd_oob_region oobregion = { };
|
|
uint8_t *pb;
|
|
int error;
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Write data, calculate ECC on outbound data */
|
|
error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* The calculated ECC needs some manual work done to it before
|
|
* committing it to NAND. Process the calculated ECC and place
|
|
* the resultant values directly into the OOB buffer. */
|
|
error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
|
|
if (error)
|
|
return error;
|
|
|
|
pb = chip->oob_poi + oobregion.offset;
|
|
lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
|
|
|
|
/* Write ECC data to device */
|
|
chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/*
|
|
* Write the data and OOB data to the device, no ECC correction with the
|
|
* data or OOB data
|
|
*/
|
|
static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
|
|
const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Raw writes can just use the FIFO interface */
|
|
nand_prog_page_begin_op(chip, page, 0, buf,
|
|
chip->ecc.size * chip->ecc.steps);
|
|
chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
|
|
dma_cap_mask_t mask;
|
|
|
|
if (!host->pdata || !host->pdata->dma_filter) {
|
|
dev_err(mtd->dev.parent, "no DMA platform data\n");
|
|
return -ENOENT;
|
|
}
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
|
|
"nand-slc");
|
|
if (!host->dma_chan) {
|
|
dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
|
|
{
|
|
struct lpc32xx_nand_cfg_slc *ncfg;
|
|
struct device_node *np = dev->of_node;
|
|
|
|
ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
|
|
if (!ncfg)
|
|
return NULL;
|
|
|
|
of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
|
|
of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
|
|
of_property_read_u32(np, "nxp,whold", &ncfg->whold);
|
|
of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
|
|
of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
|
|
of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
|
|
of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
|
|
of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
|
|
|
|
if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
|
|
!ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
|
|
!ncfg->rhold || !ncfg->rsetup) {
|
|
dev_err(dev, "chip parameters not specified correctly\n");
|
|
return NULL;
|
|
}
|
|
|
|
ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
|
|
|
|
return ncfg;
|
|
}
|
|
|
|
static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
|
|
|
|
/* OOB and ECC CPU and DMA work areas */
|
|
host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
|
|
|
|
/*
|
|
* Small page FLASH has a unique OOB layout, but large and huge
|
|
* page FLASH use the standard layout. Small page FLASH uses a
|
|
* custom BBT marker layout.
|
|
*/
|
|
if (mtd->writesize <= 512)
|
|
mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
|
|
|
|
/* These sizes remain the same regardless of page size */
|
|
chip->ecc.size = 256;
|
|
chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
|
|
chip->ecc.prepad = 0;
|
|
chip->ecc.postpad = 0;
|
|
|
|
/*
|
|
* Use a custom BBT marker setup for small page FLASH that
|
|
* won't interfere with the ECC layout. Large and huge page
|
|
* FLASH use the standard layout.
|
|
*/
|
|
if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
|
|
mtd->writesize <= 512) {
|
|
chip->bbt_td = &bbt_smallpage_main_descr;
|
|
chip->bbt_md = &bbt_smallpage_mirror_descr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
|
|
.attach_chip = lpc32xx_nand_attach_chip,
|
|
};
|
|
|
|
/*
|
|
* Probe for NAND controller
|
|
*/
|
|
static int lpc32xx_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct lpc32xx_nand_host *host;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *chip;
|
|
struct resource *rc;
|
|
int res;
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
|
|
if (!host)
|
|
return -ENOMEM;
|
|
|
|
rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
host->io_base = devm_ioremap_resource(&pdev->dev, rc);
|
|
if (IS_ERR(host->io_base))
|
|
return PTR_ERR(host->io_base);
|
|
|
|
host->io_base_dma = rc->start;
|
|
if (pdev->dev.of_node)
|
|
host->ncfg = lpc32xx_parse_dt(&pdev->dev);
|
|
if (!host->ncfg) {
|
|
dev_err(&pdev->dev,
|
|
"Missing or bad NAND config from device tree\n");
|
|
return -ENOENT;
|
|
}
|
|
if (host->ncfg->wp_gpio == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
|
|
host->ncfg->wp_gpio, "NAND WP")) {
|
|
dev_err(&pdev->dev, "GPIO not available\n");
|
|
return -EBUSY;
|
|
}
|
|
lpc32xx_wp_disable(host);
|
|
|
|
host->pdata = dev_get_platdata(&pdev->dev);
|
|
|
|
chip = &host->nand_chip;
|
|
mtd = nand_to_mtd(chip);
|
|
nand_set_controller_data(chip, host);
|
|
nand_set_flash_node(chip, pdev->dev.of_node);
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
/* Get NAND clock */
|
|
host->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(host->clk)) {
|
|
dev_err(&pdev->dev, "Clock failure\n");
|
|
res = -ENOENT;
|
|
goto enable_wp;
|
|
}
|
|
res = clk_prepare_enable(host->clk);
|
|
if (res)
|
|
goto enable_wp;
|
|
|
|
/* Set NAND IO addresses and command/ready functions */
|
|
chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
|
|
chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
|
|
chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
|
|
chip->legacy.dev_ready = lpc32xx_nand_device_ready;
|
|
chip->legacy.chip_delay = 20; /* 20us command delay time */
|
|
|
|
/* Init NAND controller */
|
|
lpc32xx_nand_setup(host);
|
|
|
|
platform_set_drvdata(pdev, host);
|
|
|
|
/* NAND callbacks for LPC32xx SLC hardware */
|
|
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
chip->legacy.read_byte = lpc32xx_nand_read_byte;
|
|
chip->legacy.read_buf = lpc32xx_nand_read_buf;
|
|
chip->legacy.write_buf = lpc32xx_nand_write_buf;
|
|
chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
|
|
chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
|
|
chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
|
|
chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
|
|
chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
|
|
chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
|
|
chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
|
|
chip->ecc.correct = nand_correct_data;
|
|
chip->ecc.strength = 1;
|
|
chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
|
|
|
|
/*
|
|
* Allocate a large enough buffer for a single huge page plus
|
|
* extra space for the spare area and ECC storage area
|
|
*/
|
|
host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
|
|
host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
|
|
GFP_KERNEL);
|
|
if (host->data_buf == NULL) {
|
|
res = -ENOMEM;
|
|
goto unprepare_clk;
|
|
}
|
|
|
|
res = lpc32xx_nand_dma_setup(host);
|
|
if (res) {
|
|
res = -EIO;
|
|
goto unprepare_clk;
|
|
}
|
|
|
|
/* Find NAND device */
|
|
chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
|
|
res = nand_scan(chip, 1);
|
|
if (res)
|
|
goto release_dma;
|
|
|
|
mtd->name = "nxp_lpc3220_slc";
|
|
res = mtd_device_register(mtd, host->ncfg->parts,
|
|
host->ncfg->num_parts);
|
|
if (res)
|
|
goto cleanup_nand;
|
|
|
|
return 0;
|
|
|
|
cleanup_nand:
|
|
nand_cleanup(chip);
|
|
release_dma:
|
|
dma_release_channel(host->dma_chan);
|
|
unprepare_clk:
|
|
clk_disable_unprepare(host->clk);
|
|
enable_wp:
|
|
lpc32xx_wp_enable(host);
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Remove NAND device.
|
|
*/
|
|
static int lpc32xx_nand_remove(struct platform_device *pdev)
|
|
{
|
|
uint32_t tmp;
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
struct nand_chip *chip = &host->nand_chip;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
dma_release_channel(host->dma_chan);
|
|
|
|
/* Force CE high */
|
|
tmp = readl(SLC_CTRL(host->io_base));
|
|
tmp &= ~SLCCFG_CE_LOW;
|
|
writel(tmp, SLC_CTRL(host->io_base));
|
|
|
|
clk_disable_unprepare(host->clk);
|
|
lpc32xx_wp_enable(host);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int lpc32xx_nand_resume(struct platform_device *pdev)
|
|
{
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
int ret;
|
|
|
|
/* Re-enable NAND clock */
|
|
ret = clk_prepare_enable(host->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Fresh init of NAND controller */
|
|
lpc32xx_nand_setup(host);
|
|
|
|
/* Disable write protect */
|
|
lpc32xx_wp_disable(host);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
|
|
{
|
|
uint32_t tmp;
|
|
struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
|
|
|
|
/* Force CE high */
|
|
tmp = readl(SLC_CTRL(host->io_base));
|
|
tmp &= ~SLCCFG_CE_LOW;
|
|
writel(tmp, SLC_CTRL(host->io_base));
|
|
|
|
/* Enable write protect for safety */
|
|
lpc32xx_wp_enable(host);
|
|
|
|
/* Disable clock */
|
|
clk_disable_unprepare(host->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
#define lpc32xx_nand_resume NULL
|
|
#define lpc32xx_nand_suspend NULL
|
|
#endif
|
|
|
|
static const struct of_device_id lpc32xx_nand_match[] = {
|
|
{ .compatible = "nxp,lpc3220-slc" },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
|
|
|
|
static struct platform_driver lpc32xx_nand_driver = {
|
|
.probe = lpc32xx_nand_probe,
|
|
.remove = lpc32xx_nand_remove,
|
|
.resume = lpc32xx_nand_resume,
|
|
.suspend = lpc32xx_nand_suspend,
|
|
.driver = {
|
|
.name = LPC32XX_MODNAME,
|
|
.of_match_table = lpc32xx_nand_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(lpc32xx_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
|
|
MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
|
|
MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
|